
TellTable:
A Server for Collaborative Office Applications

Andy Adler

School of Information Technology
and Engineering,

 University of Ottawa,
Ontario, Canada

adler@site.uottawa.ca

John C. Nash
School of Management,
 University of Ottawa

Ontario, Canada
nashjc@uottawa.ca

Sylvie Noël
Communications Research Centre

Ottawa, Ontario, Canada
sylvie.noel@crc.ca

ABSTRACT

TellTable is a Linux-based application server which allows
collaborative editing using single-user office productivity
applications. Users log into the application via an SSL-
enabled and Java-enabled web browser. Files to edit or
view are opened in a VNC session on the server, the screen
image is exported to a Java client in the user's browser, and
all keyboard and mouse activity is then transmitted to the
server. Editing conflicts are prevented using a locking
protocol. In principle, TellTable allows any single user GUI
application to be managed this way; we have tested it with
OpenOffice, Microsoft Excel, and Gnumeric. Pilot tests
showed that TellTable is usable over dialup and high-
latency internet connections, but works best over higher
speed connections. This paper reviews the technical design
of TellTable and the interactions of the various
components, as well as security issues.

Keywords: office suite, collaborative authoring

INTRODUCTION

Many work environments require collaborative writing and
editing of documents, drawings, presentations and
spreadsheets, ie. office-suite files; a good example is a
scientific paper, in which researchers need to jointly
develop and refine a document. Technology (telephone,
email, and web tools) has simplified such collaboration.
Currently, the typical way to collaboratively edit a
document is to exchange draft versions between authors via
email [8]. This means that control of document versions
must be done by all members of the team. This introduces a
significant additional burden on members, with the
possibility of conflicting changes and missed contributions.
One initial motivation for our work [7] that illustrates these
difficulties is the common practice of managing course
marks by emailing spreadsheet files between the various
teaching assistants. The principal difficulty is that
independent changes can be made to different versions,
which must later be reconciled manually. It is also difficult
to determine when a change was made, and why. Serious
errors can be made very easily, such as the pasting of an
entire list of marks over the wrong rows. A useful list of
reported errors is maintained by the European Spreadsheets
Risks Interest Group (http://www.eusprig.org/stories.htm).

Several software systems have been developed to address
these issues ([7] presents a review of collaborative writing

systems). In our opinion, the principal challenge with the
design of such systems is ease of use. Team workers will
resort to emailing private documents between each other if
the collaborative system is not convenient to use. To
address this and related issues, we have developed
TellTable, a collaborative editing system designed to allow
single-user office productivity applications (mostly word
processing, spreadsheets, drawings and presentations) to be
used in a collaborative framework. Advantages of such
applications are the extensive effort that has been put into
their usability design and the familiarity users already have
with the interface. Users log onto TellTable via a web
browser. Office productivity software is run on the server,
and exported to the client's web browser via the VNC [11]
protocol to a Java applet in the browser.
TellTable was initiated in 2002 as an approach for
spreadsheet audit. We, with our colleague Neil Smith, had
developed a tool to analyse the OpenOffice calc
spreadsheet file change history to allow searching for
particular patterns of activity of interest for audit
applications [5]. However, it was clear that a user may
make arbitrary changes to a file in their possession,
including erasing or modifying the change history. In order
to prevent such modifications, we began to develop a
framework to allow calc to run on a server in such a way
that the user has full access to the normal productivity
functions, but without direct access to the files. It soon
became clear that TellTable was a framework which could
generally enable collaborative office software. So others
can use, distribute, and modify TellTable, the server
component of the project was licensed under the LGPL [3]
in March 2004, and distributed from the URL
http://telltable-s.sf.net in the Sourceforge repository. We
are currently pursuing various enhancements to its
functionality, and are actively interested in collaborating
with others in its further development.

The rest of this paper describes the technical aspects of the
TellTable software framework, including its interaction
with each of the underlying software components. We
review security issues in its implementation, and discuss
tests of performance.

OPERATION

For the user, TellTable functions like a web application.
The user enters the URL into an internet browser, and is
presented with a login page. After entering a username and
password combination, the user is presented with a screen

Figure 1: Screenshot of a TellTable document editing screen, showing a draft of this paper using the OpenOffice write
software. The software is running on the web server, and the display is being exported into a Java applet in the web
browser window. Full spreadsheet functionality is available, but with some security restrictions. A form below the Java
applet offers the possibility of uploading new files or clipboard contents from the client machine to the server session.

showing the current status of all files to which they have
access. At the lowest level of privilege, a user will be
shown the file name, latest version number, as well as the
date/time and user name of the last file edit. If another user
is currently editing the file, it will be marked as "locked";
otherwise it will have a status of "normal". A user may
choose to "View", "Download" or "Edit" a file (Edit is
disallowed if the file is locked). Users with elevated
privileges and who have appropriate software licenses may
run other functions such as "Audit" or have access to the
version history of files.
The "Download" option will cause the browser to
download the selected file to the local machine. That file
can then be manipulated locally, as desired, but such
changes occur outside of the TellTable framework, and
cannot be re-inserted into the file version history (without
administrative privilege). “Download” is a more or less
traditional browser function, and similar “buttons” can be
added to TellTable. The other selections, namely "Edit",
"View", or "Audit", send the browser to the application
screen, which contains a Java VNC viewer applet. This
applet connects to a VNC server that is running the
appropriate software to implement the chosen function. For
example, a choice of "Edit" results in the screen shown in
Figure 1.

The selected file is opened with OpenOffice running on the
server, and all keyboard and mouse activity from the user
in the applet window is sent via the Java VNC client to the
server and then to the Office Suite software, which will

then update its screen output which is then sent to the
browser. Since most users are familiar with Microsoft
Office, and Office suite software in general, they typically
find [1] using such software within a browser window to be
familiar.

Because of the constraints of the Java applet security model
[13], some operations function differently from their
counterparts on a client workstation. First, the
implementation of copy-and-paste requires that we work
around Java applet security that prevents applets from
interacting directly with the clipboard of the client
machine. Second, the user needs to quit both the office
software and the browser window.
The designers of VNC provided a special pop-up window
function to help with copy and paste problems. A user
pastes clipboard content from the client machine into the
Java applet pop-up window, which sends its contents to the
server, where the X clipboard is populated with its
contents. We have chosen not to use this approach because:
1) it only works well with "traditional" X windows
applications and clipboard, while applications such as
OpenOffice maintain their own clipboards; and 2) the pop-
up clipboard requires an extra (and somewhat unnatural)
step to be taken. We felt that as long as we required an
extra step, it should be possible to provide significantly
enhanced functionality.
Our design for copy-and-paste allows selection from three
sources of data: clipboard text, local files, and server files.
In each case, the new data is copied to a read-only file

Client PC

Web Browser

VNC Java
Applet

TellTable Server

 CVS/ssh

 Custom

TellTable Web
Appliction

HTTPS
(443)

VNC protocol
(590x)

VNC ServerVNC Server

Office
Software

CVS Server

Figure 2: Block diagram of internetworked components for TellTable client and server system. The server consists of
the components of a CVS service, web application service, and VNC services. These services communicate with each
other via TCP/IP, and may be distributed onto several computers. The client browser communicates with the web
application via https, and the VNC applet within the browser communicates with VNC servers via the VNC protocol.

on the server, and opened as a sub-window into the
OpenOffice document. This allows the user to select text
from the uploaded document and paste it into the working
document as required.

TECHNICAL IMPLEMENTATION

In this section, we describe the technical implementation of
the TellTable server. A block diagram of the
intercommunicating components of the server and a client
computer is shown in figure 2. Note that there is a semantic
difficulty with the term "server" with X windows systems:
the computer with the screen is the X server, while the
application software runs on the X client. VNC, while
building on top of X windows, reverses the semantics to the
common usage: the VNC server is where the application
runs. In this paper, we use these (familiar) semantics: the
server runs the application to which the client PC (and
screen) connects.
Client PC and Browser

TellTable is designed to offer cross platform support for
client machines; tests have been performed with Windows
98/2000/XP, Linux, and Mac OS X client machines, using
Internet Explorer 5.0+, Mozilla 1.4+, and Opera browsers.
The client PC must have a graphical internet browser with
support for the HTTPS protocol and Java applets. The size
of the VNC applet is configurable at install time, and is
currently set to 900 by 550 pixels. This selection works
well with screen resolutions of 1024 by 768 or larger, but
can be a little inconvenient to use for a PC with a smaller
screen resolution setting.
VNC Server

The core of the TellTable server is a pool of VNC server

processes, which may be distributed across several physical
servers. Each server runs under a different low-privilege
user id. Since there is no connection between VNC userids
and TellTable client userids, we refer to these as pseudo-
userids or psuids. Additional security is inherent in
TellTable in that the TellTable client userids are generally
not registered users of the host Linux system. VNC servers
are initialized at system boot time from a script
telltable-server residing in /etc/init.d. Each
VNC server has an associated X windows session, and a
server port for VNC protocol access. At server startup, the
VNC server also initiates a custom TellTable perl program
xstartup. This program performs an initialization of the
TellTable environment (verifying the existence of required
files and directories), and then initializes a server for the
TellTable commands. Thus psuid number 2 will have an X
windows DISPLAY=:2, a VNC protocol server on port
5902 and TellTable server port on 5702.

Before executing each command, xstartup will delete
and reset all software configuration files by unpacking
them from a compressed archive. This serves to remove
lists of previously edited files, and other modifications to
the GUI menus from a previous editing session.
Subsequently, xstartup listens for a command of the
following form of the TellTable port:
{AUTHENTICATION_CODE} {COMMAND_STRING}

{ACTION_STRING} {USERID}

An example string is
{7yr9Im4zhONNmDP+Cc0SPbSYdUw}

{OOFFICE_OPEN} {sample.sxc} {andy}

AUTHENTICATION_CODE is a message authentication
code (MAC) based on a code known to the web server and

VNC psuid. This code serves to authenticate the command
string, and as a one-time password for the VNC server for
this login session. USERID is the logged in userid of the
client used to allow the editing software to record changes
under the correct name. This is implemented for
OpenOffice by modifying the appropriate XML
configuration file. The COMMAND_STRING must match a
predefined list of available commands. For example, the
string “OOFFICE_OPEN” instructs xstartup to look for
a file, specified by ACTION_STRING, in the input
directory indir, move it to procdir and open it with
the OpenOffice software. When the OpenOffice session is
closed by the user, the file is moved to outdir (from
which it is copied back to the repository as described
below), after which the server listens for the next
connection. Other values of COMMAND_STRING will open
read-only clipboard contents into the currently open
OpenOffice session, or will open other software, such as
our spreadsheet audit tool.
Web Server
TellTable runs under the apache web server on Linux. The
web server components are primarily composed of CGI
script components written in Perl. There are no
dependencies on advanced features of apache. To protect
the security and login information for the VNC Java applet,
TellTable must work with SSL encryption, such as apache-
ssl (see http://www.apache-ssl.org), or the mod_ssl
(http://www.modssl.org) extension to apache. TellTable
maintains a database of system activity using the
BerkeleyDB format [12]. The database is stored as a file on
the web server, and is owned by the apache userid. Locking
of the database between multiple CGI script invocations is
implemented using the UNIX flock mechanism as
implemented by the Perl module DB_File::Lock.
When a user logs into TellTable, the username and
password presented are verified against the information
recorded in the database. Subsequently, the file access
screen is presented to the user. The list of directories the
user is permitted to access is obtained from the database,
and the lists of files in each permitted directory, as well as
their current version, and the last user to edit, is obtained
from the CVS repository. A user may also view the version
history of a file, and may select "view" to open a previous
version read-only in the VNC server. When a user selects a
file to edit, or a previous version of file to view, the
appropriate version is obtained from the CVS repository
and sent to the VNC server, as explained in the next
section.
CVS Repository
File versions are stored using CVS [2], which stores
information using the RCS file format [14]. This format
provides the capability to manage various advanced
features of file versions, though at this time they are not
used by TellTable. For example, CVS allows branching,
merging, and file differencing. TellTable uses a simple
sequential progression of version numbers, and uses CVS
to allow extraction of older versions and to maintain
descriptive text (logs) with each version. Because TellTable

manages conflicts using locking, CVS capabilities for
branching and merging are not required. Although file
differencing would be of great benefit to users, the RCS file
format was designed for plain-text files, and OpenOffice
and other office software files are binary. This means that
the "diff" functions of CVS (which calculate the differences
between versions of text files) do not work. In general, a
useful presentation of document differences would need to
be determined at the application level, and some office
software provides this function. Since the OpenOffice
binary format is zip-compressed XML text, it seems that a
form of difference presentation should be feasible, but we
are not exploring this at the moment.
The TellTable web application interacts with the CVS
repository to extract version information, to check out
versions to view or edit, and to check in (or 'commit' using
CVS terminology) newly edited versions. When a user
chooses to edit a file, the Web server will check out the
latest version from the CVS repository, copy it to the
indir of the psuid, and send the appropriate command to
the psuid's server, which then opens the office software to
edit or view the file. When the client quits the office
software, the Web server tests whether the file is in the
outdir of the psuid, and commits it to the CVS
repository. CVS detects whether any modifications have
been made, and, if so, adds the new version to the
repository and increments the version number.
Security Details
This section reviews the features of TellTable designed to
prevent legitimate users from performing actions which
would normally require elevated privileges on the server.
We assume that the server is configured to prevent arbitrary
attacks from the internet. The TellTable server has a
firewall configured such that only the HTTPS, and VNC
protocol ports (590x) can be accessed from the internet.
At server initialization, the xstartup for each psuid has a
different random code string embedded into it and also
stored into the Web server database. When issuing a
command, the TellTable server calculates a value
AUTHENTICATION_CODE, an SHA1 based message
authentication code (MAC) based on the command text and
the stored code. This MAC is verified by xstartup
before acting on any command. Commands with an invalid
AUTHENTICATION_CODE are ignored with an error. We
note that the current implementation is potentially
vulnerable to a message replay attack which could be
countered by using a challenge/response protocol.
However, since the TellTable server port is not accessible
from outside the server, we consider this issue to have a
lower priority for improvement.
The AUTHENTICATION_CODE also serves as a one-time
password for the VNC server. VNC authentication uses a
challenge/response protocol based on the DES cipher.
When a new VNC client connects to the server, a password
value is entered which is tested against the value in the
hashed password file .vncpasswd. When a command is
sent to xstartup, the value of .vncpasswd is modified
based on the AUTHENTICATION_CODE. At the same

time, when the web server creates the HTML page with the
VNC applet, a corresponding password is created based on
the code value. This mechanism ensures that the user of a
previous VNC session cannot eavesdrop on a future session
since the authentication information will no longer be valid.
One source of some confusion to us was the fact that the
VNC implementation of DES uses a permuted byte order
compared to the standard one [6].
Each psuid runs as a member of the UNIX group tt-
group and as a different low privilege user, tt-
uid####, where #### is the psuid number. Each psuid
has processing directories indir, procdir, and
outdir. procdir has permissions set to be private to
the psuid, while the others can be read and written by tt-
group. The userid under which the web server runs is
configured to also be a member of tt-group, and is thus
able to copy files to and from the psuids. For TellTable
configurations using separate computers for the web and
VNC servers, the indir and outdir are shared with the
web server by a network file system.
Perhaps the most important potential source of security
vulnerabilities in TellTable is the client access to a VNC
session. Although we only allow users to execute a small
set of Office productivity applications, these applications
are large, complicated, and not designed with this type of
security in mind. It is therefore quite likely that a user may
be able to obtain general shell access via the VNC session,
for instance, by finding a way to get an Office application
to launch shell commands. In this situation, the client user
will have all the privileges of the psuid under which the
VNC server runs. Given this possibility, we have designed
TellTable to reduce the privilege of the psuids as much as
possible, so that a psuid cannot read or write web server,
CVS service, or UNIX administrative and executable files.
In order to further reduce the access privileges, we plan to
run each psuid within a restricted directory using chroot,
in which it has access only to required files and binaries.
When the CVS repository is on the same computer as the
Web server, file versions are stored under the userid of the
Web server. If the CVS repository is on a separate machine,
then CVS commands are transported via SSH encryption.
SSH authentication credentials are stored using the ssh-
agent mechanism at Web server startup. This way, the
authentication information is not available to the Web
server.
IMPLEMENTATION AND TESTS
Currently, TellTable is implemented on a Dual Processor
Linux server, running Debian based Xandros Linux. It is
being used by several workers at the University of Ottawa,
the Communications Research Centre of Canada, the
University of Vienna, and by two independent teams of two
people linking Ottawa and Cardiff and Ottawa and Toronto.
Applications include collaborative writing of papers, course
material, and maintenance of course marks and
documentation. As mentioned in the introduction, the
spreadsheet files are typically used to record course marks
and represent a demanding test of a collaborative document
system.

In the autumn of 2003, we performed a pilot study of
TellTable for this application [1]. Results showed that users
were largely appreciative of the features of the system
(especially the ability to know one's changes would not be
lost). Overall, usability was good. One concern that we had
was that responsiveness would suffer on slow internet
connections with high latency, such as dialup and
connections from far away. We were pleasantly surprised
to find that, although slightly slower, TellTable was quite
usable in both situations. We attribute this to the efficiency
of the VNC protocol design [11].
Some software bugs were triggered by patterns of usage of
pilot users. For example, one interesting bug, and possible
security issue, affected a user who would use their email
account at hotmail.com to click on the link to the
TellTable server that had been sent to them. However,
hotmail opens URLs within a frameset that uses javascript
to rewrite HTML to prevent "breaking out" of the hotmail
frame by linking to the TellTable server via a hotmail
server. Generally, the hotmail rewriting would incorrectly
rewrite the VNC applet frame, rendering it non-functional.
The solution was to require logging into TellTable from a
new browser window. One concern is that a web mail
service could use this technique to allow capture of
passwords and other security information.
Our tests show TellTable has good scalability [4].
TellTable has the following memory requirements:
 151 + 5.8(available psuids) + 17.0 * (used psuids) MB
using OpenOffice calc in each session. On top of this
requirement is the memory required for each open
document. This result indicates that the server memory
requirements are relatively small compared to that required
by the operating system and the document file itself.
Performance was calculated by performing simultaneous
complex spreadsheet calculations in each psuid. Results
show that the TellTable server evenly distributes available
computational resources with very little overhead (~1%),
suggesting that a moderately sized server (1GB memory)
should be able to support 10-20 psuids depending on the
requirements of the users. Since most users of Office
applications make sporadic use of computational power, it
may be more efficient to use a powerful server such as
TellTable with less powerful client PCs.

DISCUSSION
We have described the TellTable collaborative document
editing system in terms of its technical design. We believe
that TellTable is portable to other UNIX platforms,
although we have no plans to do so. A port to Windows,
however, would require a significant rewriting, as
Windows does not easily allow multiple graphical sessions
to run under different userids, as is required by TellTable.
Perhaps the only advantage of the Windows platform is for
running applications such as Microsoft Office. However, it
is now possible, using CodeWeavers Crossover Office, to
run Microsoft Office software on Linux. In preliminary
tests, we were able to run Microsoft Excel remotely with
TellTable.

We have considered using a faster framework for dynamic
web content than CGI, such as mod_perl. However our
current tests show that for reasonable loads (of up to ten
simultaneous users) the speed of the web server does not
significantly degrade. Indeed, most delays in the web server
are spent interacting with other system tools, such as the
CVS or VNC servers.
A possible annoyance with our design is the detection of
"real" changes in files. For example, in Microsoft Word,
opening a document, scrolling through and saving it, may
result in a modified file. A version control system such as
TellTable, will save these “versions”, unless software were
written to detect such "unchanged" files. For the moment
we have chosen to wait and see if this is problematic.
Initially, we considered dynamically creating a new VNC
session when requested by the user. This approach proved
infeasible because VNC servers require significant time to
start (5 sec.) resulting in additional delay for the user.
Worse, when the VNC server shuts down, its TCP/IP
connection is left in the TIME_WAIT state and cannot be
restarted for up to two minutes. An approach based on
dynamically started VNC sesssions would need to work
around such timing considerations. Also, initiating VNC
sessions for other userids requires elevated privilege for the
web server, which may introduce security issues.
We also contemplated maintaining a VNC session for each
physical system user. This requires no psuids, making
security analysis easier. Unfortunately, this approach would
require a large memory and processor capability to support
a large number of users. Furthermore, since each VNC
server requires its own TCP port, it would require many
open ports. As currently implemented, a VNC server is
limited to 99 open sessions (ports 5901-5999). Load
balancing with multiple servers is another difficulty. If all
logged on users happened to be allocated to the same VNC
server computer, then other machines would not be able to
assist in supporting the computational load.
Our future technical work with TellTable involves
expanding the set of applications we can launch and use
with the infrastructure. We are particularly interested in
tools like Gnumeric (www.gnumeric.org) that appear to be
smaller and quicker to load than OpenOffice. We are also
exploring ways to integrate work flow capabilities into the
file-choice screen, since automation of the flow of files and
information should enhance the utility of the infrastructure.
There are also a number of housekeeping tasks for
administering TellTable that are currently implemented as
command-line tools, that could be much more user-
friendly.
In conclusion, TellTable is a workable framework allowing
single user office productivity applications to be used
collaboratively. Moreover, this framework is open-source
and runs on inexpensive hardware. The TellTable approach
benefits from considerable effort put into the development
of user-friendly features in large software packages, while
not requiring a large effort to render these collaborative.

Pilot results show that users are generally able to use their
familiarity with such software packages to work easily with
TellTable.

REFERENCES
1. Adler, A. and Nash, J C. (2004) Knowing what was

done: uses of a spreadsheet log file Spreadsheets in
Education (eJSiE), 1(2):118-130, 2004.
http://www.sie.bond.edu.au/articles/1.2/AdlerNash.pdf

2. Cederqvist, Per (2002). Version management with
CVS, Bristol UK: Network Theory.

3. Free Software Foundation (1999). GNU Lesser
General Public License, version 2.1,
http://www.gnu.org/copyleft/lesser.html.

4. Nash, J. C., Adler, A. and Smith, N. (2004) TellTable
Spreadsheet Audit: from technical possibility to
operating prototype Proc. 2004 EUSPRIG Conf.
(European Spreadsheet Interest Group), (editors
Patrick Cleary and David Ward), Klagenfurt, Austria,
July 14-16, 2004, pp 45-56.

5. Nash, J.C., Smith, N., and Adler, A. (2003). Audit and
change analysis of spreadsheets, Proc. 2003 EUSPRIG
Conf. (European Spreadsheet Interest Group), David
Chadwick and David Ward, editors, 81�90.

6. National Bureau of Standards, Data Encryption
Standard, FIPS-Pub 46. National Bureau of Standards,
U.S. Department of Commerce, Washington D.C.,
January 1977.

7. Noël, S., and Robert, J-M (2003). How the Web is
used to support collaborative writing. Behaviour &
Information Technology 22(4):245-262.

8. Noël, S., and Robert, J-M (2004) Empirical study on
collaborative writing: What do co-authors do, use, and
like? Computer Supported Cooperative Work: The
Journal of Collaborative Computing 13 (1):63-89.

9. OpenOffice.org (undated) OpenOffice project api
contents, http://api.openoffice.org/docs/
DevelopersGuide/DevelopersGuide.htm

10. Organization for the Advancement of Structured
Information Standards (OASIS) (2004) OASIS Open
Office XML Format TC, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=office

11. Richardson, T., Stafford-Fraser, Q., Wood, K.R, and
Hopper, A. (1998). Virtual Network Computing. IEEE
Internet Computing, 2(1):33�38. See also
www.uk.research.att.com/vnc/,
www.realvnc.com/vnc/, www.tightvnc.com/vnc/.

12. SleepyCat Software (apparently 2003) Berkeley DB
Reference Guide, Version 4.2.52,
http://www.sleepycat.com/docs/ref/toc.html

13. Sun Microsystems (2004) FAQ: Applet Security,
http://java.sun.com/sfaq/

14. Tichy, W. F. (1985) RCS�A System for Version
Control, Software�Practice & Experience 15(7):637-
654.

