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Abstract. The verification performance of biometric systems is nor-
mally evaluated using the receiver operating characteristic (ROC) or
detection error trade-off (DET) curve. We propose two new ideas for sta-
tistical evaluation of biometric systems based on these data. The first is
a new way to normalize match score distributions. A normalized match
score, t̂, is calculated as a function of the angle from a representation
of (FMR, FNMR) values in polar coordinates from some center. This
has the advantage that it does not produce counterintuitive results for
systems with unusual DET performance. Secondly, building on this nor-
malization we develop a methodology to calculate an average DET curve.
Each biometric system is represented in terms of t̂ to allow genuine and
impostor distributions to be combined, and an average DET is then calu-
lated from these new distributions. We then show that this method is
equivalent to direct averaging of DET data along each angle from the
center. This procedure is then applied to data from a study of human
matchers of facial images.

1 Introduction

One common way to represent the performance of a biometric classification algo-
rithm is the detection error tradeoff (DET) curve. A sample population contain-
ing matching (genuine) and non-matching (impostor) image pairs is presented
to the biometric algorithm and the match score, t, calculated to estimate the
genuine (g(t)) and impostor (f(t)) match score distributions. From these distri-
butions, the DET is typically plotted as the false match rate (FMR) on the x-axis
against the false non-match rate (FNMR) on the y-axis, by varying a threshold τ ,
and calculating FMR(τ) =

∫∞
τ

f(x)dx and FNMR(τ) =
∫ τ

−∞ g(y)dy. The DET
summarizes the verification performance of the biometric algorithm on the sam-
ple population on which it is calculated. Technology evaluations, such as the
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FRVT and FpVTE tests [14][15] use DET curves — or a variant, the Receiver
Operating Characteristic (ROC) — to describe their results.

Given its ubiquity, it is perhaps somewhat surprising that few statistical
methods have been proposed for analysis and interpretation of DET data in
biometric classification. On the other hand, there is a large body of research in
the statistical literature, e.g. Zhou et al. [19], and a growing body of work in
the machine learning/artificial intelligence literature, e.g. Hernández-Orallo et
al. [10]. ROC analysis is used in a wide variety of classification settings including
radiography, human perception, and industrial quality control. Zhou et al. ([19])
provide a excellent overview of this work. One limitation of inferential tools for
ROC’s is the common assumption of Guassian distributions for g(t) and f(t),
e.g. Green and Swets [6]. The methodology we propose here does not depend on
any distributional assumptions. Another focal area for this research has been the
area under the curve or AUC, e.g. Hanley and McNeil [9]. However, biometric
authentication has emphasized the equal error rate (EER) as an overall summary
of system performance rather than the AUC.

Although most of the literature analyses the ROC, we focus on DET curves
since they are more commonly used in biometric identification systems. Here we
are motivated to develop methods for a composite DET curve given classification
pairs from multiple sources FMR(τ), FNMR(τ) in which the original genuine
and impostor distributions are either lost, or the match score values, t, are
calculated in different spaces. Four types of DET or ROC averaging have been
proposed. Bradley [2] suggests using an average based upon the ith ordered
threshold in DET space. However, this method leads to difficulties when the
number of thresholds tested varies greatly from curve to curve. Vertical averaging
(along the FMR) has been suggested by Provost et al. [17], but this method is only
appropriate if one of the error rates is more important for some a priori reason.
When the data to be averaged have very different error rates this method can
produce very non-intuitive results, such as if one system reaches FNMR = 1.0
at non-zero FMR. Fawcett [5] proposes averaging at the thresholds; however,
this method fails when the systems use different match score scales. Finally,
Karduan et al. [12] proposed averaging the log-odds transformation of one error
rate given the other. In this paper we propose a new method for averaging based
on the radial sweep methodology of Macskassy and Provost [13]. This approaches,
described below, transforms each curve from the (FMR, FNMR) space to polar
coordinates.

In this paper we were specifically motivated by how to average the separate
DET curves of human volunteers who were asked to perform face recognition [1],
by evaluating the whether pairs of images were of the same individual. There
are few other reports of comparisons of human face recognition performance
to that of automatic systems. Burton and collaborators [3][8] compared PCA
based and graph-matching algorithms against human ratings of similarity and
distinctiveness, and human memory performance. These studies were focussed
on the extent to which automatic algorithms explain features of human perfor-
mance, rather than as a comparison of recognition performance levels. These
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studies did not pursue advanced statistical techniques to synthesize an average
masure of human performance. As is typical with data collected from subjective
evaluations, assessed values cannot be directly compared between participants.
However, in order to compare human face recognition performance levels to each
other and to those of automatic software, we wanted a way to calculate the com-
posite human face recognition performance. Because a DET is inherently a two
dimensional curve it is difficult to average the curves in a way that properly
maintains the importance of both dimensions. In order to address this problem,
we develop a technique to calculate an average DET based on regeneration of
normalized match scores and distributions. We then show that this is equivalent
to a geometrical averaging directly on the DET curves.

The rest of this paper is organized in the following manner. Our method for
a composite DET is described in section 2. We then apply this method to data
from a group of human subjects (section 3). Finally, in Section 4 and we discuss
the applicability of this technique for analysis and interpretation of biometric
system verification results.

2 Methods

We use the following notation. A collection of J biometric score distributions are
available; each is measured in terms of its own match score ti, i = 1 . . . nj . There
are no conditions on the match scores other than they be scalar, and increase
with match likelihood. The genuine and impostor distributions are represented
as fj(ti) and gj(ti), respectively for j = 1 . . . J . Based on these distributions,
the false match rate (FMRj) and false non-match rate (FNMRj) for biometric
system j may be calculated as

FMRj(τ) =
∫ ∞

τ−
fj(t)dt = 1−

∫ τ+

−∞
fj(t)dt (1)

FNMRj(τ) =
∫ τ−

−∞
gj(t)dt (2)

by varying the threshold τ . Clearly, real biometric match score data are not
continuous, in which case sums must be used instead of integrals. In this case, it
is important that the calculation of either FMR or FNMR but not both, include
the distribution value at τ ; we include it in the FMR. Implicitly this assumes
that the decision process is to accept if the match score is greater than or equal
to the threshold, τ . This calculation is illustrated in Fig. 1.

2.1 Normalized match scores via polar coordinates

In order to perform further analysis on multiple DET curves, it is necessary to
calculate a normalized match score common to all curves. In this section, we
describe an approach, based on representing the curve in polar coordinates, as
illustrated in Fig. 1.
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Fig. 1. Calculation of FMR and FNMR from sample distributions and regeneration
of match score t using polar coordinates. Given the discrete genuine and impostor
distributions shown on the left, the DET curve on the right is calculated. From a
center at (c, c) an angle θ is calculated to each FMR,FNMR point. A normalized
match score t is then calculated from θ. In this example, the distributions are discrete,
and the DET curve uses a linear interpolation between points.

We have FMR, FNMR coordinate pairs (xij , yij), i = 1, . . . , nj ; j = 1, . . . , J
for a series of J DET curves. By the monotonicity of the DET curves, we know
that x1j ≤ x2j ≤ . . . ≤ xnjj and y1j ≥ y2j ≥ . . . ≥ ynjj .

We also assume that no other information is available that would assist us
in knowing how the knots in the splines are selected. These points are, as is
made clear below, a function of some threshold, τ . Equivalently, we are assuming
that no information is available concerning the threshold values. (For example, it
would be possible to assume that the thresholds are equally spaced and to derive
approximate genuine and imposter distributions following such an assumption.)

Thus, from the DET curve, we calculate an angle

θij = tan−1

(
c− xij

c− yij

)
. (3)

We define an angle with respect to the bottom-right of the DET, since at τ =
−∞, FMR = 1 and FNMR = 0. The DET curve moves left and upward with
increasing τ . The limits for θ are

θmin = tan−1

(
c− 1

c

)
(4)

θmax = tan−1

(
c

c− 1

)
(5)

Since we wish to calculate a normalized match score t̂ in the range 0, . . . , 1 from
θ, we define

t̂ =
θ − θmin

θmax − θmin
(6)
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2.2 Distributions from DET curves

In this section, we use the polar-coordinate representation, to reconstruct can-
didate genuine, ĝ(t̂), and impostor, f̂(t̂) distributions. Based on the equations 1
and 2, we calculate for each DET curve j.

fj(t̂) = −dFMRj

dt̂
(7)

gj(t̂) =
dFNMRj

dt̂
. (8)

Fig. 2 illustrates the calculations. Since FMR and FNMR data are not continuous,
but are sampled from the DET, the distributions must be defined in terms
of discrete approximations to the derivative. One consequence of the discrete
derivative is that ĝ and f̂ are noisy, but this does not matter for this application.

Fig. 2. Reconstructed genuine, ĝ(t̂), and impostor, f̂(t̂), distributions: From the DET
curve of Fig. 1 the FMR (upper left) and FNMR (lower left) are calculated as a
function of the normalized match score t̂. From these curves, the impostor (upper
right) and genuine (lower right) distributions are calculated as − d

dt̂
FMR and d

dt̂
FNMR,

respectively.

Using this calculation, we now have a collection of distributions ĝj , f̂j for
j = 1 . . . J , which are all based on the same match scores, t̂’s. It is thus possible
to combine the distributions, weighted by the number of samples in each (if
known). The number of samples in each genuine and impostor distribution are
represented as ng,j and nf,j , respectively. If the number of samples is unknown,
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all n values are assumed to be equal. The combined distributions f̄ and ḡ are

f̄ =
1

Nf

J∑

j=1

nf,j f̂j (9)

ḡ =
1

Ng

J∑

j=1

ng,j ĝj (10)

where Nf =
∑

nf,j and Ng =
∑

ng,j .
However, this expression may be shown to be equivalent to a direct averaging

of the DET curves in (FMR, FNMR) space, as follows:

ˆFNMR(t̂) =
∫ τ−

−∞
ḡ(t)dt (11)

=
∫ τ−

−∞

1
Ng

J∑

j=1

1
dt

dFNMRj(t)dt (12)

=
∫ τ−

−∞

1
Ng

J∑

j=1

ng,j
1
dt

dFNMRj(t)dt̂ (13)

=
1

Ng

J∑

i=1

ng,j(FNMRj(t̂)− FNMRj(−∞)) (14)

=
J∑

j=1

ng,j

Ng
FNMRj(t̂) (15)

Similarly,

ˆFMR(τ) =
J∑

j=1

nf,j

Nf
FMRj(t̂) (16)

Thus, the average DET at each angle θ can be calculated by a (possibly
weighted) average the distance of each curve from (c, c).

3 Results

This paper uses data from a comparison of human and automatic face recognition
performance [1]. This study investigated the ability of interested and motivated
non-specialist volunteers to perform face identification tasks matched against
performance by several commercial face recognition software packages. Images
were obtained from the NIST mugshot database [16]. Pairs of frontal pose face
images were randomly created from this database. Two-thirds of the pairs were
impostors (images of different persons), and one third were genuines (different
images of the same person). No special effort was made to select images of the
same gender or ethnicity for the impostor pairs.
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Twenty one people (16 male, 5 female) participated in the experiments. They
were predominantly Caucasian and in the age range 20–40. Participants were
asked to log onto a web site, where an application server would present pairs
of face images, and the participant was asked whether they were from the same
person. Participants were not given any information about the distribution of
genuines and impostors, or any feedback about their success. Participants were
presented the following options: same, probably same, not sure, probably differ-
ent, or different. Each option was converted to a match score value (such that
different= 1 and same= 5).

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

False Match Rate

F
al

se
 N

on
-M

at
ch

 R
at

e

Fig. 3. Calculation of an average DET curve for human face recognizers. Individual
human DET curves are shown by symbols (circle=female, triangle=male). The average
curve (dotted line) is calculated using the method of this paper. For comparison, the
highest performing software available to us in 2003 is also shown (solid line).

4 Discussion

In this paper we have presented a new methodology for combining and averaging
DET or ROC curves. This approach was motivated by the need to create a
composite DET curve for human evaluators of human faces. This methodology
was developed independently of [13]; however, it uses the same basic technique
of radially sweeping across the DET curve to create a normalized match score.
This permits the creation of normalized distributions for FMR and FNMR that
are a composite of individual DET curves. This normalization is a significant
advance in and of itself and adds to a growing body of methods for this purpose
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[11]. We have used this normalization to to average at normalized radial match
scores.

Several issues arise from radial sweeping of DET curves. The first is where
to locate the center of the sweeping. Because we would like the averaging to not
depend on which error rate is on which axis, we limited possible center points
to (c, c) for some constant c. It is immediately clear that choosing a center
along the FMR = FNMR line results in an average curve that is independent
of the selection of axes. We considered three possible values for c, 0, 1 and ∞.
Choosing c = 0, often resulted in composite or average curves that were counter-
intuitive because of the acute angles near the axes. This is especially important
for biometric systems which are often placed in settings where low FMR’s are
required. There was little difference between the curves when c = 1 and c = ∞.
However, we prefer c = 1 because the radial angles match the typical curvature
of a DET curve and, hence, are more likely to be perpendicular to such curves.
The choice of c = ∞ results in averaging across parallel 45◦ lines.

Another issue is the choice of how to “average” the curves. Here we have
effectively taken an arithmetic average of the curves. Other choices are possible
including a weighted average, to account for database size or importance by
varying the weights to be given to each DET. An alternative would be to use a
radial median at each angle. This would results in a spline that is not as smooth
as the radial mean DET but which may be more robust to “outlying” DET
curves.

The question of inferential methods based on the radial mean DET is one
that is important for future study. Here we are interested in creating confidence
intervals for an individual curve (as in [13]) as well as being create a confidence
interval for the difference of two DET curves. Similarly we would like to create
tests for significant differences between two or more DET curves. It might also
be of interest to test a single observed DET against a hypothetical DET curve.
This last case may take the form of a Kolmogorov-Smirnov type test.
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