
Audit and change analysis of spreadsheets

John C. Nash, Neil Smith, Andy Adler
School of Management, University of Ottawa

136 J-J Lussier Private, Ottawa, Ontario, K1N 6N5, Canada
jcnash@uottawa.ca

ABSTRACT

Because spreadsheets have a large and growing importance in real-world work, their contents
need to be controlled and validated. Generally spreadsheets have been difficult to verify, since
data and executable information are stored together. Spreadsheet applications with multiple
authors are especially difficult to verify, since controls over access are difficult to enforce. Facing
similar problems, traditional software engineering has developed numerous tools and
methodologies to control, verify and audit large applications with multiple developers. We present
some tools we have developed to enable 1) the audit of selected, filtered, or all changes in a
spreadsheet, that is, when a cell was changed, its original and new contents and who made the
change, and 2) control of access to the spreadsheet file(s) so that auditing is trustworthy. Our
tools apply to OpenOffice.org calc spreadsheets, which can generally be exchanged with
Microsoft Excel .

1. MOTIVATIONS AND BACKGROUND

Scandals and debacles in the business world underline the need for better ways to audit
and analyze business data, especially in the form of spreadsheets. Spreadsheet tools and
models are used as the basis for many business, administrative and engineering decisions.
The decision-makers need to have confidence that their spreadsheets contain reliable
information, free from errors or malicious changes. Spreadsheets themselves – apart from
the programs that process them -- can be complex and powerful programs, yet seldom
are they submitted for quality audits or code assessments, as is standard practice in the
software industry. (Fagan, 1976; Ebenau et al., 1994; Gilb and Graham, 1993; Dunsmore
et al., 2001; Knight and Myers, 1993; Laitenberger and DeBaud, 2000.) Auditors, as well
as spreadsheet designers and owners, need better tools to determine when, why and how
an error was introduced to determine its impact on decisions based on the spreadsheet's
results. Some such tools were reviewed by Nixon and O’Hara (2001), but to our
knowledge none of these can provide a true change-analysis audit trail, though clearly
there are many points of similarity with our work.

Current programs such as OpenOffice.org calc, Microsoft Excel or Corel Quattro
(hereafter called Calc, Excel and Quattro respectively) have the ability to record and
manage changes made to spreadsheet documents. These capabilities are, however,
focused on reviewing and perhaps “rolling-back” changes in a chronological fashion.
Furthermore, the roll-back, recorded in the “change_history”, requires special care to
establish, typically has a time limit, and may be lost accidentally or intentionally by user
actions. It is generally left to the reviewer to manually determine the potentially
damaging change in the list of entries. Our work addresses the need for software tools to
manage change control of spreadsheets. We have developed a cross-platform spreadsheet
system based on the calc file structure. While a large percentage of spreadsheet users
work on computers run under variants of Microsoft Windows, we note that there is a
growing community of workers employing flavours of Unix or Linux. Our work is

intentionally cross-platform; we work on Microsoft, Unix, Linux and Macintosh
platforms, and have tried to ensure our results are similarly portable.

A related issue is the existence of computer viruses and similar destructive code that may
alter spreadsheet contents. Archives of virus-protection companies list several
spreadsheet viruses such as XM97/Laroux-OC, Excel.Extra, Extra.xls and Style.A.
(http://www.sophos.com/virusinfo/, http://securityresponse.symantec.com/avcenter/,
http://www.mcafee.com/ ; except where mentioned explicitly, all sites in this paper were
visited on 2003-4-10 between 0250 and 0315 GMT).

A motivating application for two of us (JN, AA) is that of maintaining student marks files
when there are multiple markers. If the professor keeps a master file and merges partial
spreadsheets into it from markers, there inevitably comes the day when a marker sends a
second version of a partial file with “sorry, I made a mistake”. Un-merging the faulty data
is a daunting task. If there were an audit trail, one could rebuild the master file to the
point of the merge and thereby undo the damage. (This task is, however, still on our
“todo” list.) Constrast these problems with software engineering, where many
sophisticated and integrated suites of tools exist for the management and control of large
software projects with multiple developers [SCCS: Bolinger and Bronson, 1995; RCS:
http://www.gnu.org/software/rcs/rcs.html; CVS: www.cvshome.org; MKS:
http://www.mks.com/products/sie/; Visual Source Safe: http://msdn.microsoft.com/ssafe/;
BitKeeper: http://www.bitkeeper.com/, Subversion: http://www.subversion.org (visited
20030616 at 0900 GMT approx.) or Rational Clearcase http://www.rational.com]. While
it is somewhat difficult to compare the size of a spreadsheet with traditional software, a
simple measure of counting development hours would place a large spreadsheet on a
comparable footing to many commercial software offerings. Support for audit,
verification, and change control for spreadsheets is in its infancy compared to traditional
software. Spreadsheets, being a mix of code, data and presentation (graphics) elements,
are perhaps more difficult to maintain and verify. Change analysis tools like CVS have
been designed to work on line by line changes in text documents; as such, they would be
difficult to use without suitable formatting or analysis of the results.

One solution to the situation above, of course, is to use a database system to manage the
marks. However, there are many situations that arise where special policies must be
applied for students who have been excused certain requirements or overall marks must
be adjusted in some way. These are more conveniently handled with a spreadsheet.
Moreover, the effects of adjustments can be tested before they are committed to file.

Outside the “marks” environment, the building of “private” or “black book” spreadsheets
is a practice much denigrated by senior managers and auditors, but because of the
awkwardness of use of some centralized systems and the need to test “what if” scenarios
privately it seems certain to continue. As a topic for discussion, we contend that it may be
better to seek to provide appropriate methods by which “private” spreadsheets (or
equivalent functionality) are properly maintained so that they may be easily and
controllably integrated with central systems. We believe our work is helpful in this
regard.

The popularity of Excel would normally lead us to use Excel spreadsheets as the basis for
our work on audit and change analysis. However, as we have noted, it does not (yet)
operate on Unix/Linux systems. Moreover, the code and file formats are proprietary,
while calc has source code available should we need to modify it to control the change
analysis. Its file format is built on compressed XML.

2. ISSUES IN AUDIT AND CHANGE ANALYSIS

We talk of “Audit and Change Analysis” together because auditing is built upon the
analysis of transactions – that is, of changes and relationships in information files. The
better integrated this function can be, the more efficient and successful the audit process
becomes. Having an easy and efficient method of reviewing changes makes inclusion of
change analysis into the design and support of spreadsheets more likely, thereby
improving quality and reducing support costs.

In auditing spreadsheets, we need to understand cell relationships. This understanding
becomes harder as sheets are added and linked or referenced to each other, and worse still
if references are made to external spreadsheets. Generally we will want to determine
potential high-risk “zones”, that is, particular users, types of cell changes, times of day or
month, where we believe or have experience of unwanted changes. To work efficiently,
the auditor wants to know where trouble may lie, for example, the 20% of cells that need
80% of the attention. Auditors need to see cell contents, not just displayed results. A
formula and a static value can appear the same on a display, but have very different
implications. Spreadsheets allow the contents of cells, that is formulas, values, macros,
references, etc., to be displayed as well as the results and formatting, and even some
indication of other cells involved as in a sum or similar formula. These tools however are
relatively limited in utility to the auditor. Knowledge of the exact meaning and ordering
of parameters of functions may be critical. Tools can help by providing support to relieve
the “mechanical” burden of such syntactic knowledge, allowing the auditor to focus on
the impact of the relationships between spreadsheet elements. Similarly, a tool may be
used to highlight particular situations of interest to the auditor.

Static analysis of spreadsheets looks at a single instance of the spreadsheet to identify
errors. We may want to examine address references to see if there are copy or fill errors
(i.e., a reference does or does not change with respect to the change in the referring cell),
blank cells (which could be user input, however if the referring cell does not check for
absence of an entry, other results could be invalid), or ranges (where insertions or
deletions at boundaries of the range may not be updated in referring cells). Built-in
functions can also be examined, for instance, to see if parameters are assigned correctly,
have the right type (cell referencing versus use of constants as in the NPV function:
where one may want to use a cell reference to allow for a changeable interest rate, but a
user may “temporarily” set it to a fixed value), or even to review the type of functions
used. For example, is the existence of trigonometry functions in a sales forecasting
spreadsheet cause for concern?

Static analysis may also pick up what we call “constant equations”. For example, a cell
may have the contents “ =1+2+3". This is not invalid, but we may question its purpose.
(Change analysis may give a clue.). Errors such as reference errors, invalid type and other
errors flagged by the spreadsheet program during calculations may also be picked up.
While they should be obvious, since the spreadsheet program will flag them, they may
not be easily visible in a large spreadsheet. Name references present the same issues as
address references, plus others. Duplicate references to same cell are valid, but could be
an error or an opportunity for simplification. Referenced address ranges need checking
for correctness, in particular for overlapping ranges?

Change Analysis of spreadsheets also presents difficulties. In the life of a spreadsheet,
most changes are unlikely to cause errors, and “Checkpointing” or “versioning” of the
spreadsheet files helps to decompose our problem. That is, once an auditor is satisfied
with the spreadsheet up to a given checkpoint, effort can be focussed on changes made

after that version. This also can assist in reducing the volume of change information that
must be stored. On the other hand, spreadsheets can have many changes made by many
users. While plain (static) data may have errors, these are relatively simple to correct. It is
the executable cells that may be much more dangerous since their output affects other
cells, but such errors may be largely invisible. Auditors will likely want to focus on the
“program” rather than various “executions”. Correct use of cell or sheet protection helps
to ensure the integrity of the spreadsheet. A final woe: recording changes is optional with
all spreadsheet programs familiar to us – we have to ensure it is turned on to create our
audit trail and protect the integrity of this trail.

Dynamic or change analysis implies that we must look at change information captured
during spreadsheet editing sessions. When coupled with static analysis this adds the
dimension of time, which allows the user or auditor to determine the impact of an error on
decisions based on the spreadsheet. Analysis of changes covers a number of segments in a
spreadsheet. First, administrative information such as the author / user making the
change, and the date or status of the change. We will want to be able to focus attention on
specific changes, such as the type of change (content, insertion or deletion), or the change
action. Of particular interest will be dynamic to static changes, such as

• Cell or name reference changed to static value. This could be either a single cell
reference, or as part of an equation. For example, if a particular cell represents a
currency exchange value or discount rate, users may expect this to be used for all
relevant calculations, so removal of references may invalidate this assumption.

• Built-in function replaced by a static value. As educators, we see immediate
possibilities in detecting potential cheating where cell results are set as constants
when they should be computed or derived, or where computed marks are replaced
with (usually higher) numbers.

• Built-in function parameter changes. Cell or name references changed to static
values. We should be concerned with the influence on “what-if” scenarios when a
referenced or computed value is not used.

• Function or name reference changes.
• Built-in function replacement. Example: PV(…) changed to FV(…); same

parameters, different results.
• Name reference changes. Example: Profit_2002 changed to Profit_1999. This is a

“documentation” change.
• Cell or sheet protection. This is important and necessary to ensure the integrity of

the spreadsheet when used by clients. Design changes require the removal of
protection and therefore opportunity to not restore protection before delivery to
client. A change to sheet protection leaving all cells unprotected may be very
dangerous, for example, in a spreadsheet delivered to a client for completion and
return (tax calculation, sales forecast), which could be accidentally or
intentionally changed and not detected when returned. Cell protection status also
needs to be verified, since accidental or intentional changes to individual cell
protection can provide integrity “holes” in spreadsheets used by clients.

We believe spreadsheet change analysis has applications in all areas where spreadsheets
are used. While we have described this in terms of “auditing”, users can employ the tools
we describe to better debug complex spreadsheet packages.

Aware of these issues and the “wish list” of items, the authors developed a program,
SSScan, that combines static and change analysis. The current version of SSScan
incorporates some of the items listed above.
3. THE SSSCAN SPREADSHEET AUDIT TOOL

SSScan is a tool being developed to combine spreadsheet content analysis and change
record history, thereby addressing most of the issues in the previous section. SSScan
analyses calc spreadsheets containing change information and directs the user to
suspicious changes. By simply configuring various filter settings the entire document
(containing single or multiple sheets) can be quickly and easily checked for changes of
the specified type. SSScan also provides a visual display of the cell contents and inter-
relationships. It functions as a stand alone, read-only program to enhance audit process
audit ability. Note that calc is able to read and write almost all Excel spreadsheet files.
Spreadsheet auditing software exists for Excel files (ref Nixon 2001, details on EUSPRIG
site). We know of no such software for calc spreadsheet files.

As mentioned, while tools exist for assisting spreadsheet review (Nixon and O’Hara,
2001), to our knowledge none but SSScan can create a complete audit trail. That is, we
want to know that a cell was changed from X to Y at time T by user U, and be able to
reconstruct the spreadsheet at any stage. Clearly, for most applications, one is likely to
choose a less detailed view. However, when there is a serious concern, SSScan can make
available the fundamental data. (To date, we have not built a tool to reconstruct the
spreadsheet up to the point of a particular change.)

Current types of filters include the standard:

• Author name
• Date range
• Cell address range
• Cell content

Stronger analysis is possible by cell content filtering. Examples of settings include:

• Formula cells changed to static cells, for example, changing “=Sum(…)” to
“=100” to force the desired result

• Initial cell entries (that is, entering information into a blank cell)

All filters can be set to be inclusive or exclusive and wild cards are allowed. Additionally
in the case of Author name, case can be ignored. Finally, multiple filters can be enabled
to allow for a complex analysis. For example:

1. select all changes made by “J* Doe”,
2. between “December 24, 2001 and January 1, 2002”, that
3. were not initial entries.

In setting (1), “*”finds “J. Doe, Jane Doe, John Doe or other combinations starting with
“J” and ending with “Doe”. The user could also set “case ignore” to true to capture
further combinations that might have been missed.

SSScan is written in Java and the same binary file installs on Windows, UNIX/Linux and
MacOS platforms. Currently only calc files (.sxc files) can be analysed. Excel can be
imported by calc and then saved as .sxc format for successful processing by SSScan.

SSScan is a stand-alone program that only reads a spreadsheet file. We believe that this is
helpful to auditors since there is no possibility of corrupting the data within the
spreadsheet file. Many programs that deal with spreadsheets are “add-ins” to the relevant
spreadsheet program (Excel , Quattro , Lotus , etc.) Thus it is not possible to state
with certainty that the auditing activity has not corrupted the original data.

Figure 1. SSScan change record panel showing cell content changes.

Figure 2. SSScan filter panel.

4. PROTECTING SPREADSHEET FILES

A serious problem with any spreadsheet file, as illustrated by the marks-merge example
above, is that spreadsheets usually exist on the user’s current machine. In many
situations, the user’s name is not verified or controlled. Version and authorship control
are therefore issues if we are concerned about errors. Malicious changes are a worry if
we have content that is sensitive. Moreover, if a malicious user has time and knowledge,
he/she can make changes and also cover the evidence of those changes. Our audit tool
cannot find what has been carefully deleted with such diligence in hiding the trail of
actions.

Exceland Quattro both have capabilities for sharing notebooks and even for reconciling
conflicts when two or more users open a file at the same time. (Clearly, the assumption is
that the file is accessible to more than one user at a time on some sort of network storage.)
We feel a better solution to this issue is to keep the spreadsheet file in one location where
it can be protected by access controls. Furthermore, it will be processed by a spreadsheet
program at that protected location. This is possible using client-server technology and the
Internet. Users access the spreadsheet files that reside on a server from their local
workstation over a network. A spreadsheet program on the server is used to manipulate
the spreadsheet, and access controls limit manipulation of the spreadsheet to this
program. Figure 3 illustrates the flow of information.

There are a number of technical issues and options in implementing the processes in
Figure 1. In particular, modern spreadsheets are essentially graphical in nature, so we
need to present a screen as if it exists on the local workstation of the user. Fortunately
there are tools that allow this, though they are not trivial to configure and use. Moreover,
they often require high communications bandwidth to give a satisfactory user experience.

Figure 3. Diagram of user access to spreadsheet file ss1.

The essence of such tools is to extract from the server’s screen image appropriate
information that allows the “drawing” of this image on a remote, client screen. This
remote machine may have different properties from the original and may be run by a
different operating system. Within the Microsoft DOS/Windows environment, many
users are familiar with PC Anywhere as such a tool. For those running Unix/Linux
servers, there is the possibility of running remote X11-server applications
(http://www.linux.org/docs/ldp/howto/mini/Remote-X-Apps.html). (X11 is the name of
the umbrella software that draws the screens on Unix machines.) To access a Unix or
Linux server in this way requires that the Windows client computer has suitable software
such as X-win32 (http://www.starnet.com/) or MI/X 4

(http://www.microimages.com/mix/). We actually got the gnumeric spreadsheet running
on a Linux machine but viewable on a Windows client machine in this way with the free
trial of MI/X. However, there appear to be no reliable open source or free tools for remote
X and the protocols are quite demanding of communications bandwidth. A related
approach is VNC (for Virtual Network Computing) developed by a community of
workers (see http://www.uk.research.att.com/vnc/). Moreover, there are two quite
reasonable implementations that are freely available, namely RealVNC
(http://www.realvnc.com) or TightVNC (http://www.tightvnc.com) There is also
Microsoft Terminal Services Advanced Client http://www.thin-
world.com/tsweb/readme.htm, but we did not investigate this in detail. Indeed, we chose
to work with VNC (Virtual Network Computing).

Another important consideration is security. Network interfaces to graphical
communications should be encrypted to prevent eavesdropping and injection of false
data. While all network graphical interfaces can be cryptographically secured, VNC is the
most flexible and easy to secure. All VNC communications take place over a single
TCP/IP socket connection, which can be protected using Secure Shell (SSH:, (See
http://www.ssh.com or http://www.openssh.com) Secure Sockets Layer (SSL:
http://www.openssl.org) or IPSec tunnels (http://www.linuxsecurity.com/docs/LDP/VPN-
Masquerade-HOWTO.html) using standard tools.

We also chose to host our spreadsheet files and spreadsheet program on a Linux server,
mainly because we believe that there is more flexibility in configuring such servers.
However, we continue to experiment with Windows and Macintosh implementations in
the spirit of platform independence already mentioned. Regardless of our platform, we
need to carry out the following operations in the correct sequence:

• Allow a user U to “log in” to the server in some way that only presents U with a
screen of files that U is allowed to access. We have implemented this as a Web-
based login screen written in Perl. The users have no accounts on the server, but
are given usernames and passwords within the Perl login scripts. Such users have
no privileges on the server other than those granted through the Web pages.

• Colour-code links to the permitted files are presented, showing files already in
use as read-only (e.g., in red) or read-write (e.g. in green). That is, we chose to
carry out file locking within our scripts. We have not yet implemented this
feature, but the programming required is straightforward.

• On selection (clicking) on a particular file, launch the spreadsheet program to
access ONLY the selected file, and to pass the username U to the spreadsheet
program. The filename is passed by putting its name on the command line after
/usr/local/bin/scalc for example. ?? verify internal name of calc We have yet to
restrict the File/Open and File/SaveAs dialogues of calc that could possibly be
used to access other spreadsheet files. There are several potential mechanisms to
control such access. The username is passed by modifying a file called
UserProfile.xml that is stored in the OpenOffice program folder.) We must also
ensure that the Change Recording is turned on. This is controlled by a setting
within the spreadsheet file. Note that the launch of calc must also invoke
vncserver. We may need to arrange that the proper password for user U is reset
into vncserver. We also need to ensure a vncviewer is active on the client
workstation, but there is a Java version of vncviewer that is usable as an applet in
a Web browser. One of the advantages of the VNC framework is that no software
installation is required on the client workstation. A client viewer is automatically
downloaded and executes in the JAVA virtual machine in the client browser.
Another advantage of this framework is the easy integration with active web
server content which allows browsing and selection of available files.

• We must allow U to save the file; automatically keeping the audit trail. We intend
to add the capability of backing up the spreadsheet with checkpoints, but to date
have not implemented this function.

• Finally, we must appropriately terminate the session with the user U so there are
no security holes for the next user of the workstation to exploit.

There are other file-locking options open to us to arrange that calc can only access files
U is authorized to view. calc nominally has file locking built in, but we have not tested it
to the time of writing this article. It seems likely that a web-based approach will be less
problematic.

A final point worth mentioning is that some file formats purport to allow the transfer of
spreadsheet information between software packages. SYLK or DIF
(http://www.wartburg.edu/compserv/convert.html visited 2003-4-11 at 0100 GMT)files
do not, however, appear to support change analysis. It is clear that from the perspective
of transparency and comparability of spreadsheets, it would be helpful to be able to audit
files in a generic, archivable format. We welcome discussion of this and other issues
raised in the paper, with the view to further enhancing the community of expertise in
auditing and improving spreadsheets and their usage.

6. CONCLUSION AND PROGNOSIS

SSScan is reasonably mature – it can be used now for worthwhile analyses, though there
are many more features that we would like to incorporate, for instance the capability of
saving a “changes” file that allows stepwise rebuilding of the spreadsheet to a given
checkpoint. Providing secure access to spreadsheets so that a verified username and
change recording are assured has been demonstrated in its components. That is, we are at
the stage of “demonstrated capability” though we not yet a “product” or “system”. Our
intent is to implement a prototype system by September 2003 so that we can use it to
control files of student marks across multi-section courses.

Clearly audit and change analysis for spreadsheets is not a simple topic. If it were, more
tools and systems would be available. We believe tools such as those we have described
above are important in rendering trustworthy the information that is derived from the use
of spreadsheets

5. ACKNOWLEDGEMENTS

We are grateful for pointers to some useful references from Prof. Tim Lethbridge of the
University of Ottawa. The Ottawa Perl-Mongers, the Ottawa GOSLING Group and the
Internal Audit Managers’ Group of the Government of Canada have provided us with
helpful discussions and brought together the authors. A referee provided some helpful and
constructive comments.

6. REFERENCES

Bolinger, Don and Bronson, Tan (1995) Applying RCS and SCCS: From Source Control
to Project Control, Sebastopol, CA: O'Reilly & Associates

Dunsmore, A. Roper, M. and Wood, M. (2001) “Systematic Object-Oriented Inspection:
An Empirical Study”, Proceedings of the 23rd International Conference on Software
Engineering, pages 135-144, May.

Ebenau, R. G. and Strauss, S. H. (1994) Software Inspection Process, New York:
McGraw-Hill.

Fagan, M. E. (1976) “Design and Code Inspections to Reduce Errors in Program
Development”, IBM System Journal, vol. 15, no. 3, pages182-211.

Gilb, T. and Graham, D. (1993) Software Inspections, Boston: Addison-Wesley.

Knight, J. C. and Myers, A. E. (1993) “An Improved Inspection Technique”,
Communications of ACM, vol. 36, no. 11, pages 50-69.

Laitenberger, O. and DeBaud, J-M. (2000) “An Encompassing Life Cycle Centric Survey
of Software Inspection”, Journal of Systems and Software, vol. 50, no. 1, pages 5-31.

Nixon, David and O’Hara, Mike (2001) Spreadsheet Auditing Software, EUSPRIG
Conference, 2001, http://www.gre.ac.uk/~cd02/EUSPRIG/2001/Nixon_2001.htm.

