Authors Adler A. Guardo R. Berthiaume Y. Institution Institut de Genie Biomedical, Universite de Montreal, Quebec, Canada. Title Impedance imaging of lung ventilation: do we need to account for chest expansion?. Source IEEE Transactions on Biomedical Engineering. 43(4):414-20, 1996 Apr. Abstract Electrical impedance tomography (EIT) uses surface electrical measurements to image changes in the conductivity distribution within a medium. When used to measure lung ventilation, however, measurements depend both on conductivity changes in the thorax and on rib cage movement. Given that currently available reconstruction techniques assume that only conductivity changes are present, certain errors are introduced. A finite element model (FEM) is used to calculate the effect of chest expansion on the reconstructed conductivity images. Results indicate that thorax expansion accounts for up to 20% of the reconstructed image amplitude and introduces an artifact in the center of the image tending to "move" the reconstructed lungs closer together. Although this contribution varies depending on anatomical factors, it is relatively independent of inspiration depth. For certain applications in which one is only interested in changes in the level of physiological activity, the effect of the expansion can be neglected because it varies linearly with impedance changes. We conclude that chest expansion can contribute significantly to the conductivity images of lung ventilation and should be taken into account in the interpretation of these images.