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Abstract 

 

Dynamic signature verification (DSV) uses the behavioral biometrics of a hand-

written signature to confirm the identity of a computer user.  This thesis presents a novel 

stroke-based algorithm for DSV. After individual strokes are identified, a significant 

stroke is discriminated by the maximum correlation with respect to the reference 

signatures. Between each pair of signatures, the local correlation comparisons are 

computed between portions of the pressure and velocity signals using segment alignment 

by elastic matching. Experimental results were obtained for signatures from 25 

volunteers over a four-month period. The result shows that when adding stroke-based 

features into a non-stroke feature system, the accuracy of the signature verification has 

been greatly improved to False Reject Rate (FRR) of 6.67% and False Accept Rate 

(FAR) of 13.33%.  The result shows that stroke based features are important features, 

contain robust dynamic information, and offer greater accuracy for dynamic signature 

verification, in comparison to results without using non-stroke based features. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1   Objective and Motivation 

The objective of this research is to identify a new algorithm for dynamic signature 

verification. Subsequently, this algorithm is implemented on a real signature verification 

system based on a digital pad device. Finally, the performance of the proposed system is 

experimentally evaluated. This system is able to extract features from an individual’s 

signatures and discriminate genuine signatures from forgeries.  

Biometrics is a rapidly evolving technology, which has been widely used in 

government identification and some commercial identification applications, etc. A 

biometric system is essentially a pattern recognition system, which makes a personal 

identification by determining the authenticity of a specific physiological or behavioural 

characteristic possessed by the user.  Due to the unreliability and inconvenience of 

passwords and cards, biometrics of identification are preferred over of the traditional 

methods such as passwords, PIN numbers, key-cards and smart-cards, etc.  
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Dynamic Signature Verification (DSV) is the process of verifying the writer's 

identity by checking the dynamic parameters of the signature against the templates 

created during enrolment.  DSV not only looks at the signature’s appearance, but also at 

the process an individual uses to form the signature. Various dynamic parameters can be 

analyzed, such as the shape, speed, stroke, pressure, and timing information during the 

act of signing.  According to Cybersign [Cyber03], DSV is easy to explain and thus 

facilitates trust. This technology is the least expensive and controversial of current 

biometrics on the market today. In addition, DSV is hard to forge compared to static 

signature verification.   

In the post September 11 world, biometrics systems are being carefully studied for 

use in national identification applications. The individual privacy problems get more and 

more attention from our world. The dynamic signature verification, as well as other 

biometrics techniques, allow automatic identification of an individual from reasonably 

easy to measure and hard to falsify characteristics. In addition, the development of 

personal computer techniques has become powerful enough to allow signature 

verification to be commercially viable.  Therefore, we are promoted to study a new 

algorithm and evaluate its performance in the area of dynamic signature verification.  

 

1.2  The Research Problem 

Dynamic signature verification technology uses the behavioural biometrics of hand 

written signatures to verify the identity of a user. This method is based on features which 

define the pattern of execution of the signature. The features that are taken into account 
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include speed, pen pressure, directions, stroke length, and the times when the pen is 

lifted from the paper. The algorithm stores these factors in a database for future 

comparisons.  They account for changes in one signature over time by recording the 

time, history of pressure, velocity, location, and acceleration of a pen each time a person 

uses the system.  

Dynamic signature verification systems undertake the following processing steps:  1) 

acquisition of several biometric sample signatures, 2) conversion of the sample 

signatures to a biometric template, 3) comparison of templates to calculate a similarity 

score (or match score), in order to determine whether a newly acquired test signature 

represents the same individual as stored signatures.  The goal of a biometric such as 

DSV is to verify a claim to identity, giving an output (the person is or is not the same as 

the enrolled person). To calculate the decision, the match score is compared to a 

threshold. The threshold used for confirmation/rejection decision depends on the nature 

of the application.   

A typical dynamic signature verification system is illustrated in Figure 1.1. In 

general, such a system has following five basic components:  

 Data acquisition - acquiring signature and converting it to digital form. 

 Signature preprocessing - transforming the data in a standard format.  

 Feature extraction - extracting key information from the digital representation of 

the signature.  

 Comparison process - matching extracted features with templates stored in a 

database and output a fit ratio.  
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 Performance evaluation - making decision by comparing the similarity score to a 

threshold.  
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Figure 1.1   A typical model for signature verification system. 

 

Some key steps used in this research are: 
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 Data acquisition is done with a digital pad, which inputs data to the 

microcomputer through serial port.  The pad uses the standard Window Tablet 

input API [Lcs03], and thus this software can be straightforwardly extended to 

other similar devices. 

 Feature extraction uses a stroke based feature algorithm.  A significant stroke is 

discriminated by the maximum correlation with respect to the reference 

signatures.  Various statistical and time domain features for the significant 

strokes are extracted for identifying genuine signatures against forgeries.  Both 

features extracted from the significant stroke and other global features are used in 

the proposed signature verification system. 

 Signature verification is implemented as comparison of templates to calculate a 

similarity score.  The classifiers are designed based on the probabilistic 

characteristics of the selected features. When evaluating a test signature, its 

feature values are calculated and compared with the corresponding templates. 

Both fixed and variable thresholds are used to calculate the false accept rates and 

false reject rates, and the detection error tradeoffs curve is also estimated.  

 

1.3  Thesis Contributions 

The contributions of this thesis can be divided into two categories. 

A. Contributions to Knowledge 

 A stroke based feature extraction method has been developed for DSV. This 

study provides an approach to identify the significant strokes and extract an 
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individual’s consistent behavioural characteristics from them. These stroke-based 

features also can be integrated with other kind of features and applied in the 

proposed dynamic signature verification system. The experimental results show 

that stroke based features contain robust dynamic information, and offer great 

accuracy for dynamic signature verification.  

B. Practical Contributions  

 An automated dynamic signature verification system has been developed and 

applied to identify genuine signatures against forgeries.  For the convenience of 

operation, a graphical user interface is designed and the signature verification 

operation can be conducted conveniently and visually. 

 The hardware has been setup for data acquisition.  A digital tablet has been 

connected with microcomputer. The transporting data has been measured by 

applying a modified WindowTablet application, which is based on a C/C++ 

developed program. 

 A set of signatures from 25 volunteers has been acquired over four-month period. 

A data acquisition protocol was designed and applied in the data collection. 

 Various features have been extracted using an algorithm implemented in Matlab.   

 The system performance has been evaluated by conducting various experiments. 

 

1.4   Publications Resulting from This Research 

Two papers have been published: 

1. Tong Qu, Abdulmotaleb El Saddik and Andy Adler “A Stroke Based Algorithm 
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for Dynamic Signature Recognition”. In Proceedings of the Canadian 

Conference on Electrical and Computer Engineering, Niagara, Ontario, Canada, 

May 2-5, 2004. 

2. Tong Qu, Andy Adler, Abdulmotaleb El Saddik, “Dynamic Signature 

Verification System Using Stroked Based Features”. In Proceedings of the 

second IEEE International Workshop on Haptic Virtual Environments and their 

Applications (HAVE2003)”, Ottawa, Canada, September 20-21, 2003.    

 

1.5   Organization of the Thesis 

In this chapter, the objective and motivation for the current research was presented at 

first. Then, the dynamic signature verification was briefly introduced based on a typical 

model. Finally, the thesis contribution, publications resulting and thesis organization 

were listed, respectively.  

Chapter 2 presents the background information related to this thesis, such as the 

introduction to the biometric techniques and dynamic signature verification.  The 

literature review for the dynamic signature verification has been conducted and the 

related work has also been discussed.  

Chapter 3 provides an overview for the proposed dynamic signature verification 

system. First, the system architecture is described. Then, the data acquisition and related 

hardware setup work has been presented in three parts: digital pad setup, data 

measurement, and data acquisition protocol. Finally, the dynamic signature pre-

processing has been realized by developing various functions. 
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Chapter 4 presents a stroke-based algorithm in feature extraction and signature 

verification. First, the statistical features and some general feature extraction methods 

have been introduced. Then, a novel stroke feature extraction algorithm is been 

described in detail. Finally, the problems about feature selection have been discussed. 

Chapter 5 introduces the signature verification and a binary signature classifier has been 

presented. 

Chapter 6 implements the stroke based feature algorithm on the proposed dynamic 

signature verification system. Both fixed and variable thresholds experiments have been 

tested for computing false reject rate and false accept rate data.  A graphical user 

interface is also developed for the convenience of conducting signature verification 

experiments.  

Chapter 7 summarizes and concludes the thesis. It presents recommendation for future 

research. 
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CHAPTER 2 

 

THE STATE OF THE ART 

 

In this chapter biometric techniques and dynamic signature verification will be 

introduced.  Literature review for dynamic signature verification systems and approaches 

will be conducted and related work will be discussed.  The applications and advantages 

of the dynamic signature verification will be also presented.   

 

2.1   Biometrics  

According to Wayman, biometrics authentication is “automatic identification or 

identity verification of an individual based on physiological and behavioural 

characteristics.” [Wayman03].  A physiological characteristic is a relatively stable 

physical characteristic, such as a fingerprint, hand silhouette, iris pattern, or blood vessel 

pattern on the back of the eye.  This type of measurement is basically unchanging and 

unalterable. A behavioural characteristic is a reflection of an individual's behavioural 

makeup, such as a handwritten signature, which is the one of the common behavioural 
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trails used in identification.  Other behaviours that can be used are the manner of typing 

at a keyboard and the way one speaks.   

Biometric technologies include dynamic signature verification, retinal/iris 

identification, DNA identification, face recognition, voice recognition and fingerprint 

identification, etc.  With the increased use of computers as vehicles of information 

technology, biometric techniques can be used to prevent unauthorized access or 

fraudulent use of sensitive or personal data.  In addition, biometric techniques can be 

used to replace traditional smart cards, passwords and PIN numbers since they are easy 

lost and forgotten. Thus the usage of biometric-based identification systems is gradually 

increasing.   

Recent advancements in biometric sensors and matching algorithms have led to the 

deployment of biometric authentication for various applications. In the past, only 

physical objects and behaviour-based-on-memory methods were available for 

authentication applications. Physical objects include keys and smartcards. Behaviours 

based-on-memory includes the act of entering a PIN number or a secret password. 

Recently, biometrics give us alternative ways to realize personal authentication.   For 

physical biometrics, such as DNA, face or fingerprint, they are very difficult to be shared 

by others, while the behavioural biometrics, such as voice or handwritten signature, are 

nearly impossible to be replicated by a forger.  There are four groups of authentication 

techniques: physical objects, behavioural objects, physical biometrics and behavioural 

biometrics. They are summarized in Table 2.1. Among the different biometrics 

techniques illustrated in Table 2.1, we are interested in dynamic signature verification, 

which will be introduced in the next section. 
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Table 2.1   Summary of authentication techniques (I and II represent two different 

classification methods for all the authentication techniques) 

Objects

(Traditional techniques)

Biometrics

(Alternative new techniques)

I

II

Authentication
techniques

Key

Stamp

IC card

PIN number

DNA

Face

Iris scan

Fingerprint

Voice

Keyboard typing

Static signature

Dynamic signature

Dynamic passwords

Physical

Behavioural

 

 

2.2   Basic of Dynamic Signature Verification 

Signature verification is the process used to recognize an individual’s handwritten 

signature.  There are two types of signature verification: static and dynamic. Although 

both of them can be computerized, a static signature comparison only takes into account 

how the signature looks like, while dynamic signature verification analysis how the 

signature is made.  A static signature verification system captures a 2 dimensional (2D) 

signature image as input from a camera or a scanner. Static verification methods are 

based on the limited information available solely from the shape and structural 
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characteristics of the signature image.  A dynamic signature verification system gets its 

input from a digitizer or other device, usually pen-based, dynamic input device.  The 

signature is then represented as one or several time-varying signals.  Dynamic 

verification methods rely on features, which extracted from the dynamic characteristics 

of a signing process such as pen motion, pen velocity, personal rhythm, stroke 

sequences, etc. A copy machine or an expert forger may be able to duplicate the look of 

a signature, but it is very difficult to duplicate the timing of changes in position, velocity 

and pressure etc.  Therefore, compared with static signature verification, dynamic 

signature verification has higher potential to increase the authentication trust and to 

decrease the possibility of fraud.  On the other hand, DSV is limited in the sense that it 

can only function with the required hardware, while static signature verification is able 

to analyse signatures written on paper. 

An individual’s signatures are remarkably consistent; however, there will always be 

slight variations in a person’s handwritten signature, but the consistency of an 

individual’s signature makes it natural for biometric identification [Lee92]. So the DSV 

technology examines the behavioural components of the signature, such as stroke order, 

speed and pressure, as opposed to comparing visual images of signatures.  A graphical 

dynamic signature example is shown in Figure 2.1. Not only a 2D static signature image 

can be reconstructed by a dynamic signature, but also more dynamic information can be 

represented.  The pressure values are represented by the dot size and open circles 

indicate the period when the pen lifted up from the pad surface.   
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Figure 2.1   A graphical dynamic signature example. 

 

According to Cybersign, “the primary advantage that dynamic signature verification 

technology has over other types of biometric technologies is that signatures are already 

accepted as the common method of identity verification” [Cyber03]. This history of trust 

means that people would be willing to accept a signature based verification system. In 

addition, DSV is the least controversial of all the biometric technologies because of its 

natural occurrence in everyday transactions.  Individuals are less likely to object to their 

signature being confirmed as compared to other possible biometric technologies. Some 

other advantages of DSV are its ease of use and lower cost.  

Compared to traditional authentication technologies such as passwords and key 

cards, which are often shared or easily forgotten, lost and stolen, DSV provides a simple 

and natural method for increased computer security and trusted document authorization. 

There are various applications for dynamic signature verification and other 

biometrics techniques [Cyber03], such as: 
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 Access control to buildings  

- Computer room  

- Secure sites (research centre, nuclear site)  

 Information systems, launching of operating system  

- Access with network  

- Electronic trade  

- Transactions (financial institutions, data between companies)  

 Communications equipment 

- Access terminal with Internet  

- Mobile phone  

 Various machine & equipment  

- Safety or comfort with electronic locks 

- Automatic distributors  

- Legal files  

- Identity papers (passport, driving license, residence permit)  

- Electronic voting systems  

 Banking and Commerce 

- Home consumer banking 

- Internet eCommerce 

 Government 

- Government departments 

- Electronic Signatures 
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2.3   Literature Review and Related Work 

Handwriting is a personal skill that comprises of three main characteristics. It 

consists of artificial graphical marks on a surface; its purpose is to communicate 

something; this purpose is achieved by virtue of the mark’s conventional relations to 

language [Colmas80].  Several types of analysis, recognition, and interpretation can be 

associated with handwriting.  According to Plamondon, “Handwriting recognition is the 

task of transforming a language represented in its spatial form of graphical marks into its 

symbolic representation.  Handwriting interpretation is the task of determining the 

meaning of a body of handwriting. Signature verification is the task of determining 

whether or not the signature is that of a given person” [Plamon00].   

Handwriting data are converted to digital form either by scanning the writing on 

paper or by writing with a special pen on an electronic surface such as a digitizer 

combined with a liquid crystal display. The two approaches are distinguished as off-line 

and on-line handwriting, respectively [Plamon00].  In the on-line case, the two-

dimensional coordinates of successive points of the writing as a function of time are 

stored in a specific order, i.e., the order of strokes made by the writer is readily available.  

In the off-line case, only the completed writing is available as an image.  The on-line 

case deals with a spatio-temporal representation of the input, whereas the off-line case 

involves analysis of the spatio-luminance of an image [Plamon00].  

On-line recognition is defined by Plamondon as methods and techniques dealing 

with the automatic processing of a message as it is written using a digitizer or an 

instrumented stylus that captures information about the pen tip, generally its position, 
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velocity, or acceleration as a function of time [Plamon00]. This has been a research 

challenge since the beginning of the 1960s, when the first attempts to recognize isolated 

handprint characters were performed [Earnest63], [Eden62]. Subsequently, numerous 

methods and approaches have been proposed and tested; many have already been 

summarized in a few exhaustive survey papers [Nouboud90], [Plamon99], [Tappert90], 

and [Wakahara92].  Over the years, these research projects have evolved from being 

academic exercises to developing technology driven applications. 

Dynamic signature verification (DSV) refers to the comparison of a test signature 

with one or a few references that have been collected as a user enrols in a system. This 

requires the extraction of writer-specific information from the signature signal, 

irrespective of its handwritten content [Plamon00]. This information has to be almost 

time-invariant and effectively discriminate. This problem has been a challenge for about 

three decades. Two survey papers [Leclerc94], [Plamon89], and a journal special issue 

[Plamon94] have summarized the evolution of this field through 1993.    

In general, there are two types of forgeries named as random and skilled forgeries.  

According to Plamondon, “Random forgeries were collected when the forger knew the 

name and spelling of the genuine signer but no knowledge of the genuine signature. This 

type of forgery is also called as zero-effort forgery.  Skilled forgeries were generated by 

forgers who were provided several samples of genuine signatures on a piece of paper 

and told that the verifier uses dynamics features of the signature and were allowed to 

practice on paper and tablet”  [Plamon00].   

Two types of errors are used to evaluate the performance of a detection system such 

as DSV, namely Type I error (false rejection) and Type II error (false acceptance).  Type 
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I error occurs when an authentic signature is falsely rejected, which corresponds to the 

False Rejection Rate (FRR); while Type II error refers to the acceptance of forgeries as 

being authentic, which corresponds to False Acceptance Rate (FAR).  If the score 

distributions of FAR and FRR overlap, their distribution curves will intersect at a certain 

point. This overlap refers to the match score distributions, not the error curves. The value 

of the FAR and the FRR at this point, which is the same for both of them, is called the 

Equal Error Rate (EER). The rate of Type I and Type II errors are very important to 

consider when putting together a signature verification system (or any biometric system 

for that matter).  As a matter of fact, if the rate of Type I errors increases, the rate of 

Type II errors decreases [Lee92].  The inverse relationship between the two types of 

errors enables the biometric system designer to balance Type I and Type II errors 

constantly with the requirements of the system users.   

Although useful applications of signature verification have only recently become 

available, research into the creation of a workable automatic (electronic) signature 

verification device or system has been conducted for at least the past two decades.  

Major successes and promising applications of both on-line and off-line approaches 

have been indicated in Plamondon’s review paper [Plamon00].  However, Plamondon 

claimed that there is not a clear breakthrough either in signature verification although 

many projects have been carried out on dynamic signature verification with varying 

degrees of success [Plamon00].  A variety of new techniques suggests either adjustments 

or combinations of known methods and has been used with more or less success. 

Throughout the literature, different approaches and techniques are applied for the DSV 
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such as: feature values comparison, point to point comparison, neural network training 

techniques, wavelets, Fourier transform, power spectral and shape comparison, etc.   

The earliest cited work on DSV appears to be that of Mauceri [Mauceri65] cited by 

Herbst and Liu [Herbst77].  Herbst and Liu report that Mauceri took 50 signatures from 

each of the 40 subjects in order to evaluate his method, which used power spectral 

density and zero-crossing features extracted from pen acceleration waveform 

measurements.  A FRR of 37% has been reported.   

Feature values comparison is based on the assumption that there are remarkably 

consistent characteristics in a person’s signatures; this technique is the most widely used 

in dynamic signature verification. Various features are used to capture the signature 

information and these features are computed/compared for the purpose of signature 

verification.  Crane and Ostrem first presented a feature values comparison method and 

feature selection techniques [Crane83].  They used a strain-gauge instrumented pen to 

sample three forces of the writing tip: the x and y forces and the download force. They 

extracted 44 features from these forces such as: scaled means, standard deviations, 

minimum and maximum values, number of zero-crossings, maximum minus scaled 

mean, and maximum minus minimum, etc. A total of 5220 genuine signatures for 58 

subjects and 648 forgeries from 12 forgers were collected over a four-month period.  

They achieved the FAR and FRR varying from 0.5% to 3%, but they used different 

definitions of FRR and FAR which are not normally used in the literature, and they also 

allowed three tries for verification. 

Parks et al. also used features value comparison for DSV [Parks85] and they initially 

suggested six features: total elapsed time, time in contact, number of segments, sum of 
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increments in the x direction, maximum increment in the x direction, and sum of 

increments in the y direction.  They used different values of threshold for different 

individuals and updated the reference signatures by applying a weighting of 90% to 

stored feature parameters and 10% to the new ones obtained form the test signature.   

Lee conducted a comprehensive study in his thesis for the purpose of designing a 

simple on-line system yielding good performance [Lee92] [Lee96].  From timing, 

position, velocity and acceleration signals, he extracted 29 dynamic features and 13 

static features.  Lee noted that a small subset from the 42 features performed better than 

the whole set [Lee92].  Individualized subsets of features are selected for different 

individuals.  The individualized subsets of features are tested on a larger database that 

had 1485 genuine signatures and 608 forgeries (how these were selected is not made 

clear).  They achieved 1% FRR and 14% FAR.  They also obtained 0.3% FRR and 17% 

FAR when evaluated one individual who had signed 1000 times.  

Gupta and Joyce noted that features derived from the dynamic information of 

handwritten signatures such as number of velocity sign changes in the x direction are 

more important than those from the shape of signatures such as the maximum height of a 

signature [Gupta97a].  They proposed an algorithm with the aim of using a set of 

features that are simple and easy to compute. In their experiments, they used the 

following 6 features: the total time, the number of velocity sign changes in the x 

direction, the number of velocity sign changes in the y direction, the number of 

acceleration sign changes in the x direction, the number of acceleration sign changes in 

the y direction, and the total pen-up time. They added additional path length feature to 

the initial set, and were able to improve the performance to a FRR of 0.5% and a FAR of 
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10%.  They also noted that three signatures are not sufficient to build the reference 

signature and that at least five signatures should be used while seven and ten signatures 

would be better.   

 According to Gupta, point to point comparison is based on the idea of comparison a 

test signature with a reference signature by comparing the different parts of the signature 

separately and combining these comparisons to achieve an overall similarity measure 

[Gupta97].  Since variations exist between the genuine signatures, it is difficult to make 

a direct point to point comparison. Therefore, in order to make more effective 

comparisons, a system should perform some type of alignment of the test and reference 

signatures in an attempt to line-up the corresponding parts of the signatures [Gupta97].  

Herbst and Liu presented a technique based on acceleration measurements using regional 

correlations [Herbst77].  They used two orthogonal accelerometers mounted on an 

experimental pen to sample a signature at the rate of two hundred samples per second.  

They found that most signatures were of 2-10 seconds in duration with an average time 

of about 5 seconds. They claimed that the total time taken for writing signatures by an 

individual is consistent [Herbst77]. Therefore, they heuristically partitioned each 

signature into segments and computed the cross-correlation of corresponding segments. 

The segments were modified based on the duration of the interval and discrepancies 

between the test signatures and the reference signature. The signatures were separated 

into a set of segments with 1 or 2 seconds duration.  The technique was evaluated using 

a database of 1682 signatures.  An individual’s reference signature was selected from the 

5 sample signatures of the same individual.  The distance between the reference 

signature and the remaining 4 sample signatures was at least equal to a pre-specified 
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value. So such selected reference signature was supposed to be the “best” reference 

signature. A total of 70 reference templates were selected from 350 signatures )705( ×  

for the 70 users.  The test signatures included 695 genuine and 287 forged signatures. 

Before applying the correlation test, the verification algorithm rejected a signature if its 

duration is longer than 20% of the duration of the reference signature.  A FRR of more 

than 20% was obtained with a FAR of around 1%.   

Plamondon and Parizezu compared the performance of three types of data: position; 

velocity; and acceleration, using three techniques: regional correlation, dynamic time 

warping and skeletal tree matching [Plamon88].  The regional correlation method is 

similar to the correlation method proposed by Herbst and Liu [Herbst77].  Different with 

1 or 2 second segment used by Herbst and Liu, Plamondon used 0.7 second piece of the 

signature as a segment based on a claim that handwriting signals tend to fall out of phase 

beyond 0.7 seconds [Plamon88]. According to Plamondon, time warping is a nonlinear 

correlation technique borrowed from speech recognition and is used to map segments 

from a test signature to segments of the corresponding reference signature through the 

removal of unwanted timing differences. The distance between two samples can then be 

computed [Plamon88].  Tree matching is a technique that involves building a tree of 

peaks and valleys of signatures. The distance between them may be computed in terms 

of minimum number of operations needed to transform one tree to another [Plamon88].  

Each of the three techniques used all the values of position, velocities and accelerations 

along the x and y directions and no statistical features were used.  The database consisted 

of 50 signatures from each of 39 volunteers; no skilled forgeries were collected and 

random forgeries were used to determine FAR.  Total error rates (FRR+FAR) averaged 
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over the three types of algorithms are presented.  Using random forgeries the FAR 

average varied between 1.9% and 8.1%.  Later, Parizeau and Plamondon also used the 

same experiments to compare the three types of techniques: regional correlation, 

dynamic time warping and skeletal tree matching [Parizeau90].  The experimental 

results of the three techniques showed total error rates between 3% and 17%.  It also 

showed that no technique was globally superior to the other two although regional 

correlation was often better and much faster.   

Neural Network techniques differ from the above techniques in terms of its 

underlying computational philosophy - the exploitation of different feature types. 

However, this approach suffers from the somewhat undesirable constraint that relatively 

large training sample sets are often required if acceptable levels of performance are to be 

achieved.  Lee described three neural network based approaches for dynamic signature 

verification: Bayes multilayer perceptrons (BMP), time delay neural networks (TDNN), 

and input oriented neural networks (IONN) [Lee95]. He applied the back propagation 

algorithm in the network training. Each signature was input as a sequence of 

instantaneous absolute velocity extracted from a pair of spatial coordinate time functions 

[Lee95]. The absolute velocity is the only feature used in the study. As many as 1000 

sample signatures are collected from the same signer, and every absolute velocity signals 

for the 1000 sample signatures are used to train the system. The proposed neural network 

systems automatically discriminates patterns using Bayes decision rule. Besides the 1000 

sample signatures from the same signer, they also collected 450 forgeries from 18 

forgers. The BMP, TDNN, and IONN provided an equal misclassification error rate of 

2.67%, 3.82%, and 6.39%, respectively [Lee95].   
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Pacut and Czajka proposed a dynamic signature verification system, which applied 

two neural networks as the classification functions, namely a two layer sigmoidal 

perceptron and the Restricted Coulomb Energy (RCE) network which is a variety of 

radial basis network [Pacut01]. They extracted several features from five channel 

signals: horizontal and vertical pen tip position, pen tip pressure, pen azimuth and 

altitude angles.  The detail for the neural networks was not provided. It was reported that 

a FAR of 0% and a FRR of 22% were achieved for the two-layer sigmoid perceptron 

network; and a FRR of 11.11% and a FAR of 8.33% for the RCE network [Pacut01].   

 In addition to the above mentioned approaches, there are some other approaches in 

the area of dynamic signature verification. For example, Lejtman and George applied 

wavelets and back-propagation neural network together for the on-line signature 

verification [Lejtman01]. They extracted features from the pen tip pressure, velocity, 

angle of pen movement and applied the Daubechies-6 wavelet transform using 

coefficients as input to a neural network. They claimed the system achieved a FRR of 

0.0% and a FAR of less than 0.1%.  Wessels and Omlin used hidden Markov models to 

model the dynamics of signatures [Wessels00].  They claimed their initial results 

achieved a FRR of 0% and a FAR of 13%.  Lam and Kamins applied Fourier transform 

on the dynamic signature verification and used the 15 harmonics with the highest 

frequencies for each signature for verification [Lam89].  A relatively small database was 

used with one genuine signature and 19 forgers.  This limited evaluation lead to a FRR 

of 0% and a FAR of 2.5%.  Nalwa developed a strategy primarily based on the shapes of 

signatures for dynamic signature verification [Nalwa97]. His approach differs from 

traditional approaches, which rely primarily on the pen dynamics during the production 
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of the signature, in the fact that he proposed a local shape based model for handwritten 

on-line curves. Experiments were conducted based on three databases of signatures. The 

first database included a total of 904 genuine signatures from 59 signers and 325 

forgeries collected from some of the signers; the second database contained 982 genuine 

signatures and 401 forgeries from 102 signers; and the third database included 790 

genuine signatures and 424 forgeries from 43 signers.  The equal error rates for the three 

databases were about 3%, 2% and 5%, respectively [Nalwa97].   
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CHAPTER 3 

 

SYSTEM OVERVIEW 

In this chapter, the proposed dynamic signature verification system will be presented 

from a system point of view. The system is composed of four parts: data acquisition; 

signature pre-processing; feature extraction and signature verification. First, the data 

acquisition and related hardware setup are described. Then, the signature pre-processing 

and data transformation are introduced. The feature extraction and signature verification 

will be studied in detail in the next chapters.  

 

3.1 System Description 

The proposed dynamic signature verification system is illustrated in Figure 3.1 and is 

composed of four subsystems: 1) data acquisition; 2) signature pre-processing; 3) feature 

extraction; and 4) signature verification.   

In the data acquisition subsystem, the signatures are acquired and digitized by a 

digital pad.  Then the raw data are sent to a microcomputer through a serial port.  The 

time, position and pressure data are measured by a Window Tablet Application, which 

monitors the serial port at a sample rate of one per millisecond.  A total of four channels 

 25



of raw data are measured: the sampling time sequence t, the x position values, the y 

position values, and the z pressure values.   

 

 

1. Data Acquisition 4. Signature Verification 

 
Figure 3.1   The proposed dynamic signature verification system. 

 

Based on the above four channels of raw data, velocity, acceleration and angle 

signals are computed in the signature pre-processing subsystem. First, the noise is 

filtered for the raw data.  Then, the velocity, the acceleration and the signals are 

computed.  Finally, the dynamic signature signals are re-sampled and normalized before 

being sent to the feature extraction subsystem.  

In the feature extraction subsystem, the key information of the input dynamic 

signature is calculated by pre-configured feature extractors. Both global feature 
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extractors and stroke feature extractors are used. These stroke feature extractors are 

designed based on a novel stroke based feature extraction algorithm, which will be 

described in more details in chapter 4.  For the training signatures, the extracted 

sampling feature vectors are forwarded and stored in the signature template database; for 

a test signature, the obtained feature vector is sent to the signature verification subsystem 

and compared with the template by a signature classifier.   

 The signature verification system is used to compare the test signature with the 

templates stored in the database. A test signature is compared to the template of the 

enrolled signature, and a match score calculated.  A decision is made by comparing the 

score with the threshold value. Signatures with scores above the threshold are 

authenticated; otherwise, they are judged as a forgery.   

 

3.2 Data Acquisition and Hardware Setup 

A Patriot digital pad (Figure 3.2) is used to collect dynamic digital signatures.  The 

acquired raw data are measured at the serial port by a modified Window Tablet 

Application. A data acquisition protocol is designed to guide the data acquisition 

processing over an extended testing period.  
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3.2.1   Patriot Digital Pad Setup and Its Mechanisms  

A Patriot digital tablet is used to acquire signatures in this research. This digital pad 

is manufactured by Huaqi while its technique is patented by Wacom. The technical 

parameters are illustrated in Table 3.1 [Huaqi03].  The mechanism of this type of digital 

pad is based on the Electro-Magnetic Resonance (EMR) position sensing technology 

[WACOM03]. A component-less printed circuit board is used where the copper tracks 

provide a multitude of over-lapping antenna coils in both the x and y directions.  

Underneath the sensor is a magnetic reflector used to enhance and shield the magnetic 

field. The sensor is placed underneath and penetrates the display [WACOM03].   

 

 
 

Figure 3.2   A picture of Patriot digital pad. 

 

Energy coupling between pen and pad is illustrated in Figure 3.3 (a). According to 

Wacom, A close-coupled field is generated at a very low energy level and resonant 

frequency.  This energy couples with a tank circuit, which is located in the pen.  The pen 
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is battery-less and contains just an inductor and capacitor in its simplest embodiment.  

The inductance and capacitance values of the tank circuit are selected to match the 

resonant frequency of the antenna coil [WACOM03]. The inside of the digital pen is 

shown in Figure 3.3 (b). 

 

Table 3.1   The specification of the Patriot digital pad [Huaqi03] 
 

Items Description 

Dimensions 166 mm (L) x 177 mm (W) x 9.3 mm (H) 

Active Area 4.0" x 3.0" 

Weight 8.4 oz (238g) N.W. 

Report Rate At Least 100 points/sec 

Resolution 4064 LPI  

Pressure Sensitivity ~ 512 Levels 
 

 

         

(a)                                                                 (b) 

Figure 3.3   (a) Energy coupling between a pen and digital pad, (b) The inside of a 

digital pen [WACOM03]. 
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According to Wacom, the coupled energy resonates with the tank circuit and reflects 

back towards the sensor board by forming a shaped h-domain field at the tip of the pen.  

As this happens, the same antenna coil is switched to receive this reflected energy and 

provide an analogue signal.  This process is repeated in rapid succession with all antenna 

coils.  All of these analogue data are then collected and converted into digital signals that 

can be post-processed to give x and y position and pen tilt information.  The pen has to 

be a maximum of 14mm from the sensor surface for it to be acquired. The sensor can 

track the pen as it hovers above it [WACOM03].  The sensor only detects a "pen down" 

signal when pressure is applied to the pen tip.  The mechanism of generating the x and y 

position as well as the z pressure information is illustrated in Figure 3.4. 

 

 

Figure 3.4   The digital pad mechanism of generating x and y position and z pressure 

information [WACOM03]. 
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3.2.2   Data Measurement at Serial Ports 

Software design was based on open industry standard software - Wintab™ 

Developer Kits developed by LCS Tele-graphics Ltd [Lcs03].  We modified the software 

and applied it to measure the raw data at RS232C serial port of a standard 

microcomputer.  The developed program was programmed using C/C++ language in the 

Microsoft Visual Studio environment.  Because this modified program is based on open 

industry standard software, its interface specification is suitable for different tablets with 

a serial port or a USB port.  In this study, the raw data are measured at the serial port at 

every millisecond.  Figure 3.5 shows a screen capture for the serial port monitor 

interface during the measuring process.  The diameter of the white circle in the figure 

corresponds to the value of the pen tip pressure.   

 

 

Figure 3.5   Screen capture for serial port monitor interface. 

 
Some samples of the measured data are shown in Table 3.2 and is plotted in Figure 

3.6.  For the four row signals in Figure 3.6, the first row represents the time information, 
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which is recorded by the system timer inside the Windows operating system, and the 

other signals represent the x position, the y position and the z pressure, respectively. In 

general, the dynamics of the acquired signatures can be represented by equation 3.1.  

 

),,2,1,0(,)](),(),([)( nttztytxtS T L== .                                 (3.1) 

 

So, S(t) is a collection of yx,  position values of the pen tip and the pen tip pressure 

values at given times (generally, equal time intervals).  We treat handwriting pressure as 

analogue  axis information.  The raw data such as in the Figure 3.6 are later re-

sampled into a given time intervals. 

z

 

 
 
Figure 3.6   Plot raw data example measured at serial port for a set of sampling points.  
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Table 3.2   A sample segment for the measured data at serial port  

  
Sampling time 

(millisecond) 

x position 

(0.001 inch) 

y  position 

(0.001 inch) 

z  pressure 

(1 of 512) 

1 2240 6180 0 

16 2195 6186 3 

31 2190 6186 3 

63 2200 6220 4 

63 2200 6220 4 

M  M  M  M  

219 3125 5580 15 

235 3015 5406 17 

235 2890 5260 18 

250 2780 5126 17 

266 2695 5020 17 

M  M  M  M  
 

 

3.2.3   Data Acquisition Protocol 

In order to effectively test the performance of current signature verification system, a 

data acquisition protocol is designed to guide the data acquisition processing over a four-

month period.  According to the instructions in [Biowork00], a data acquisition protocol 

including instructions for volunteers is proposed and shown in the appendix. 

In the proposed system, each user is required to construct her/his signature template at 

first.  Users must repeat their specimen signature several times in the “same” manner, 

which means using the “same” speed, pressure, strokes, timing sequence etc.  Before 

recording the signatures, users were asked to practice the signing process until they felt 
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able to recreate their signature easily and comfortably on the digital pad.  In order to 

obtain a signature template, which reflects the long-term manner of a user’s signing 

process, a set of this user’s signatures is recorded at different times and in different 

emotional situations (happy, sad, excited, or tired, etc).   Twenty-five volunteers took 

part in the data acquisition and their signatures were collected over a period of four 

months.  All the collected genuine signatures were classified into two classes.  One was 

used for training signature template and the other was used for signature verification. In 

order to reflect the effect of the number of training signatures, some volunteers signed as 

many as 60 signatures, while others only recorded 15 signatures.  Some volunteers were 

asked to forge other’s genuine signatures. They were asked to study not only the 2D 

structures of the genuine signature but also the dynamic signing process. Between five 

and eight skilled forgeries were obtained for each signature template.  

 

3.3   Signature Pre-processing  

In the signature pre-processing subsystem raw data are re-sampled, normalized, and 

processed to remove extraneous signals.  The velocity, the acceleration and the azimuth 

angle are computed based on the four channel raw data: time sequence, x position 

values, y position values and pressure values.  In addition to the above, the dynamic 

characteristics of signature writing will also be discussed. 

 

3.3.1   Signature Pre-processing Functions 

In the signature pre-processing stage, the following functions are used:  
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      Extraneous signal removal is used to remove noise in the raw data. When a digital 

pen hovers in the sensing area of the pad, even if the pen tip does not touch the pad 

surface, the pad still generate some position signals while the pressure values are zero.   

This is due to the electro-magnetic resonance and to the position sensing mechanisms. 

Since we are only interested in the signals generated during the signing process, the 

position signals corresponding to zero pressure should be removed from the raw data.  

In Figure 3.7, the raw data of two sample signatures signed by the same individual 

are illustrated.  For both signatures, the pad begins to generate position signals before 

and after the signing process. The signing process can be identified by the pressure 

signals.  The effective signing signals correspond to the time interval between the first 

and last non-zero pressure point.  The signals corresponding to other time intervals are 

removed. Figure 3.8 shows the effective signing signals for the signature in Figure 3.7 

(b) after the extraneous signal are removed.   

 

(a)   
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(b)   

Figure 3.7   Comparison of the raw data of the two sample signatures signed by the 

same individual, (a) the first sample signature, (b) the second sample signature.  

 

Figure 3.8   Effective signing signals corresponding to the signature in Figure 3.7 (b). 
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Re-sampling is designed to convert the raw data into standard length in order to 

facilitate further analysis.  It is clear that every time a person signs, the number of 

samples obtained will be somehow different, that is the raw data length  will have a 

different value.  This variation in genuine signature of the same individual makes it very 

difficult to compare two sets of values from two different genuine.  This can be observed 

in Figure 3.7.  After storing the absolute time, the positions (x and y), and the pressure 

information in a database for further analysis, we “stretch” all the raw data to a standard 

length  by a fixed number of sampling points (

n

n 1000=n  points are used in current 

study).  This re-sampling process can be achieved by using “spline” function in the 

Matlab signal processing toolbox.  In the case of multiple data points recorded at the 

same time value, only one point is needed and its value is computed as the average of the 

values of multiple points.  In Figure 3.9, the signature data shown in Figure 3.8 are re-

sampled to a fixed length of 1000 points.  Although there are 247 sampling point in 

Figure 3.8 and 1000 standard sampling point in Figure 3.9, it is clear that the signals in 

Figure 3.9 keep the “same” shapes as in Figure 3.8.  So the re-sampling process does not 

loss the significant characters of the original signatures.  

Normalization is developed to compensate for the effect of different sizes and scales 

of the signatures.  The digital pad generates the absolute position values for the 

signatures, but we are only interested in the dynamic sequence of the signature creating 

process. Therefore, only the relative position values with respect to the first signing point 

are desired.  In addition, we normalize the pressure signal for further analysis. The 

starting location, the size, the total duration and the pressure of the signature are 

normalized, so that the signature verification is independent of these characteristics. The 
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normalization process for a coordinate point in the signature is calculated according to 

the equation 3.2. 

 

ValueOriginValueEnd
ValueOriginValueCurrentValueNorm

__
___

−
−

=   ,                             (3.2) 

 

where  represents the normalized value;  is the current 

coordinate value;  represents the first coordinate of the signature; and 

 is the last coordinate point of the signature.  Figure 3.10 illustrates the 

effect of normalization for the data in Figure 3.9. 

ValueNorm _ ValueCurrent _

ValueOrigin _

ValueEnd _

 

 

Figure 3.9   Re-sampling the signature data in Figure 3.8 to fixed length of 1000 points.  
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Figure 3.10   The effect of normalization for the data in Figure 3.9. 

 

The above described functions of the input module can not only be applied on the 

position and the pressure of the acquired data, but they can also be used as velocity, 

acceleration and writing direction angle data. The generation of theses characteristics is 

described in the next section. 

 

3.3.2   Representation of Dynamic Signatures  

By taking the sampling rate into account, the signature raw data (e.g. data in Figure 

3.6), and after appropriate smoothing, may be used to compute the derivatives of yx,  

and . The first derivatives “z x ” and “ ” are the velocities in the two directions and the 

second derivatives are the two accelerations. Once these derivatives have been 

y
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computed, the signal vector is calculated according to equation 3.3. The time derivative 

of the pressure is not used. 

 

).,,2,1,0(,)](),(),(),(),(),(),([)(' nttatatvtvtztytxtS T
yxyx L==          (3.3) 

 

)(tx , , and  are the pen tip displacement, velocity, and acceleration in the 

horizontal (

)(tvx )(tax

x ) coordinate; , , and  represent the pen tip displacement, 

velocity, and acceleration in the vertical ( ) coordinate; represents the pressure 

signal. The total velocity and azimuth angle are obtained from  and .  

Similarly, the total acceleration is calculated from  and .  They are 

summarized in equation 3.4.  
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where   and  represent the total velocity, total acceleration and writing 

direction angle, respectively. The ang(t)  is calculated from the derivatives of  and 

 Hence, if required, equation 3.3 can be replaced by equation 3.5 as follows: 
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Figure 3.11   A sample signature represented by the dynamic information for a set of 

sampling points. 
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The components in the equation (3.5) constitute the dynamic signature. For an 

example signature, the components in equation 3.5 are plotted in Figure 3.11. The final 

data can be used to represent most of the effective dynamic information of the acquired 

digital signature.   

If required, 2-D signature image can be reconstructed from the x and y position 

signals. It is also possible to create a 3-D representation of the signature by showing the 

time sequences. The 3-D signature not only contains position information, but also 

includes time information. An example for 2-D and 3-D signature are reconstructed and 

plotted in Figure 3.12. 

Typically a signature is the writing of a person’s name. Typically in a signature, the 

x  values grow linearly with time with small variations while the  values show a more 

oscillatory variation with time, the  values become positive and negative many times 

during a signature.  This can be observed in the Figure 3.11. 

y

y

 

  
(a)                                                                  (b) 

Figure 3.12   A sample signature reconstructed from the components in equation 3.5.  

(a) 2-D signature, (b) 3-D signature. 
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CHAPTER 4 

 

FEATURES EXTRACTION AND STROKE 

BASED ALGORITHM 

 

In this chapter, the statistical features in signature verification are introduced.  

General feature extraction methods are classified and discussed. The characteristics of 

signature strokes are studied, and a stroke based feature extraction algorithm is 

developed.  Finally, features selection is also discussed.  

 

4.1 Statistical Features in Signature Verification 

Features are symbolic or numeric entities that describe a pattern.  For example, a 

feature for a static signature is the number of loops in the 2-D image, while a feature for 

a dynamic signature is the average writing speed.   

According to Lee, individual’s signatures are predefined and consistent [Lee92].  

Although there will always be slight variations in a person’s handwritten signatures, the 

consistency created by natural motion and practice over time creates a recognizable 

 43



pattern that makes the handwritten signature a natural for biometric identification 

[Lee92]. We are trying to find those consistent behavioural dynamic characteristics (to 

which we refer as features), which are inherent to a particular person. Such features can 

be used to identify genuine signatures from forgeries.  

Lee noted that there exist remarkably consistent characteristics when a person 

repeats his/her signatures [Lee92], so a collection of parameter values can be computed 

and compared for the purpose of signature verification.  These parameter values are 

sometimes called statistical features (or statistical parameters).  Lee et al. proposed 42 

features, some of which are listed below [Lee96]: 

 Total time taken in writing the signature. 

 Signature path length: displacement in the x and y directions and the total 

displacement. 

 Signature accelerations:  variations in horizontal and vertical accelerations, 

centripetal accelerations, tangential accelerations, total accelerations, as well as 

there average or root mean square (RMS) values. 

 Pen-up time: total pen-up time or the ratio of pen-up time to total time. 

Once a set of features has been selected, they can be used to represent the essential 

biometric characteristics of the original signature.  Meantime, the other non-identifying 

information is ignored. 

 

4.2   Classification of Feature Extraction Methods 

Various features can be extracted from dynamic signatures.  These features can be 
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classified in different ways. 

The first way of classifying features is based on the measured signals and the 

measured parameters.  The measured signals (i.e., position, velocity, pressure vs. time, 

etc. shown in Figure 4.1) can be represented by time domain functions whose values 

directly constitute the feature set (or feature vector). Measured parameters (such signing 

time, peak number, stroke sequencing, etc.) computed from the measured signals are 

another source of features.  For example, the signing time for a person to sign his 5 

samples could be 2.1, 2.4, 2.1, 2.2, 2.0 seconds, respectively.  The value of signing time 

can be considered as a feature with mean of   2.16 seconds.  

 

 

Figure 4.1   An example of complete position, velocity, and pressure signals as features. 

 

Another type of feature classification is based on the feature’s domain.  There are 

several basic feature groups used as illustrated in Figure 4.2.  Most of the available 

methods can be classified within time and frequency domains, etc. For example, one of 
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the frequency domain features can be consider as the fundamental frequency value for 

the signing movement process  

Features can also be classified as global or local features. Global feature refer to the 

parameters corresponding to completed signals, such as average writing speed and total 

signing duration. Local features represent the local information of a signature, for 

example, the time between two peaks, and the average speed within a stroke. 
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Figure 4.2   Several basic features groups in feature extraction.  
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4.3   Stroke Based Feature Extraction Algorithm 

The generation of handwriting can be described as the vector summation of 

discontinuous strokes [Denier65].  In this sense, the stroke is the basic component of a 

signature.  In this section, after an introduction to the characteristics of signature strokes, 

a stroke-based algorithm is developed for the purpose of dynamic signature verification. 

 

4.3.1   Characteristics of Signature Strokes  

A signature may be considered as a sequence of strokes.  Dimauro et al. define 

strokes as “a sequence of fundamental components, delimited by abrupt interruptions” 

[Dimauro94].  The dynamic characteristics for creating a stroke may exhibit in different 

channels such as velocity and pressure etc.  This can be illustrated by drawing a simple 

dash stroke, which is drawn from a small x  value to a large x  value.  The position, 

velocity and pressure signals corresponding to this example stroke are shown in Figure 

4.3.  As expected, the x  position signal for this stroke increases smoothly in the x  

coordinate.  In the velocity channel, the  velocity values grow from zero and reach a 

peak stage somewhere mid-way then decline to zero. In the pressure channel, the  

pressure values increase steadily until reaching a single peak, and after that, drop down 

sharply to zero.  The figure shows normalized position and pressure signals while the 

velocity signals maintain the original values.  Similarly, another more complex circle 

stroke example is shown in Figure 4.4.  It shows that the characteristics of position, 

velocity and pressure signals vary reasonably according to the creating process of the 

circle stroke 

xv

z
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Figure 4.3   A dash stroke example. 

 

Given the dynamics of signature writing, we are interested in how a falsifier forges a 

signature and how difficult is it for a forger to produce a good forgery.  Brault noted that 

it is believed that a forger cannot write another person’s signature in a ballistic motion 

without a lot of practice and therefore producing good forgeries is never going to be easy 

[Brault93].  However it is also true that some signatures lend themselves more easily to 

forgery than others.   
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Figure 4.4   A circle stroke example. 

 

Brault and Plamondon studied the problem of forging a signature and estimated the 

intrinsic risk of a signature being forged. They noted that humans can only remember 

about seven variations of a signature that is being forged [Brault89], [Brault93].  A 

process of minimization or recording of information that needs to be remembered takes 

place.  For example, a forger might recode information about the signature of Jason 
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Smith by first remembering the name and then remembering that Jason Smith’s 

signature has a taller J than the forger would normally write and a rounder S etc.   

A deep study of the dynamic characteristics of signature strokes in the literature 

shows that strokes may contain very important consistent behavioural information, 

which is inherent to a particular person.  This promotes us to develop a stroke-based 

algorithm to capture useful behavioural features within dynamic signatures. These 

extracted features can then be applied to design a dynamic signature verification system.  

 

4.3.2  Stroke Identification and Significant Stroke 

Plamondon noted that “the major problem with character segmentation is the 

difficulty of determining the beginning and ending of individual characters” [Plamon00].  

Although there is no commonly adequate method to identify strokes for most 

applications, there are still some effective and simple techniques for current 

identification of stroke boundaries.  During signing, individual strokes can be 

distinguished by finding the points where there is a  

1) decrease in pen tip pressure (close to zero),  

2) decrease in pen velocity (close to zero), and 

3) rapid change in pen angle.   

 These points imply some internal characteristics of the pressure/velocity/angle 

sequencing. Therefore, they can be used to locate the strokes for the dynamic signature.  

In order to show the effectiveness of the above method, let us analyze a simple character 

first. We select the letter ‘T’ since it only contains two dash strokes.  Figure 4.5 shows 

the two dimensional reconstruction of the letter ‘T’ in spatial domain.   
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Figure 4.5  2-dimensional figure for letter ‘T’. 

 

The pressure, velocity and angle signals for letter ‘T’ are plotted and compared in 

Figure 4.6. Corresponding to the horizontal dash in the letter ‘T’, the pressure values 

increases from zero; then the values grow and reach a peak; then the values drop down 

to zero.  When the pen tip is lifted from the tablet, the pressure values are consistently 

close to zero. When the pen tip touches the tablet surface and begins to write the vertical 

dash, the pressure values increase again from zero and grow to the maximum peak value; 

after that, they drop down to zero which represents the end of the vertical dash.  So the 

two dash strokes for the letter ‘T’ can be separated by detecting the zero pressure region 

located between the two pressure signal strokes (as shown in Figure 4.6).  Similarly, the 
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two velocity strokes are identified with a similar method to the one used for pressure (the 

velocity values below 5% of the maximum velocity are set to zero to clarify the figure).  

In addition, relatively rapid changes in the pen angle signal can also be observed at the 

beginning and the end of the two dash strokes.  So this characteristic can be easily 

detected and used in angle stroke identification. 

 

 

 

Figure 4.6  Pressure, velocity and angle signals for letter ‘T’. 
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Figure 4.7  2-dimensional figure for a sample signature ‘Tom’. 

 

Furthermore, the stroke boundaries of a sample signature ‘Tom’ are identified based 

on above described methods.  The 2-dimensional signature reconstruction in Figure 4.7 

shows that this signature should have four strokes: two dashes, one circle and one ‘m’ 

character. The corresponding pressure, velocity and angle signals are plotted in Figure 

4.8.   Applying the above described methods for stroke boundary identification, the letter 

‘T’ is easy to identify as two strokes, and the letter ‘o’ is judged as one stroke 

successfully.  However, for the letter ‘m’, it is clearly identified as one stroke in pressure 

signal, while it is more likely to be judged as the combination of some sub-strokes in 

velocity and angle signals. Since there are several minima close to zero in the velocity 

signal and several rapid changes in the angle signal.  This implies that the pressure, 

velocity and angle signals are all useful in stroke boundary identification while they have 
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different advantages and disadvantages for different signatures. It is recommended to use 

the pressure and velocity signals rather than the angle to identify stroke boundaries 

because rapid changes are more difficult to be detected.  In addition, these methods can 

also be combined together for the stroke boundary identification.  

 

Figure  4.8   Pressure, velocity and angle signals for a sample signature ‘Tom’. 

 

4.3.3 Stroke Alignment 

In general, one signature needs to be compared to other signatures in the signature 

verification.  The pressure, velocity, and angle signals of three sample signatures signed 

by the same individual are illustrated and compared in Figure 4.9.   
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Figure 4.9  Comparison of three sample signatures ‘Tom’ signed by the same person. 

 

Table 4.1  Pressure stroke segments for the signatures in Figure 4.9  

1st sample signature 2nd sample signature 3rd sample signature Stroke 
number Start 

point 
End 
point 

Stroke 
length 

Start 
point 

End 
point 

Length Start 
point 

End 
point 

Stroke 
length 

1st 1 141 140 1 103 102 1 128 127 
2nd 197 289 92 160 253 93 198 294 96 
3rd 390 521 131 402 542 140 417 548 131 
4th 649 1000 351 652 1000 348 669 1000 331 

 

 According to the stroke identification methods in the last section, four pressure 

signal strokes are identified for all the three sample signatures in Figure 4.9. The related 

stroke boundaries and lengths are listed in Table 4.1.  Since the time interval between 

any sampling points is the same, so we use the number sampling points within a stroke 
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to represent the length of that stroke. Due to the different lengths for different strokes, 

the elastic alignments are to be conducted before stroke comparisons is done.  For 

example, all the pressure strokes can be stretched to a fixed length with 250 sampling 

points.  This can be done by applying spline interpolation (using the spline function in 

Matlab). After such elastic stroke alignment, the pressure strokes are plotted and sorted 

sequentially as seen in Figure 4.10.  The 1st, 2nd, 3rd and 4th strokes correspond to the 

strokes located in the regions of [1,250], [251,500], [501,750] and [751,100], 

respectively.   

 

Figure 4.10  Stroke alignment for the pressure signals in Figure 4.9.  
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Figure 4.11  Stroke alignment for the velocity signals in Figure 4.9.  

 

Table 4.2  Velocity stroke segments for the signatures in Figure 4.10 

1st sample signature 2nd sample signature 3rd sample signature Stroke 
number Start 

point 
End 
point 

Stroke 
length 

Start 
point 

End 
point 

Stroke 
Length

Start 
point 

End 
point 

Stroke 
Length

1st 1 140 139 1 40 39 1 127 126 
2nd 197 289 92 121 218 97 198 294 96 
3rd 390 521 131 386 528 142 417 548 131 
4th 649 1000 351 637 1000 363 669 1000 331 

 

Similarly, this alignment operation is also applicable for the velocity signals, etc.  

After the alignment operation, the velocity strokes for the same three sample signatures 
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are illustrated in Figure 4.11, and the related stroke boundaries and lengths are listed in 

Table 4.2.   

 

4.3.4 Stroke Matching and Significant Stroke 

In order to find the corresponding stroke pairs, stroke cross-correlation coefficients 

(for the pressure strokes in Figure 4.10) are calculated and illustrated in Table 4.3.  The 

auto-correlation coefficients are not computed so the right box of Table 4.3 is blank. 

 

Table 4.3  Corresponding pressure stroke comparison by computing cross-correlation  

 1
1p  2

1p  3
1p  4

1p  1
2p  2

2p  3
2p  4

2p  
1
2p  0.8886 0.3287 0.4328 0.0006
2
2p  0.5863 0.9176 0.8601 0.2243
3
2p  0.5879 0.0943 0.7655 0.1302
4
2p  0.2099 0.4184 0.4270 0.8748

 

1
3p  0.8214 0.1535 0.7718 0.1190 0.8629 0.9135 0.7590 0.6607
2
3p  0.6981 0.8514 0.9434 0.2182 0.1561 0.9289 0.7668 0.6264
3
3p  0.5302 0.1229 0.8262 0.1107 0.1868 0.9210 0.8618 0.5564
4
3p  0.1049 0.5231 0.4023 0.8249 0.5157 0.7092 0.4977 0.8540

 

Table 4.4  Average cross-correlation values for the corresponding pressure strokes  

 st1 stroke nd2 stroke rd3 stroke th4 stroke 
Average values 0.8576 0.8993 0.8178 0.8512 

 

 

The  represents the  pressure stroke in the  signature.  The high correlation 

values are highlighted which refer to the corresponding strokes.  In this example, the  

j
ip thj thi

thj
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stroke of the signature matches with the  stroke of the other two signatures.  For 

instance, the , , and  (the  stroke of the three sample signatures) match each 

other and their average cross-correlation values equal to  

thi thj

1
1p 1

2p 1
3p st1

8576.0
2

8629.08214.08886.0
=

++ .      

In similar, all the average cross-correlation values for the  are computed and 

listed in Table 4.3. It shows that the average correlation values between the strokes 

of the three sample signatures are the largest. It implies that the consistency of the 

pressure stroke is relatively higher than other strokes when the signer repeating 

his/her signatures. If all the strokes carry the same amount of the signer’s internal 

characteristic, the pressure stroke should have higher ability to keep such 

characteristic. The above mentioned pressure stroke also has relatively less variation 

over time than other strokes.  Therefore it is easier to capture the signer’s internal 

characteristic in the pressure stroke due to its greater robustness and reduced 

variation.  It is convenient to name such kind of stroke as a significant stroke (or 

significant stroke pair).  For most individuals, a significant stroke can be distinguished 

by the maximum corresponding stroke cross-correlation of the reference signatures.   

thj

nd2

nd2

nd2

nd2

nd2

However, for some individuals, there still exist difficulties to identify the significant 

stroke, if computing the correlation does not offer sufficient information to identify the 

significant stroke. For instance, it is possible that a short stroke correlates well with a 

non-corresponding long stroke after they are stretched to the same fixed length.  In such 

a case, the corresponding significant stroke still can be identified correctly if taking into 
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account the effect of the length of the strokes.  We therefore define two strokes to have a 

high similarity if they satisfy two conditions: 1) their cross-correlation coefficient value 

is high; and 2) their sampling time duration difference is small (as their length difference 

is small). The stroke time duration corresponds to the stroke length and some stroke 

length examples are shown in Table 4.1.  The product of the cross-correlation coefficient 

and the stroke length can be used to represent the similarity of two strokes. Consider two 

strokes of length  and . Let  represent the correlation coefficient between the two 

strokes, and set length factor  to represent the time duration condition and it is 

calculated according to equation 4.1.  

1l 2l 12c

12k

21

1
12 ll

lk
−

= .                                                 (4.1) 

 

The product of  and  can be used as an indicator to detect the similarity 

between two strokes. The higher the value of the product (

12c 12k

1212 kc × ), the higher the 

similarity between them.  For example, when comparing the  stroke (the 22
1v nd stroke of 

the 1st signature) with all the 4 strokes ( , , , and ) of the 21
2v 2

2v 3
2v 4

2v nd signature in Figure 

4.11, the corresponding indicators ( 1212 kc × ) are computed and listed in Table 4.4.  

Taking the length factors  into consideration, the highest significant stroke indicator 

( ) value of 14.790 indicates the significant stroke.  Although and  do not 

have the highest correlation coefficient, their length factor is the highest (18.4162). This 

additional information helps to judge the ~  pair as significant stroke pair, since its 

indicator value is much bigger than the others.  

12k

1212 kc × 2
1v 2

2v

2
1v 2

2v
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Table 4.5  Stroke comparison based on both correlation and length factor for velocity 

strokes in Figure 4.11 

Stroke ~ stroke pairs 12c  12k  Indicator =  1212 kc ×
2
1v ~  1

2v 0.0604 1.7358 0.1048 
2
1v ~  2

2v 0.8031 18.4162 14.790 
2
1v ~  3

2v 0.5918 1.8399 1.0888 
2
1v ~  4

2v 0.9550 0.6246 0.5965 
 

There are 5 genuine signatures and 2 forgeries are compared in Figure 4.12.  

Visually, there often exists high similarity between the corresponding strokes of 

reference signatures, but much lower similarity between the strokes of genuine 

signatures and that of forgeries.  Between each pair of signatures, the correlation 

comparisons are conducted for strokes.  

For the 5 references, different strokes exhibit different variations among the 

repetitions. The correlation coefficients between the strokes for all the 5 genuine 

references were calculated and illustrated in Figure 4.12.  In this example, the 4th–4th 

stroke pairs have the highest correlation.  Different individuals may have different 

significant strokes for their dynamic signatures. 
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Figure 4.12  Comparison of pressure stroke between genuine signatures and forgeries. 

(Stroke-based normalized pressure versus time of 5 genuine signatures and 2 forgeries. 

G1, G2, G3, G4, and G5 represent the pressure signals of the genuine signature while F1 

and F2 refer to those of forgeries. The 4th stroke in each genuine signature is the 

significant stroke.) 

 

For the examples in Figure 4.12, the 4th stroke is the significant stroke and its 

correlation coefficient values are listed in Table 4.6 for the genuine-genuine pairs and 
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the forgery-genuine pairs. For the genuine-genuine pairs, the significant stroke’s 

correlation values (e.g. 0.9199 for G1-G2 pair) are higher than those of genuine-forgery 

pairs (e.g. 0.5561 for G1-F1 pair). The significant stroke’s average correlation value for 

all the genuine-genuine pairs should be higher than those of the genuine-forgery pairs. In 

this case, for all the genuine-genuine pairs, the significant stroke’s average correlation 

value is 0.9670, which is higher than that of genuine-forgery pairs.  We select the mean 

significant stroke of all the references as a feature in the template.  If F1 is a test 

signature, the 4th stroke’s average correlation value between F1 and all the references is 

only 0.6302 (0.1706 for F2, both are far from the 0.9670).   

The correlation value and stroke length for the significant stroke can be extracted as 

features for identifying genuine signatures against forgeries.  In addition, we also use 

other features related to significant strokes such as stroke length, and stroke duration 

time.  It noted that different signals (e.g. velocity signal) may indicate different 

significant strokes for the same user.   

 

Table 4.6  4th stroke’s correlation between the signatures in Figure 4.12 

 G1 G2 G3 G4 G5 
G1 1 0.9199 0.9830 0.9575 0.9846 
G2 0.9199 1 0.9595 0.9678 0.9643 
G3 0.9830 0.9595 1 0.9612 0.9834 
G4 0.9575 0.9678 0.9612 1 0.9889 
G5 0.9846 0.9643 0.9834 0.9889 1 
F1 0.5561 0.6729 0.5573 0.7267 0.6379 
F2 0.1508 0.1454 0.0815 0.2807 0.1946 
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 4.3.5   Stroke Based Feature Extraction algorithm 

Based on the above presented analysis and discussion, the steps of a stroke based 

feature extraction algorithm can be summarized as follows: 

Step 1.      Identify the stroke boundaries based on pressure, velocity or angle signals. 

Distinguish strokes by finding the points where there is a 1) decrease in 

pen tip pressure (close to zero); 2) decrease in pen velocity (close to 

zero); and 3) rapid change in pen angle.   

Step 2.       Conduct the stroke alignment for the purpose of stroke comparison.   

Step 3.     Calculate stroke correlation coefficients and find the corresponding 

strokes which match each other.  

Step 4.    Find significant strokes based on pressure, velocity or angle signals by 

computing and finding the maximum correlation match score. 

Step 5.    Extract features from the significant strokes or other strokes.  

According to the presented steps of the algorithm presented above, various features 

can be extracted such as: 1) correlation coefficient for the pressure/velocity/angle 

significant strokes (genuine-genuine pairs and genuine-forgery pairs); 2) 

pressure/velocity/angle significant stroke duration; 3) average/maximum velocity for a 

significant stroke; 4) variance of the pressure/velocity/angle significant stroke; 5) stroke 

numbers; 6) the time duration for the first stroke of any signature.  

 

 

 

 64



4.4   Feature Selection  

Besides the stroke based features described in the last section, some other features 

are also useful for the presented signature verification system. Some of the effective 

features that can be calculated from the dynamic signature data are: 

 Total time during the signing process 

 Pen-up time 

 Average velocity over x and over y 

 Average writing speed (absolute velocity) 

 Variance of pressure signal (in 10 sliding window) 

 Pressure changing in 10 sliding windows 

 Number of pen ups and downs 

 Direction at first pen down, first pen up  

 Signature length 

 Time of second pen down 

 Number of sign changes in the x and y velocities and x and y accelerations 

 Number of zero values in the x and y accelerations 

 Mean or variance of the x and y displacement signal in 10 or 100 sliding windows 

The issue of how many features a method needs to use in order to obtain reliable 

dynamic signature verification is a very difficult one.  There is always a temptation to 

include more and more features in a method in the hope of improving reliability, for 

example, Parks et. al. have proposed more than 90 features [Parks85].  However, Lee 

noted that using many features is unlikely to lead to high performance and may lead to 
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some difficulties [Lee92].  For example, if a method uses many features, the storage 

needed for reference signatures is going to be relatively large and may exceed the 

storage capacity of small devices such as a credit card.  Lee also noted that although a 

large number of features are considered important, it is acceptable to ignore several of 

them while comparing the test signature to the reference signature [Lee92].  Given that 

the reference signature is based on a set of sample signatures, and for each element of 

the set of selected features the mean and standard deviation of the feature values have 

been computed, the reference signature can then be represented with two vectors: a 

vector of the means of the features’ values of the sample signatures and a vector of the 

standard deviations.  In order to obtain good estimates of the mean and the standard 

deviations of the features’ values of the genuine signatures population it is necessary to 

have several, perhaps a minimum of three or five, sample signatures.  A larger set of 

sample signatures is likely to lead to a better reference signature and therefore better 

results but it is recognized that this is not always possible [Lee92].   

This chapter presents a stroke-based algorithm for feature extraction and signature 

verification. After the statistical features and some general feature extraction methods 

have been introduced, a novel stroke feature extraction algorithm has been developed 

according to the following steps: identification of stroke boundaries, stroke alignment, 

stroke correspondence matching and significant stroke feature extractions. 
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CHAPTER 5 

 

SIGNATURE VERIFICATION 

 

Signature verification is used to discriminate genuine signatures against forgeries. A 

binary signature classifier is introduced in this chapter.  

Based on the observations that most of the feature values tend to be clustered about a 

mean value with a certain variance that is characteristic to a certain user, it is natural to 

use Gaussian density to model the distributions of these features. For instance, the 

distribution of the average writing speed for 40=N  signatures of the same signer is 

illustrated in Figure 5.1.  According to Kiran, the unbiased estimator for the mean and 

variance is [Kiran01],  
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Where  the feature value is, and  varies from 1 to . And, i represents the counting 

number for signatures; j represents the counting feature number for a given signature. 

Thus, for a given user, 

jX i N

),( ii Varµ  is the mean and variance which describe the specific 

feature .  For a m-features system we have:i ),( 11 Varµ , ),( 22 Varµ , K),,( 33 Varµ  

),(, mm Varµ pair values to be computed for each user.  When a person’s authenticity is to 

be verified, the set of mean and variance pair reference values corresponding to the user 

are used.  In this pair-based features approach, the template is represented by both the 

vector of the means of the features’ values of the reference signatures and the vector of 

the standard deviations. 

The signature verification includes two processes: 1) constructing the reference 

signature template for each user and 2) verifying an unknown signature.  For the first 

process, a set of reference genuine signatures is acquired at first, then, they are 

represented as a signature template in the feature space. Since not all the features will be 

used for constructing the template, so only some features are selected during this process 

and useful pattern are found for each particular signer. For the second process, some 

unknown signatures (including both genuine signatures and forgeries) are compared to 

the signature template, and the system performance is evaluated based on the calculated 

false reject rate and false accept rate.   

A signature classifier identifies genuine signatures against forgeries. The basic 

mechanism is to compare the test signature to the reference template and judge the 

authentication results. Our proposed signature verification system uses match scores to 

 68



express the similarity between a test signature and a template.  The higher the score, the 

higher is the similarity between them. The test signature is authenticated if the score is 

higher than a specific threshold.  Signature verification accounts for the similarity in 

signatures produced by the same user, but needs to allow for certain variability [Lee92]. 

According to the equations (5.1, 5.2), an unbiased estimator for the mean and variance 

will converge to the true mean and variance of a feature, by adding the number of 

reference signatures , the experimental mean )(N )( iµ and the experimental variance 

( ).  There is a trade off between and the accuracy of the experimental mean and 

variance.  

iVar N

 

 

Figure 5.1   Average writing speed for a set of signatures. 
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If the test feature value falls within a given threshold range, the algorithm will then 

decide that the used test feature match the template.  For a person whose signature is 

constant, the threshold can be kept low, and the variations of subsequent signatures are 

expected to be small.  For higher variations of the repetitions, a higher threshold is 

required.   

meanstandard deviation

Adjustable  Threshold

Maximum Allowable Variation

standard deviation

 

Figure 5.2   Diagram of threshold adjustment for an example feature. 

The threshold value is adjustable and can be selected independently for each given 

user and feature. For instance, the experimental mean, the standard deviation, and the 

range of the adjustable threshold for an example feature are illustrated in Figure 5.2.  If 

the threshold is set to σ/2, the probability of the feature value falling in the interval [µ-

σ/2, µ+σ/2] is 38%; if set σ as threshold, the probability falling in the interval [µ-σ, µ+σ 

] is 68%; if use 2σ as threshold, the probability of the feature value falling in the interval 

[µ-2σ, µ+2σ] is 95%.  

For simplification, each feature is represented as a binary variable with two possible 

values, True or False. In order to illustrate this classification in a visual way, we use “1” 

to represent True and “0” to represent False as shown in Figure 5.3.  (The distribution in 

Figure 5.3 is not a real one but a pseudo one to show the classification.   For example, if 

a feature of an unknown signature falls into [µ-2σ, µ+2σ], this feature will be considered 
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as true and will be assigned the value “1” as match score, otherwise, it is considered 

false and will be given a “0” score. All the selected features will be evaluated according 

to the same process and the entire accumulated value will be computed by adding the 

assigned value for each feature.  

Such a binary signature classifier is used to verify the identity of an unknown user. 

For each feature value of the test signature, the system checks to see if it falls in the 

allowed range for that reference feature. For a given threshold, the FRR and FAR values 

can be computed. The threshold also varies according to the requirements of desired 

FRR and FAR level. 

       For m-features based system, each feature of the test signature is compared to the 

corresponding feature of the reference template.  Each feature has an allowed range of 

authentication as shown in Figure 5.2.  The signature classifier discriminates the genuine 

signature against the forgeries by evaluating the entire accumulated value in the 

assignment of a percent match of the test signature compared to the signature template.   

010

 

Figure 5.3   Binary representation for a feature value (the feature value is assigned a “0” 

and “1” if it exists in True or False region. The distribution curve is a pseudo one). 

TrueFalse False
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CHAPTER 6 

 

IMPLEMENTATION AND 

EXPERIMENTS  

 

In this chapter, the proposed stroke based feature extraction algorithm is applied in 

the process of dynamic signature verification. Both fixed and variable threshold 

experiments have been conducted to compute the FRR and FAR data.  

 

6.1   Experimental Setup and Interface Design 

It is necessary to select some features to build a dynamic signature verification 

system. The preliminary selection can be conducted by observing the ratios of the 

standard deviation to the mean for each feature and counting the effect of each feature 

type. The performance of the system can then be compared by using different features.  

In the fixed threshold experiment, a predefined threshold is used, and the FRR, FAR and 

ERR are computed. The comparison between the stroke based features and the other 

features is also conducted. In the variable thresholds experiment, the FRR and FAR are 
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calculated for different thresholds, the data are used for plotting an error tradeoffs curve. 

In order to conduct the experiment more efficiently, a graphical user interface is 

designed with Matlab. It is used to control the signature pre-processing, feature 

extraction and signature classifiers in an easy way.  An example of the user interface is 

shown in Figure 6.1. 

 

 

Figure 6.1   A graphical user interface for signature verification. 

 

The user interface consists of two parts: block of dynamic signature representation 

and block of signature comparison in feature space.  The signal block includes 8 

windows which are used to display and compare dynamic signatures. The 8 windows 

 73



will represent the 2-dimensional image reconstruction of the signature, pressure, 

position, velocity, acceleration, and angle signals.  The feature block includes 6 

windows. The comparison between the test signature and corresponding template are 

illustrated in these windows in feature space.    

 

 

Figure 6.2   Comparison of the test and template signatures in the signal block. 

 

To verify the identity of an unknown user (a genuine user or a forger), he/she first 

selects a template signature to imitate by clicking on the Template Signal button. When 

clicking on the Current Signal button, the representations for the current testing dynamic 

signature are compared directly and visually with those of the template in the 8 windows 
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of the signal block. The signals of the current testing signature are plotted in red and the 

corresponding signals of the template signature are plotted in blue as shown in Figure 

6.2.   

 

Figure 6.3   Comparison of feature value between current test signature and reference 

signatures in the feature block. 

 

If the signer clicks on the Reference Features button, the features of the reference 

signatures are displayed in blue in the 6 windows in the feature block. When the signer 

clicks on the Current Feature button, the features of the current testing signature are 

plotted in red and compared with those of the references in the same windows.  An 

example of such kind of comparison is illustrated in the feature block of Figure 6.3. 
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Figure 6.4   Verification judgment pop up windows. 

 

 

Figure 6.5   Control menu icon on the interface. 
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Finally, the signature verification results can also be judged by clicking the Checking 

button. A window will pop up showing the verification judgement result for the current 

testing signature. A screen shot for the two kinds of pop up window is shown in Figure 

6.4.  By clicking on the Clear button, all the plots in the feature block will be cleared. 

The Control Menu function is available and offers another way to control this system.  It 

is equivalent to the button control method and accomplishes the same operations. If click 

the Control Menu icon on the top of the interface, the manual will be activated as shown 

in Figure 6.5. 

 

6.2   Experiments  

This section describes experiments for fixed and variable threshold calculations.  For 

the fixed threshold experiments, a predefined threshold is used, and the FRR and FAR 

are computed.  The features selection and features comparison are conducted in the fixed 

threshold experiments. Finally, the FRR and FAR data are calculated for detecting an 

error tradeoffs curve based on the variable thresholds experiments. 

 

6.2.1   Fixed Threshold Experiments    

It is necessary to select features for the dynamic signature verification system. The 

preliminary selection can be conducted by observing the ratios of the standard deviation 

to the mean for each feature and counting the effect of each feature type. If a ratio is very 

large, it means the variance of the feature is large. This implies that such a feature is not 

stable and not suitable to be used.  The performance of the system can then be compared 
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by using different features.  An example of a preliminary feature selection is conducted 

based on a set of 60 sample signatures.  The x velocity feature values are plotted in 

Figure 6.6. These are the mean, the variance, the sum of the means in 10 sliding 

windows, and the sum of the variance in 10 sliding windows, respectively, for the x  

position signal. The corresponding pressure feature signal values are plotted in Figure 

6.7.  For this individual, the mean of the x velocity feature values and the variance of the 

pressure feature values in 10 sliding windows can be chosen as a preliminary selection 

for the proposed signature verification system.  

 

Figure 6.6   Plot of feature values for x  velocity signal for a set of signatures.  

 

Similarly, the feature values plots for other group of features and for other persons 

can also be obtained.  In order to reduce the computing cost, the number of features in 

the initial feature set should not be too big.  It has been set to 4 in the current study. In 
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order to check the performance of the stroke-based features on the verification system, 

no stroke-based features are selected in the initial feature set.  Some stroke-based 

features are then added into the initial feature set later. This allows their effects on the 

verification to be evaluated. 

 

 

Figure 6.7   Plot of feature values for z  pressure signal for a set of signatures.  

 

The initial feature set includes the following features: total time during the signing 

process, average writing speed, variance of pressure signal in 10 sliding windows, and 

mean of the x displacement signal in 10 sliding windows.  First, the performance of the 

signature verification system based on the above 4 features is evaluated by a fixed 

threshold experiment.  Then, with adding stroke based features, the performance of the 

updated signature verification system has also been evaluated and also compared with 
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the result of the previous system.  

In order to evaluate the above signature verification systems, the FRR and FAR 

needs to be computed when setting a fixed threshold.  The fixed threshold is set to 75%.  

A total of 110 signatures, split into 50 reference and 60 test signatures, from 10 

volunteers were used in this experiment.  Each volunteer performed 5 signatures to train 

their signature template, and performed another 3 genuine signatures as test signatures.  

In addition, for each template, 3 skilled forgery signatures were performed by other 

volunteers.  By skilled forgery, we mean that volunteers were allowed to practice to 

create the forgeries while they can observe and study the several genuine signatures 

freely.  

All the signatures were evaluated by using the graphical user interface presented in 

the previous section, The 50 sample genuine signatures were used to train the 10 

signature template for 10 volunteers.  Twenty-one out of the 30 genuine test signatures 

have been authenticated, while 9 have been rejected by the system using initial 4 

features.  Sixteen out of the 30 test forgeries have been rejected by the system, while 14 

have been approved.  Therefore, the current 4 feature based system achieved a FRR of 

30% and FAR of 46.67%.  

Adding one stroke base feature to the above system leads to a 5 feature based 

verification system.  Several stroke based features were added, and their effects on the 

system performance are listed in Table 6.1. 

Since it is more difficult to identify the angle of the signals strokes, the angle signal 

related stroke features are not listed in Table 6.1.  However, the table shows that, most of 

the stroke based features improve the verification accuracy.  Two out of the described 
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features performed better than the others. These are correlation coefficient for the 

pressure significant strokes and time duration for velocity significant stroke.  Therefore, 

we combined them together and added them into the initial system.   This lead to a 6 

features based system.  The same experiment was conducted again and we achieved a 

FRR of 6.67% and FAR of 13.33%.  These results are compared with that of the 4 

features based system and presented in Table 6.2. Further experiments showed that 

adding more features (both stroke based features and non stroke based features) did not 

lead to better performance.  Therefore, the six feature based signature verification 

system was adopted as our optimal system. 

 

Table 6.1   Effects of stroke based features on a fixed threshold verification system 

Feature Name FRR Reduction 
in FRR 

FAR Reduction 
in  FAR 

number of strokes in pressure 
signal 

20.00% 10% 33.33% 13.34 

number of strokes in velocity 
signal 

23.33% 6.67% 36.67% 10% 

correlation coefficient for the 
pressure significant strokes 

13.33% 16.67% 20.00% 16.67% 

correlation coefficient for the 
velocity significant strokes 

16.66% 13.33% 36.67% 10% 

time duration for velocity 
significant stroke 

16.67% 13.33% 13.33% 33.34% 

average speed in the velocity 
significant stroke 

20.00% 10% 23.33% 23.34% 

 

Table 6.2   FRR and FAR data comparison for two systems   

 FRR FAR 
4 feature based system  (without stroke features) 30% 46.67% 
6 feature based system (with stroke features) 6.67% 13.33% 
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In the above experiments, skilled forgeries are used. Using random forgeries, a FAR 

of 1% can be achieved.  It can be concluded that random forgeries are more easily 

detected. 

In the presented experiments, each template was trained by 5 sample signatures. The 

following experiment was designed to check the effect of using more sample signatures. 

A total of 180 signatures, split into 120 reference and 60 test signatures, from 10 

volunteers were used in this experiment. In order to study the training effect by the 

number of signatures, the first volunteer signed 60 signatures and the second signed 20 

signatures. The other 8 volunteers each performed 5 signatures to train their signature 

template. Thus, there were three training sets of sizes 60, 20 and 5 training signatures.  

The test signatures are generated the same as before, with each volunteer performing 3 

genuine signatures as test signatures and 3 skilled forgery signatures were created by 

other volunteers for each template. 

  All the above signatures are evaluated by the 6 feature based verification system. The 

computation of the FRR and FAR data showed that 29 of the 30 authentic signatures 

were correctly approved by the system, giving a FRR of 3.33%.  In addition, 28 forgeries 

were rejected by the system resulting in a FAR of 6.67%.   For the template trained by 

60 and 20 signatures, all the 6 genuine test signatures were approved and 5 forgery test 

signatures were correctly rejected.  This result suggests that a large training set should 

improve the algorithm performance.  But if considering the cost of the experiments, it 

may still be reasonable to choose 5 sample reference signatures since the corresponding 

result of FRR of 6.67% and FAR of 13.33% may be acceptable in a given application.  
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6.2.2   Variable Threshold Experiments    

 The FRR and FAR data computed in the last section vary with changes in 

threshold value.  An experiment has been conducted to detect the error tradeoffs curve 

by computing the FRR and FAR data with variable thresholds. 

A total of 55 signatures, split into 25 reference and 30 test signatures, from 5 

volunteers were used in this experiment.  Each volunteer performed 5 signatures to train 

their signature template, and performed another 3 genuine signatures as test signatures.  

In addition, for each ready template, 3 skilled forgery signatures were performed by 

other volunteers.  

 For a 6 feature based system, a test signature is judged to be genuine if its 4 or more 

features match with the template. In this case, a threshold is computed as 4 over 6 and 

equal to 67%.   In similar, six thresholds have been set in this experiment.  The 

corresponding FRR and FAR data have been calculated and listed in Table 6.3.  The 

FRR and FAR data are plotted in Figure 6.8 to get the error tradeoffs curve.  

 

Table 6.3   FRR and FAR data corresponding to variable thresholds  

Threshold values FRR FAR 
17% 0 36.67% 
33% 3.33% 26.67% 
50% 6.67% 16.67% 
67% 13.33% 6.67% 
83% 23.33% 3.33% 
100% 30% 0 

 

The above results show a tradeoff between the FAR and the FRR. If either FRR or 

FAR approaches zero, the opposite rate raises rapidly.  When the FRR is approaching to 
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zero, the FAR reaches its maximum value of 36.67%; the FRR reaches the maximum 

value of 30% while FAR is zero.   

 

 

Figure 6.8   FRR and FAR tradeoff curve on variable thresholds. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK  
 

In this thesis, a dynamic signature verification system has been developed and 

studied based on a novel stroke based features verification algorithm. At first, the system 

architecture has been described.  The system includes three subsystems, the data 

acquisition system, feature extraction system and signature verification system.  

In the data acquisition system, the data acquisition and related hardware setup work 

has been presented in three parts: digital pad setup, data measurement, and data 

acquisition protocol; the dynamic signature signal has been represented with various 

position, pressure, velocity, acceleration and angle channel signals.  

Second, a novel stroke based algorithm has been presented in detail following the 

description for several general feature extraction methods. It requires the following key 

steps: identification of stroke boundaries, stroke alignment, stroke correspondence 

matching and significant stroke feature extractions.  A significant stroke is discriminated 

by the maximum correlation with respect to the reference signatures. Between each pair 

of signatures, the local correlation comparisons are computed between portions of 
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pressure and velocity values using segments alignment based on elastic matching. In 

addition, the characteristics of signature strokes are studied, and features selection is also 

discussed as well.   

In the signature verification system, a binary signature classifier has been used; it is 

designed based on the characteristics of observed feature distribution, which is modelled 

as a Gaussian. In order to evaluate the proposed system, experiments have been carried 

out for the case of both fixed and variable thresholds.  The effects of stroke-based 

features on verification have been evaluated in the fixed threshold experiments.  The 

error tradeoffs curve was plotted in the variable threshold experiments. A graphical user 

interface is developed for the convenience of conducting signature verification 

experiments.  

The key information has been extracted from the significant stroke based on the 

stroke based algorithm. It has been shown that some of the stroke-based features can 

improve the accuracy of the verification system than other groups of features.  Two 

stroke based features combined with four global features have been implemented into 

the current dynamic signature verification system. This 6 feature based system exhibits 

better accuracy than other feature combinations. Such kinds of stroke based features 

have great potential for developing high accuracy automated dynamic signature 

verification systems.  

 

7.1   Conclusions  

The conclusions of this thesis can be summarized as follow:   
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 A novel stroke-based algorithm has been developed for the proposed dynamic 

signature verification system.  A dynamic signature verification system has been 

developed based this algorithm. 

 This thesis presents an approach to identify the significant strokes and extract 

individual’s consistent behavioural dynamic characters from them. The stroke 

based features also can be integrated with other kind of features and applied in the 

proposed dynamic signature verification system. The experimental results show 

that stroke based features contain robust dynamic information, and offer great 

accuracy for dynamic signature verification. 

 An automated dynamic signature verification system has been developed and 

applied to identify genuine signatures against forgeries.  For the convenience of 

operation, a graphical user interface was designed to allow the signature 

verification operation to be conducted conveniently and visually. 

 It has been shown that the stroke based features extracted from the pressure and 

velocity signals can improve the verification accuracy over a 4 feature based 

verification system. 

 A 6 feature based system have been shown to perform better than other system 

designs. It has been developed by adding two stroke based features (correlation 

coefficient for the pressure significant strokes and time duration for velocity 

significant stroke) on an optimal 4 feature based system.  The FRR has been 

improved from 30% to 6.67%, while the FAR has been reduced from 46.67% to 

13.33%. 
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 The experiment with more sample signatures exhibited a bit better performance 

than that of only using 5 sample signatures.  But if considering the cost of the 

experiments, it is still reasonable to choose 5 sample reference signatures.  

 The results of variable thresholds experiments show the tradeoff between FAR and 

FRR.  When the FRR approaches zero, the FAR reaches its maximum value of 

36.67%; the FRR reaches the maximum value of 30% while FAR close to zero.  In 

addition, an EER of about 11% can be roughly estimated when the threshold is 

within 50% and 67%. 

 Our experiments show that when adding stroke-based feature into a non-stroke 

feature system, the accuracy of the signature verification has been greatly 

improved.  The experiments show that stroke-based features are important features 

and they contain robust dynamic information and have great potential to be applied 

in the dynamic signature verification.  

 

7.2   Future Work 

The future work is summarized as follow:  1) The experiment results are expected to be 

more accurate if using more sample signatures.  A bigger reference signature database 

should be built later.  2) In our current study, a 4 features based system has been set as 

the initial system, if not considering the cost of experiment, more features (e.g. 10 or 15 

features) can be selected for the verification system, the accuracy of the verification are 

expected to be better.  3) More stroke based features can be extracted and add into the 

initial feature extraction system.  4) Other types of features can be implemented such as 
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phase space features.  5) More experiments can be carried out to estimate the error 

tradeoffs curve.  6) An updated version of the digital pad, digital pen or Personal Digital 

Assistant (PDA) devices with higher sensitivity and accuracy are recommended to be 

used.  7) Other types of models can be used to estimate for signature verification, such as 

General Method of Moments (GMM), Hidden Markov Model (HMM), and Majority 

Classifier [Lee92, Lee96].   
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APPENDIX  

 

GUIDELINE OF SIGNAUTURE 

VERIFICATION 

-Volunteer Information for Signature Acquisition 
 
 

General Information 

Our current research is to identify personal electronic signatures acquired by Patriot 

Digital Pad. We are developing a dynamic signature algorithm which can identify the 

genuine signatures against the forgeries. In order to test and verify the proposed 

algorithm and system, we need sample signatures signed by some volunteers. A set of 

sample signatures for each volunteer will be collected for the analysis, and the collected 

data will be used only for evaluation and analysis of algorithms for signature analysis 

and recognition. We appreciate you would like to be one of our volunteers. Your 

participation will involve signing your signature on our “Patriot Digital Pad” several 

times during different times when you are available.  
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Procedures 

1. As a volunteer, first, you’d better be familiar with the “Patriot Digital Pad”, and 

sign your signature with the “same” manner, which means using the “same” 

speed, pressure, strokes, timing sequence etc.  Before recording your signatures, 

you can practise the signing process until you feel you can recreate your 

signature easily and comfortably.  

2. Although we hope you sign your signatures with the “same” manner as possible 

as you can, but there do exist variances between your own signatures, and these 

differences maybe become larger if you sign your signatures at different time and 

different conditions. In order to obtain your template of signature which can 

reflect the long term manner for your signing process, we hope to record a set of 

your signatures at different time and different situations (when you feel happy, 

sad, excite, or tired, etc). So you can come and sign your signatures at random 

time and different health conditions. 

3. For each volunteer, we need about 50 signatures. All of these signatures will be 

recorded during three months. So each time, please sign at most 5 signatures. 

Then you can sign your signatures in the next day, next week or next month. 

Ideally, we would like to obtain signature samples every two weeks for three 

months. We will contact you by email every two weeks, to setup a time to record 

your signatures. 

4. Each time when you record your signatures, please also record the time and your 

feeling (such as excitement, sadness, happiness, calmness, etc.). Also please 

record your signing position (such as sit or stand). 
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5. Please sign your standard signature with the “same” manner as possible as you 

can. We recommend you can use the same manner when you sign your cheque or 

visa, since you are familiar with that manner and only you can re-create that 

manner with smallest variance.  

6. There is an interface for the signing, and two buttons “start signing” and “stop 

signing” there are shown on the interface. Before sign a signature, please click on 

the “start signing” button, then the system begin to record your digital signature; 

when you finish signing, please click on the “stop signing” button, then the 

system stop recording current signature and wait for next signing. 

7. Collected data will be used only for evaluation and analysis of algorithms for 

signature analysis and recognition. Possible publications from this work will 

consist of aggregate, analyzed data. Identifiable data (such as signature images) 

will not be published without your express written permission. Data will be 

stored on a password protected computer, and be made available only to the 

graduate researcher and supervisors.  
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