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Abstract – Biometric systems allow identification of 
individuals based on behavioral or physiological 
characteristics. In this paper we explore biometric 
applications in access control of haptic systems. These 
systems produce information on human computer interaction 
behavior of a specific participant and could potentially be 
unique. This paper proposes a novel design based on Hidden 
Markov Models (HMM). Architecture is developed where 
each participant has an HMM model. Results are promising 
in that they show three out of four users identified correctly 
from their respective models based on the Match Score (MS) 
values.  
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I. INTRODUCTION 

Haptic technology has seen a wide variety of applications 
such as modeling and animation, geophysical analysis, 
dentistry training, virtual museums, assembly planning, 
surgical simulation, and remote control of scientific 
instrumentation. In certain cases, the haptic system is 
security sensitive, such as haptic systems for military, 
medical and industrial applications. To control access, such 
sensitive systems typically have some type of login 
requirement, which may be based on a password, token, or 
perhaps a physical biometric. However, login authentication, 
at best, can only offer assurance that the correct person is 
present at the start of the session; it cannot detect if an 
intruder subsequently takes over the haptic controls 
(physically or electronically). 

 
In this paper, we continue exploring an avenue of research 

proposed recently [6] to address this problem by allowing 
continuous authentication of participants in a haptic system. 
This continuous authentication is based on the characteristic 
pattern with which participants perform their work. We 
investigate techniques to automatically characterize and 
differentiate participants based on these data. Previous work 
has proposed techniques to examine haptics from a biometric 
aspect and has shown that simple frequency and time domain 
algorithms do not allow low error rates [6]. In this work, we 
explore the use of a more sophisticated Hidden Markov 
Model approach for authentication of users in such systems.  

 
The haptic software application was developed in a 

combination of Python script code and VRML-based scene 
graph module using the PHANToM haptic interface [14]. 

The 3D environment was defined by using VRML-node-
fields approach, while Python provided the procedural 
process to handle certain events and output the data to a file. 
The haptic stimuli are provided by accessing the Reachin 
API [13] which handles the complex calculations for the 
touch simulation and the synchronization with graphic 
rendering.  

 
Data were collected by asking volunteers to complete a 

relatively simple maze task. The haptic maze is built on an 
elastic membrane surface with sticky walls and an elastic 
floor where the user is asked to navigate the stylus through a 
maze. A screenshot is shown in figure 1. Such a task allows 
many different behavioral attributes of the user to be 
measured, such as reaction time to release from a sticky wall, 
the route, velocity, and the pressure applied to the floor. The 
user must move the stylus from the entry to the exit arrow 
without crossing walls. 

 

 

Figure 1: Screenshot of a user navigating the maze. The user 
navigates the maze starting at the top arrow with “enter”. The line 

shows the path taken by the user. 

II. METHOD 

A. Hidden Markov Model 

Hidden Markov modeling is a powerful statistical learning 
technique with widespread application in pattern recognition 
tasks, such as speech recognition. HMMs have also been 
applied successfully to other language related tasks, 
including part-of-speech tagging, named entity recognition 
and text segmentation [4]. An important motivation for the 
use of HMMs is their strong statistical foundations, which 
provide a sound theoretical basis for the constructed models 



[3]. On the other hand, one concern with the use of HMMs is 
the large amount of training data required to acquire good 
estimates of the model parameters [3].  

 
HMM has a set of states, Q, an output alphabet, O, 

transition probabilities, A, output probabilities, B, and initial 
state probabilities, π. The current state is not observable. 
Instead, each state produces an output with a certain 
probability (B). Usually the states, Q, and outputs, O, are 
understood, so an HMM is said to be a triple, (A, B, π) [4]. 

B. Haptic Maze Data 

During each user interaction with the haptic system, the 
following stylus parameters were acquired with a sample 
period of 15 ms: torque, force, and angle (see Figure 2). 
Considering that each output parameter shows difference 
from user to user, it is possible to use this data to do hidden 
Markov modeling.  For this study, data from four participants 
were acquired; each person performed the exact same maze 
task 10 times, one trial immediately after the other. 
Participants were given the opportunity to practice the maze 
before the trials were actually recorded. Since there is only 

one correct path through the maze and the ability to solve the 
maze was not being judged, it was important to ensure 
participants knew how to correctly solve the maze in 
advance. 

 
Data were divided into training and test sets. For each 

user, the HMM is calculated based on a training dataset 
containing 6 data sets of force and torque output parameters. 
Subsequently, the models were tested on a separate test 
database of 4 data sets per user of the 6 output parameters.  

C. Haptic Maze Model and HMM 

At a task level classification, solving a maze has 4 
different states: Inactive, Stylus placement, Solve maze, and 
stylus Removal. The general state diagram connectivity is 
outlined in Figure 3. The general requirement is that the state 
begins and ends with an Inactive state where there is no 
movement of the stylus. The solve maze state is the part 
where the user navigates through the maze.  
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Figure 2: Raw Force and Torque output for representative participant (trail #6 of 10). Time axis is time from entering maze solve state. Force 
and torque units are arbitrary but the relative magnitude is constant for each axis. The z axis force is primarily negative, because pressure is 
applied vertically to a horizontal maze. Forces and torques increase dramatically toward maze completion. This pattern is consistent between 
users, but we currently cannot explain its origin. 



 

Figure 3: Task level state machine. Inactive state has no stylus 
movement. Stylus Placement is when the stylus is in position on the 
haptic maze. Solve maze is when the user navigates through the 
maze. Stylus Removal state when the stylus is removed from the 
haptic maze. 

To be able to incorporate more details for participant 
identification, the Solve Maze state is sub-divided into more 
states at the maze level based on identifying strokes 
boundaries which are defined as sudden changes in stylus 
direction (Figure  4). Stroke boundaries were selected as part 
of the algorithm design, and identified by a human user. M=4 
strokes were chosen (Figure 5). The structure for this 
subdivision is a left-to-right transition with no state skips as 
shown in Figure 4.  

 

 

Figure 4: State sub-structure for solve maze state 

−0.01 0 0.01 0.02 0.03 0.04 0.05
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

State 1

State 2

State 3

State 4

 

Figure 5: four stroke locations represented with four dots and the 
corresponding states (M=4) 

The corresponding outputs for both task level and segment 
level states are:  Stylus torque, T(x,y,z), and Stylus force, 
P(x,y,z), as a function of position (x,y,z). Figure 2 shows an 
example of the torque and force data for a sample subject.  

 
The user-maze interaction is thus encoded as a time 

sequence of six parameters. Recorded data were quantized 
and normalized. Each maze is uniformly divided into N=M*k 
time segments, where N is the length of the HMM output 
symbols sequence. The output parameter of a maze, is 
denoted by Φ(k), k=1,2,…,N:  

 

ksegment  oflength 
k)segment  ofParameter  Sum(Output(k) =Φ               (1) 

 
The normalized output parameter is then quantized into 10 

levels as:  
                Φ*(k)=Q[Φ(k)],   k = 1,2, …, N                        (2) 
 
We assume each of the 10 levels (chosen heuristically) is 

represented a unique symbol (1,10,20,…100), giving 11 
symbols. Thus, the maze is described by a sequence of N 
symbols Φ*(k) of length N. A representative sequence of 
Φ*(k) is shown in figure 6. 

D. Participant Identification  

Based on these states and outputs, it is possible calculate 
HMM parameters for each participant. The Baum-Welch 
algorithm is used to estimate the HMM, λ = (A, B, π), as 
described in [2]. It generates a new estimate λ1 = (A1, B1, π1) 
such that: 

 
                    Πi P(λ1| O(n))≥ Πi P(λ| O(n))                     (3) 

 
The estimate is optimized via the EM algorithm [8] using 

the entire training dataset for each participant. The estimate, 
λ1, is then taken as the HMM model for each participant. 
Each model is then tested against a test dataset to determine 
the probability of the dataset, P(O| λ1), belonging to a specific 
model via the Backward-Forward algorithm [8]. This 
algorithm calculates the probability of observing the partial 
sequence o1,…,ot and resulting in state i at time t: 

 
                    αi(t)=P(O1=o1, ... ,Ot=ot,Qt=i|λ)                    (4) 

 
P(O | λ) is the posterior probability of output O given the 
system model is λ. It is calculated as a recursive sum of αi(t): 

 
                          ∑

=

α=λ
Nj

M j
,...,1

)()|P(O                           (5) 

 
P(O | λ) is usually presented as the log likelihood LL= 
log(P(O| λ)). For this application, a good match score is a 
negative value of LL close to zero 
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Figure 6: Normalized and quantized symbol sequence (M=4, k=10), corresponding to the raw force and torque data of figure 2.

Two different approaches were taken in this work to estimate 
the HMM: Single parameter HMM and Multiple parameter 
HMM. In a single parameter HMM, a model is created for 
each output parameter. Thus, each user will have six separate 
models corresponding to each force and torque parameter. In 
multiple parameter HMM, a model is created for each user 
based on all six output parameters. Thus, each user has a 
single HMM determined from 6 data sets each with 6 output 
parameters. The algorithm calculates a match score (MS) 
which increases with the likelihood that the model matches 
the data. MS is calculated as sum(LL) for all parameters. 

 

III. RESULTS 

For each user a six single parameter and one multiple 
parameter HMM was calculated based on the training data 
set. Subsequently, each calculated HMM is tested against test 
data for all users and the MS calculated. Thus each HMM is 
tested against test data for the same user and all other users. It 
is anticipated that MS be more positive for a user tested 
against herself than any other user. 

A. Single Parameter HMM 

An HMM based on torque in the Y direction is shown in 
figure 7. The MS is the sum of log likelihood values of torque 
in the Y for the test data set of a specific user when applied to 

a particular HMM. We can see that HMM of user 1, user 2 
and user 3 have a high log likelihood value for their 
corresponding user data. However, HMM of user 4 is only 
within the top 2.  
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Figure 7. HMM based on torque in the Y direction: All users 
correspond to their HMM except user 4. 



 

Table 1. Rank 1 and Rank 2 identification rates for all users. HMM was 
determined for single parameters and the percentage of identification was 

determined for the different ranks. 

 User 1 User 2 User 3 User 4 
Rank 2 100% 66% 66% 33.3% 
Rank 1 50% 50% 50% 16.67% 

 
The rank 1 and rank 2 identification rates are shown in 

Table 1. User 1 has a 100% identification rate for rank 2 and 
50% identification rate for rank 1. Both user 2 and user 3 had 
identification rate of 66% for rank 2 and 50% for rank 1. The 
worst performer was HMM of user 4, where the test data was 
only identified 16.67% for rank 1 and 33.3% for rank 2.  

B. Multiple Parameter HMM 

In multiple parameter HMM, a model is created for each 
user based on all six output parameters. The match score 
(MS) is the sum of log likelihood values of the six parameter 
sequences of all test data of the user (when applied to a 
particular HMM). Figure 8 shows the MS results. Values for 
users 1, 2 and 3 correspond to their identity, and our expected 
results. However, results for user 4 are opposite to 
expectations, with the lowest MS for his corresponding user 
data. 
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Figure 8. HMM based on all six parameters. This figure shows the 

sum of the log likelihood of all testing set per user. 

IV. DISCUSSION AND CONCLUSION 

In this paper, we develop and test a hidden Markov model 
(HMM) model of for participant identification in haptic 
systems. Participants solved a haptic maze while force and 
torque data were acquired. Two different HMMs were 
calculated based on training data. Each HMM for each user 
was tested against test data for all users, from which 
identification rates were calculated. 

 

  However, there are a number of issues to be explored 
further. Even though the result for at the “maze solve” state is 
promising, the general procedure during the data collection 
should be carried out in ways it would allow a task level 
segmentation of data. Incorporating the task level information 
should allow for better participant identification than simply 
working with output parameters based on how the user 
navigates the maze. Another issue, is the necessity to carry 
out pre-screening of data to remove unusual user data. 
Instances where the user may have gone off course or did not 
complete the maze in one motion currently need to be 
discarded.  

 
This study considered a model with M=4 HMM states; this 

value was chosen to preserve some unique directional 
information. The results could again be improved by 
including more states with only the “useful” output 
parameters. Varying the number of segments per state to 
observe the impact resulted in a low MS with an inconsistent 
identification rate for M<4.  

 
It was observed that some output parameters (such as Y 

direction torque) show better identification rates than others. 
Parameters which do not contribute to identification should 
be removed from the model. The single parameter HMM can 
be used to screening each output parameter. The multi-
parameter HMM used all parameters without pre-selection. 
Still, the result was promising; three out of four users were on 
average identified to their models. Considering that this 
identification scheme is a continuous and live, it is possible to 
carry out identification on a data set within a certain time 
frame.  

 
Results shown include the training effect. The training 

data was based on the most latter 6 datasets (out of 10 from 
each user) and the test set was constructed from the initial 4 
datasets. This suggests that, all results shown in the project 
have a significant amount of training effect, and may improve 
if only trained data were used for testing. 

 
In conclusion, this paper develops and evaluates algorithm 

for participant identification in haptic system. The algorithm 
was based on an HMM model using N=4 states using 6 
training datasets and 6 likelihood measurements. Results 
were tested for a haptic maze, and showed a rank 2 
identification rate of 100% for one user, 66.66% for two 
users, and 33.33% for the other user. While these results are 
mixed in terms of performance, these results suggest that 
participant identification is possible using HMM algorithms; 
however, further study of the model design, including output 
parameters, number of states, sequence accuracy, and 
quantization level needs to be investigated.   
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