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Abstract 

 

One unfortunate occurrence in experimental measurements with electrical impedance 

tomography is electrodes which become detached or poorly connected, such that the 

measured data cannot be used. This paper presents an automatic approach to detect such 

erroneous electrodes. It is based on the assumption that all valid measurements are related 

by the image reconstruction model, while the measurements from erroneous electrodes 

are unrelated. The method estimates the data at an electrode based on the measurements 

from all other electrodes, and compares it to the measurements. If these data match 

adequately, the set of electrodes does not contain an erroneous electrode. In order to 

detect an erroneous electrode amongst N electrodes, all sets of N-1 electrodes are tested, 

and the set with the best match between measurements and estimate is identified as the 

one which excludes the erroneous electrode. The method was tested on simulated and 

experimental data and showed consistent identification of erroneous electrodes with those 

made by experts.  
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Introduction 

Electrical Impedance Tomography (EIT) uses body surface electrodes to make 

measurements from which an image of the conductivity distribution is calculated. 

However, one important difficulty with experimental and clinical EIT measurements is 

the care required to ensure accurate current injection and voltage measurement. Many 

conditions can cause EIT measurements to differ from their correct values, such as 

interference from electronics (Al-Hatib, 1998, Meeson et al, 1996), and poor electrode 

contact due to patient movement (Blott et al, 1998), or sweat and peripheral oedema. This 

effect is especially important in long term monitoring applications (Lozano et al, 1995). 

 

Given a set of data containing measurements with errors, it is desired to calculate an 

image based on the remaining good data. In order to accomplish this, we have developed 

a methodology to reconstruct EIT images in the presence of single electrode errors 

(Adler, 2004). One limitation of that work is the requirement that the erroneous 

electrodes be identified to the algorithm by an operator. However, the ability to 

automatically identify erroneous electrodes is a potentially important capability for 

clinical and experimental applications of EIT. In this paper, we present a method to allow 

such automatic detection of erroneous electrodes. 
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Methods 

 

Various heuristic techniques have been used to detect the presence of erroneous electrode 

data. For example, a test for the presence of faulty electrodes could be based on analysis 

of images for artefacts, or a test of the measured voltages for unusually large changes. 

The disadvantage of such heuristic approaches is the difficulty in defining an image 

artefact, in relation to an unusual, but accurate, measurement. Specifically, it is difficult 

to define a threshold for changes that could be applied across different systems and 

injection patterns.  

 

In order to more systematically detect such erroneous electrodes, we propose a method 

based on comparing the measurements obtained on all electrodes to each other. Since all 

electrodes measure the same medium, it is reasonable to expect that “good” electrodes 

will produce measurements consistent with each other. The consistency of a set of 

electrodes can be verified by estimating the measured data at each electrode in the set, 

and then comparing the estimate to the actual data measured. A set of electrodes with 

consistent measurements must contain all “good” electrodes. In order to test an N 

electrode EIT system, we test all possible sets of N-1 electrodes; if only one of the 

subsets contains all “good” electrodes, then the electrode excluded from that set must be 

erroneous. 
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Image reconstruction with missing data 

 

We consider EIT difference imaging based on the formulation of Adler and Guardo 

(1996). The forward model estimates the vector of the change in conductivity distribution 

(x) from a vector of change in difference measurements (z) and with additive noise (n). 

For small changes in x, the relationship is linearized as: 

                                                              nHxz +=                                                             (1) 

Based on these parameters, the SNR of a measurement is nzlog20 . The Jacobian 

(sensitivity) matrix (H) relates the change in conductivity to change in difference 

measurements: 
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The change in conductivity is expressed as the difference in the finite element log 

conductivities )log()log( 21 σ−σ=x , and the normalized difference measurement is defined 

for the time interval (t1,t2) as                                                     
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where  v1
i and  v 2

i represent the ith voltage measurements at time t1 and t2, respectively. 

 

The EIT image reconstruction algorithm estimates the change in conductivity ( x̂ ) from 

measurements z using a MAP regularization framework. x̂  is estimated by maximizing 

the a posteriori probability distribution f(x|z)=f(z|x)f(x)/f(z), which simplifies to: 
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The terms in equation 4 can be consolidated into a single reconstruction matrix B. In order to estimate x̂  

using a subset of the available measurements, the noise variance term nR  on all unused measurements in 
(4) is set to ∞  (Adler, 2004). This has the effect of introducing zeros into Rn

-1 at positions on the diagonal 

corresponding to the unused measurements. xR  represents the spatial correlation between the finite 

element conductivities in the forward model; while 
1

xR −
 is the regularization prior, modelled as a spatial 

high pass filter. Even though our results are based on the reconstruction algorithm of Adler and Guardo 
(1996), this approach does not depend on the details of the regularization framework, and can be used for 

any one step reconstruction algorithm. We introduce the notation 
( )ji ,eeB

 for the reconstruction matrix 

designed not to use measurements made with electrodes ie  and je
. 

 

We elaborate this technique for the adjacent current injection pattern, but it is applicable 

to other EIT stimulation patterns, such as opposite and interleaved current drive patterns 

(Eyüboğlu, 1996). Two adjacent electrodes are used for current injection and the 

remaining electrodes are used to make voltage measurements as shown in Fig. 1. Overall, 

there are N×(N-3) measurements available when all electrodes give good data. However, 

when there is one erroneous electrode, the total number of measurements available is 

reduced to (N-3)×(N-4). Typically, with sixteen electrodes the remaining “good” data are 

sufficient to reconstruct a reasonable image (Adler, 2004). 
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Detection of erroneous electrodes 

In order to detect erroneous electrodes, we rephrase the problem to instead detect sets of 

good (not erroneous) electrodes, from which the erroneous electrodes are excluded. As 

mentioned previously, a set of good electrodes produces internally consistent data. Such 

consistency can be verified by estimating the measured data at each electrode in the set, 

using only measurements on other electrodes, and then comparing the estimate to the 

actual data measured. Thus, our method analyses difference EIT data from a set of 

electrodes S, in order to detect the presence of a single erroneous electrode. Fig. 2 

outlines the basic steps of the method. 

 

We iterate over each electrode ie  in S, forming a set S′ of all electrodes not including ie . 

S′ is then tested to calculate a parameter iT  which reflects the consistency of 

measurements among electrodes in S′, and is the sum of estimation errors for all 

electrodes not including i. The estimation error for an electrode j is defined as: 

  
2

2
ˆE jjj zz −=                                                         (5) 

Figure 4 shows a block diagram of steps for calculating Ej. jz  is the vector of normalized 

differential measurements made using je , and jẑ  is the estimate of jz  based on all 

electrodes in S′ except je  (Fig. 3), which is calculated by: 

 xHz ˆˆ jj =                                                                  (6) 
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where jH  represents the rows of the sensitivity matrix H which correspond to 

measurements on je . x̂  is then calculated from (4), without data from electrodes ie  and 

je  as 

                  ( )zBx ji ee ,ˆ =                                                                   (7) 

It is necessary to calculate (7) without electrodes ie  and je because ie  is not part of S′, 

and je  is the electrode being estimated. 

 

In order to efficiently compute Ej in S’, we define a selector matrix, jS , such that 

zSz jj =  to isolate the data from electrode je . Thus, (5) becomes 

             [ ] 2

2
ẑzSE −= jj                                                        (8) 

Substituting ẑ  with (6) and (7) 

                                                     [ ] 2

2
),( zHBzSE jijj ee−=                                  (9) 

which can be written 

                                     zHBISSHBIzE )),(()),(( jij
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in which the term )),(()),(( jij
T

j
TT

ji eeee HBISSHBI −−  may be precomputed, since it 

does not depend on the data. 

 

If all values of iT  are low, S′ contains all “good” electrodes, otherwise it contains at least 

one erroneous electrode. iT  values are tested against each other to detect if any are 
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significantly less than the others. We have developed a simple heuristic measure (PER) to 

measure this property. Initially, we define a parameter D  

                                                          ( )∑
=

−=
16

1j
jii TTD                                                         (11) 

Data with no error will have comparable T values, small variation in D, and a ratio of 

maximum to minimum D close to one. We express this ratio in dB and call it prediction 

error ratio (PER): 

                                         







=
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D
DPER                                                          (12) 

A low PER indicates that the T values are close to one another and the data is consistent, 

while a high PER value indicates an erroneous electrode. PER is used to detect the 

presence of an erroneous electrode, and subsequently, T is used to identify it.  
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Data 

EIT data were obtained from previous experiments (Adler et al, 1997). Mechanically 

ventilated mongrel dogs had sixteen ECG-style electrodes spaced evenly around the 

shaved thorax 10 cm above the base of the rib cage, and adjacent drive EIT 

measurements were acquired. Four animals, of nineteen, showed some level of electrode 

errors. Images were calculated corresponding to data measured at each inspiration. The 

gold standard for electrode error was based on human assessment. A graphic user 

interface was developed to evaluate test images by five experienced users, who were 

asked to classify each image as either: no error, possible error, or definite error. 

Identification of images with no error was consistent, but there were varying assessments 

of images considered to have possible error and definite error. We used the majority 

opinion to classify images. 
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Results 

This method was implemented in Matlab; using a FEM mesh of 256 elements on an 

Athlon 1.8GHz computer, it requires 74 s to pre-compute the values in (10) and a further 

3 s to calculate PER and T for each EIT difference data set. 

 

Tests with simulated data: Fig. 5A shows EIT data classified as no error. The graph of T 

vs. electrode number (Fig. 5A) shows consistent values of T corresponding to a PER of    

-13dB, which indicates good electrodes. Fig 5B shows the reconstructed image of data 

from Fig. 5A with additive white Gaussian noise (SNR= 9dB) to the data of electrode 4. 

The resulting reconstructed image is poor with large artefacts. When the method is 

applied to these data, T values from all electrodes except electrode 4 are consistent (Fig. 

5, bottom), which suggests that electrode 4 is erroneous.  

 

Tests with experimental data: Three sets of representative EIT data of ventilated dogs 

were used: data with no error (Fig. 6A), a small error (Fig. 6B), and a larger error (Fig. 

6C) (based on our experience of EIT errors). The reconstructed images and graphs of T  

vs. electrode number are shown. Data with errors (Fig. 6B and Fig. 6C) show higher 

overall values of iT , compared to error free data (Fig. 6A). In Fig. 6C, the electrode with 

errors has significantly lower iT  (p<0.05). In the case of Fig. 6C, two adjacent electrodes 

are detected. We have noted that this is not uncommon result for this method with larger 

data errors. Based on our experience with this data set, we believe that the adjacent 

electrodes are both erroneous. Figure 7 shows PER as a function of SNR for a range of 

values (-50 dB to 50 dB). PER (± std dev) was calculated based on 100 simulations at 
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each SNR value. This method can reliably detect an erroneous electrode when the SNR is 

below approximately 20dB. Such a level of SNR has an imperceptible visual impact on 

the reconstructed image.  
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Discussion 
 

This paper presents a method to automatically detect an erroneous electrode in EIT data. 

It is based on measuring the consistency of data amongst all electrodes to identify the 

ones producing inconsistent measurements. Results show that the method is able to 

correctly detect the presence and identify the location of erroneous electrodes in 

experimental and simulation data. The detection threshold is determined using the PER 

vs. SNR graph (Fig. 7). We recommend a threshold of PER = -22dB.  In comparing the 

results obtained from the method to the user classification, both the method and the user 

classification generated a comparable percentage of definite error data, 28% and 25%. 

The method detected 57% of the images as no error, while the user classification 

provided 67%, probably due to some errors not being visible in the reconstructed image. 

After detection of an erroneous electrode it would be possible, in a real time 

measurement scenario, to identify and correct the underlying problem. If data collection 

is already complete, it would be possible to compensate for the erroneous electrode using 

a technique such as that of Adler (2004). Figure 8 shows an example of such 

compensation. The large number of erroneous electrodes was caused by the animal’s 

poor skin condition.  

 

This method was also evaluated using simulated data for an opposite drive pattern and 

shows similar results to those in Fig 5. Tests were carried out to evaluate the performance 

using different size finite element meshes, other than the 256 element mesh used for the 

results in this paper. A finer mesh grid (>256 elements) results in longer execution time 

with a slight increase in separation of T values for erroneous electrodes. 
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Even though this method was not developed to detect multiple electrode errors, the 

results (Fig. 6C) appear to show the ability to detect two adjacent erroneous electrodes. 

The T value decreases at an erroneous electrode position because the error contribution 

from that electrode is eliminated. In the case of multiple erroneous electrodes, part of the 

error contribution is removed even though contribution from other electrodes remains. 

Thus, the technique can detect multiple erroneous electrodes, although with reduced 

sensitivity.  To test this result, a data set with no errors was selected and varying levels of 

white Gaussian noise added to two adjacent electrodes. Results show that the two 

adjacent electrodes have a significantly lower T value than the remaining electrodes. A 

better approach to detect two erroneous electrodes would be selecting two or more 

candidate electrodes in the set S, and calculating the respective Ej for all je in S’.  

 

This method for detection erroneous electrodes could also be used for static EIT 

applications. Static EIT is more sensitive than difference EIT to measurement errors 

(Korjenevsky, 1995), and management of these errors is important for algorithm stability. 

Since an electrode error should be present whether measurements are interpreted as static 

or difference data, we propose that the method described here could be applied in static 

EIT by performing the test for errors on sets of EIT difference measurements, while the 

actual reconstruction is done statically.  

 

Automatic detection of electrode errors in EIT has several possible applications. In 

offline processing, such a technique could identify and correct for such errors. More 

usefully, if implemented in EIT monitoring equipment, it would be possible to alert staff 
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who could then attend to the problem. However, for such online applications, the 

algorithm is not real-time (3s per data set with a pre-processing time of one minute), but 

would permit erroneous error detection as a separate process. 
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Figure 1: 

01 X X   ∗ ∗     X
12 X X X ∗ ∗       
23   X X X ∗       
34 ∗ ∗ X X X ∗ ∗ ∗ 
45 ∗ ∗ ∗ X X X ∗ ∗ 
56       ∗ X X X   
67       ∗ ∗ X X X
70 X     ∗ ∗   X X
  01 12 23 34 45 56 67 70

 

Caption: 

Data available for an eight electrode EIT system using adjacent drive with one erroneous 

electrode. The vertical axis represents electrode pairs used for current injection and the 

horizontal axis those used for voltage measurement. ˝X˝ represents data not available 

from electrodes used for current injection. ˝∗˝ represents data lost when electrode 4 is 

erroneous.  
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Figure 2: 
 
 

Define set S = { ie  | i = 1....N} 
For all ie  in S 
 Define set, S′, without electrode ei: S′= { ie : j = 1....N, j≠i}   
 For all je  in S′  
  Calculate image:  ( )zBx ji ee ,ˆ =  

 Estimate measurements on je :  xHz ˆˆ jj =  

  Calculate: 
2

2
ˆ jjj zzE −=  

 Calculate:  ET
N

i,jj
ji   

1
∑

≠=
=  

If iT  is significantly less than other values of T, detect ie  as erroneous 
electrode 

 

Caption: 

Pseudo code for detection of an erroneous electrode. 
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Figure 3: 

 

Caption: 

Illustration of electrode sets S and S’. To test electrode 4, the estimation error Ej is 

calculated for each electrode in set S’.  
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Figure 4: 
 

 

Caption: 

Block diagram of calculation for estimation error Ej  

  B (ei,ej)         Hj        z 
x 

zj

2

2
ˆ jjjE zz −=

Selector 

jẑ
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Figure 5: 
 

  

  

Caption: 

Upper row: images of tidal ventilation in a dog with and without simulated noise. 

Electrodes are numbered clockwise with electrode zero at the top centre. Images are 

individually normalized to the colourscale (arbitrary units) at right. Bottom row: 

parameter T for each electrode. (A) no erroneous electrode (B) simulated error (9dB 

SNR) on data from electrode 4. The arrow indicates the location of the erroneous 

electrode. 

A                    B                  
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Figure 6: 

      
 

 

Caption: 

Upper row: A, B and C: images of tidal ventilation in a dog. Electrodes are numbered 

clockwise with electrode zero at the top centre. Images are individually normalized to the 

colourscale (arbitrary units) at right. Bottom row: parameter T for each electrode (A) no 

erroneous electrode (B) data with erroneous electrode with small error signal. (C) data 

with erroneous electrode with typical error signal.  Arrows show the location of the 

erroneous electrode(s).  

A                  B                    C 
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Figure 7: 

 

Caption: 

PER vs. SNR using simulated white Gaussian noise on data from tidal ventilation in a dog 

(100 simulations per data point). For SNR greater than 20dB, PER shows a significant 

jump. We use a threshold of detection of PER = -22 dB.  
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Figure 8: 

 

 

 

 

Caption: 

Left (A): difference image of 700ml inspiration and 100ml right lung fluid installation in 

a dog. Electrodes are numbered clockwise with electrode zero at the top centre. Both 

images normalized to same colourscale. (B): Image of data from (A) using the method of 

Adler (2004) to compensate for the erroneous electrodes identified below. Right: T for 

each electrode in (A). Based on these data, electrodes 3, 5, 12, 13 were identified as 

erroneous.  

 
 

A 
 
 
 
 

B 


