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RÉSUMÉ 

La tomographie d'impédance électrique (TIE) se sert des mesures d'impédance 
électrique, effectuées à l'aide d'électrodes placées sur la surface du corps, pour construire 
une image du changement de conductivité dans une section du corps.  Un courant de 
basse fréquence est appliqué entre des paires d'électrodes pendant que le potentiel produit 
par ce courant est mesuré par d'autres paires d'électrodes.  La technique habituelle 
consiste à acquérir une séquence d'ensembles de mesures et à reconstruire des images qui 
représentent le changement de la distribution survenus entre l'instant où un ensemble de 
référence est acquis et chacun des autres ensembles.  Cette technique présente un intérêt 
pour l'étude de la fonction pulmonaire, parce que les phénomènes physiologiques sous-
jacents, soit le mouvement de l'air, la perfusion sanguine et la présence pathologique d'air 
ou de fluide, produisent des changements importants dans la distribution de conductivité 
du thorax. 

La reconstruction d'images en TIE nécessite la solution d'un problème inverse non 
linéaire et mal posé, à partir de données bruitées.  La solution de ce type de problème 
exige des hypothèses simplificatrices ou une régularisation.  Deux algorithmes sont 
proposés dans cette thèse qui tiennent compte de la géométrie du milieu conducteur et du 
niveau du bruit des données, et permettent la reconstruction rapide d'images.  Le premier 
algorithme, basé sur des réseaux de neurones artificiels, calcule une approximation 
linéaire du problème inverse directement à partir de simulations du problème direct par la 
méthode d'éléments finis.  Cet algorithme donne des résultats acceptables quand le niveau 
de bruit dans les mesures est semblable à celui utilisé pour l'entraînement du réseau.  Le 
deuxième algorithme utilise une approche de maximum a posteriori basée sur des 
estimations du bruit de mesure et de la résolution maximale disponible.  Cette technique 
permet une interprétation intuitive des paramètres de l'algorithme et repose sur une base 
théorique.  Pour comparer ces algorithmes aux autres techniques proposées dans la 
littérature, certains indices de performance sont développés pour mesurer la résolution de 
l'image, l'amplification du bruit et la fidélité de positionnement d'une cible dans l'image. 

L'interprétation des images de TIE est compliquée, car elle se heurte à plusieurs 
difficultés expérimentales.  Par exemple, dans le cas de l'étude de la fonction pulmonaire, 
le mouvement des électrodes placées sur la surface du thorax produit une erreur de 
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mesure.  Un modèle par éléments finis des propriétés mécaniques et électriques du thorax 
a été utilisé pour déterminer l'effet de l'expansion de la cage thoracique sur la distribution 
de conductivité reconstruite.  Les résultats de ces simulations montrent que l'expansion du 
thorax contribue jusqu'à 20 pour cent de l'amplitude de l'image.  Toutefois, pour des 
applications qui visent uniquement à évaluer un changement dans le niveau d'activité 
physiologique, l'effet de cette expansion peut être négligé parce qu'il varie linéairement 
avec le volume courant pulmonaire. 

Une série d'expériences sur le chien ont été effectuées pour déterminer la 
précision avec laquelle la TIE permet de mesurer la ventilation pulmonaire et la quantité 
de fluide présent dans un poumon.  Les résultats de ces expériences démontrent une 
bonne corrélation linéaire (r > .95) entre l'amplitude de l'image et le volume courant ou la 
quantité du fluide.  L'erreur moyenne de mesure était de 90 ml pour la ventilation et de 10 
ml pour l'instillation du fluide.  De plus, les images montrent clairement la région des 
poumons de l'animal et le poumon ayant subi l'instillation du fluide.  Les résultats 
rapportés dans cette thèse démontrent le potentiel de la TIE comme outil d'investigation 
de la fonction pulmonaire. 
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ABSTRACT 

Electrical Impedance Tomography (EIT) uses electrical measurements at 
electrodes placed on the body surface to produce a cross-sectional image of conductivity 
changes within the body.  A low frequency current is injected between pairs of electrodes 
while voltage measurements are made at all other electrode pairs.  Images are 
reconstructed of the change in conductivity distribution between the acquisition of the 
two sets of measurements.  This technique can potentially provide useful information for 
the investigation of pulmonary function as the clinical phenomena of interest (air 
movement, blood perfusion, and pathological air or fluid presence, for example) induce 
large conductivity changes. 

Reconstruction of images in EIT requires the solution of an ill-conditioned non-
linear inverse problem on noisy data, typically requiring simplifying assumptions or 
regularization.  Two reconstruction algorithms are proposed which take into account the 
geometry of the conductive medium and the noise level in the measured data, and allow 
fast (near real-time) image reconstruction. An algorithm based on artificial neural 
networks is used to calculate a linear approximation of the inverse problem directly from 
finite element simulations of the forward problem.  Results show good reconstruction 
when the signal to noise ratio (SNR) in the measurements is similar to the SNR used 
during network calculation.  Additionally, a maximum a posteriori (MAP) approach to 
image reconstruction is developed, based on a priori estimates of the measurement noise 
and the maximum image resolution available.  This approach has the advantage of an 
intuitive interpretation of algorithm parameters as well as theoretical support.  In order to 
compare these approaches to existing algorithms, figures of merit are developed to 
measure the reconstructed image resolution, the noise amplification of the image 
reconstruction, and the fidelity of positioning of a target in the image. 

Certain physiological realities complicate the interpretation of EIT images.  In the 
case of imaging of pulmonary function, the movement of electrodes placed on the thorax 
due to rib cage expansion introduces artefacts into the images.  A finite element model of 
the mechanical and electrical properties of the thorax is used to determine the effect of 
chest expansion on the reconstructed conductivity change images.  Results indicate that 
thorax expansion accounts for up to 20 percent of the reconstructed image amplitude, 



ix 

although for applications which are only concerned with changes in the level of 
physiological activity, the effect of the expansion can be neglected as it varies linearly 
with the lung tidal volume. 

Finally, in order to experimentally validate EIT as a tool for the measurement of 
pulmonary function, a series of experiments on dogs were conducted to quantify the 
accuracy of measurement of lung ventilation and lung fluid instillation.  Results indicate 
good linear correlation (r > .95) between image amplitude and the tidal volume or fluid 
quantity.  The average EIT measurement error was 90 ml for ventilation and 10 ml for 
instillation.  Additionally, images clearly show the lung region of the animal and indicate 
which lung underwent fluid instillation.  These results demonstrate the potential of EIT as 
a tool for the investigation of pulmonary function. 
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CONDENSÉ EN FRANÇAIS 

0.1 Introduction 

Selon les lois de la physique, on peut déterminer la structure d'un corps en 
injectant de l'énergie dans un corps et en étudiant comment il interagit avec cette énergie.  
La tomographie d'impédance électrique (TIE) suit cette approche analytique en injectant 
de l'énergie sous la forme d'un courant électrique et en mesurant comment la distribution 
de conductivité et la géométrie du corps modifient le champ de potentiel produit par ce 
courant.  En pratique, l'injection de courant et la mesure de potentiel s'effectuent 
uniquement par des électrodes placées à la surface du corps.  Toutefois, il est possible 
d'utiliser des connaissances mathématiques des règles d'interaction pour estimer la 
distribution de conductivité à l'intérieur du corps à partir d'un ensemble limité de 
mesures. 

D'un point de vue clinique, la distribution de conductivité électrique dans le corps 
humain présente peu d'intérêt, même si cette propriété intrinsèque des tissus et des fluides 
du corps pourrait servir à les distinguer.  Par contre, certains phénomènes physiologiques, 
comme la respiration, l'activité cardiaque et la digestion, impliquent le mouvement de 
fluides qui modifie la distribution de conductivité du corps.  En mesurant l'effet de ces 
mouvements sur la distribution de conductivité il devient possible d'étudier ces 
phénomènes. 

Bien que la TIE n'offre pas une résolution spatiale comparable à celle de la 
radiographie ou de la résonance magnétique nucléaire, elle présente certains avantages 
pour les études cliniques.  Elle est non invasive, relativement compacte en termes 
d'équipement et peu encombrante pour le patient.  En raison de sa faible résolution 
spatiale, la TIE ne convient pas à l'imagerie anatomique, mais elle peut être fort utile pour 
certaines études fonctionnelles. 

Une application très prometteuse de la TIE est la surveillance de la fonction 
pulmonaire.  Les phénomènes physiologiques d'intérêt, tels que la ventilation et la 
perfusion pulmonaire ainsi que la présence pathologique de fluides, provoquent des 
changements relativement importants de la distribution de conductivité du thorax.  
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Contrairement aux mesures mécaniques du débit et de la pression d'air au niveau de la 
bouche, qui ne donnent qu'un indice global de la fonction pulmonaire, la TIE produit une 
image du thorax qui permet de détecter et de localiser des anomalies.  La TIE a également 
comme avantage par rapport à d'autres modalités d'imagerie de permettre une surveillance 
continue du patient au cours de la thérapie. 

Le principal objectif de cette thèse était de vérifier la faisabilité de mesurer 
certains paramètres de la fonction pulmonaire à partir de la TIE.  La thèse effectue cette 
vérification en se basant sur trois volets: le développement de méthodes de reconstruction 
d'images, la modélisation sur ordinateur de l'extraction de paramètres physiologiques à 
partir de la TIE et l'évaluation expérimentale de ces techniques. 

0.2 Reconstruction d'images 

Bien que plusieurs groupes aient étudié le problème de la reconstruction d'images 
en TIE, certaines difficultés expérimentales n'ont pas encore été traitées de façon 
rigoureuse.  La géométrie non circulaire du thorax, la variabilité de l'espacement entre les 
électrodes, le bruit inhérent aux instruments de mesure et la présence possible de canaux 
de mesure défectueux posent de sérieux problèmes.  Les techniques décrites dans cette 
thèse essayent de tenir compte de ces difficultés tout en visant une reconstruction 
d'images rapide. 

Deux protocoles d'imagerie ont été proposés pour la TIE.  L'imagerie statique 
reconstruit la distribution de conductivité absolue à partir d'un seul ensemble de mesures, 
tandis que l'imagerie dynamique calcule le changement de cette distribution à partir des 
changements présents dans deux ensembles de mesures acquis en des instants différents.  
En général, les algorithmes pour la reconstruction d'images statiques sont très sensibles 
aux erreurs de mesure et à la variabilité dans la géométrie du milieu (Barber, 1988).  
Cette thèse se concentre sur l'imagerie dynamique, qui, tout en étant moins générale que 
l'imagerie statique, est considérablement plus robuste.  Ainsi, les images qui seront 
reconstruites et traitées dans ce projet représentent le changement de la distribution de 
conductivité, x, correspondant à deux ensembles de mesure, v1 et v2, acquis aux instants 
t1 et t2, respectivement.  Avec la méthode des éléments finis, le milieu est divisé en N 
éléments triangulaires et le changement du logarithme de la conductivité est représenté 
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par l'élément correspondant du vecteur x.  Le vecteur du signal dynamique, z, est défini 
par: 

( )21
2
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21

ii

ii
i

vv

vv
z

+

−
=

 (0.1) 
où chaque composant i est obtenu par une combinaison de quatre électrodes: deux pour 
l'injection de courant et deux pour la mesure d'une différence de potentiel.  Pour une 
reconstruction d'images rapide, une approximation linéaire est développée.  Une 
estimation x̂ des changements de conductivité est calculée à partir du signal, z, et d'une 
matrice de reconstruction, B, avec l'équation linéaire: 

Bzx =ˆ  (0.2) 
Deux techniques sont proposées pour calculer cette matrice de reconstruction: une basée 
sur les réseaux de neurones artificiels et l'autre sur l'estimation maximum a posteriori. 

0.2.1 Reconstruction d'images par réseaux de neurones artificiels 

La méthode des réseaux de neurones artificiels (RNA) permet de développer un 
modèle d'un problème sans exiger une relation mathématique explicite.  Dans son 
application à la reconstruction d'images de TIE le principal attrait de cette technique est 
que le RNA peut être adapté par un processus d'«entraînement» à donner sa meilleure 
performance pour la géométrie et le niveau de bruit rencontrés dans la phase de 
l'entraînement.  Chaque élément du réseau calcule le changement de conductivité d'un 
élément de volume du corps, en calculant la somme de chaque élément du signal z 
pondéré par la valeur de la matrice N correspondante (la matrice N est équivalente à B 
dans l'approche RNA). 

Le calcul des éléments de la matrice N est appelé l'«entraînement» du réseau.  
Cette phase exige un ensemble de patrons d'entraînement et la réponse désirée 
correspondante.  Cet ensemble de patrons et de réponses peut être mesuré in vitro 
(Guardo, 1991) ou, pour des raisons d'efficacité et de simplicité, être calculés avec un 
modèle par éléments finis du corps.  L'algorithme d'entraînement du RNA est le suivant: 
• Tous les poids, N, sont initialisés à des petites valeurs aléatoires. 
• Un ordre aléatoire de présentation de vecteurs d'entraînement au RNA est choisi. 
• Début des itérations d'entraînement. 
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• Un vecteur d'entraînement, plus du bruit, est présenté au réseau pour calculer une 
estimation de l'image, o:  

( )nzNo += i  (0.3) 
• L'erreur, e = o −−−− d, est calculée, où d est la réponse désirée du RNA. 
• Le réseau est actualisé par la règle (Ni représente les poids à l'itération i ): 

t
ii eoNN α−=+1   (0.4) 

où le paramètre α contrôle le taux d'entraînement. 
• Les itérations sont poursuivies jusqu'à ce que l'erreur moyenne, et e , atteigne un 
seuil acceptable. 

Les principaux avantages de la technique RNA sont sa simplicité numérique et sa 
capacité de résoudre des problèmes complexes en tenant compte des conditions présentes 
dans la phase d'entraînement.  Dans ce modèle, la matrice de reconstruction d'images est 
déterminée uniquement à partir d'un modèle du problème direct par éléments finis et 
d'une estimation du niveau de bruit du système de mesure.  Quand le RNA est entraîné 
sans bruit, la reconstruction d'images a une bonne résolution mais une faible capacité de 
rejeter le bruit de mesure.  Par contre, le RNA entraîné avec un niveau de bruit plus élevé 
a une meilleure performance dans des conditions de bruit de mesure similaires à celles de 
l'entraînement. 

Même si les RNA sont capables de produire de bonnes images, il reste deux 
désavantages importants.  D'un part, le fait que la solution n'exige pas de formulation 
théorique impose certaines limites sur l'interprétation des images.  D'autre part, étant 
donné que le réseau est spécifique aux conditions d'entraînement, tout changement des 
conditions expérimentales nécessite l'entraînement d'un nouveau réseau, ce qui est très 
coûteux en temps de calcul. 

 

 

0.2.2 Reconstruction d'images par estimation maximum a posteriori 
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Le deuxième technique est basée sur une approche bayésienne, qui permet 
d'introduire des informations sur le système et sur l'image en termes probabilistes.  Ceci 
donne lieu à une interprétation plus naturelle des connaissances a priori en termes de 
paramètres du modèle.  Par exemple, un canal de mesure défectueux indique une haute 
probabilité d'erreur dans les données acquises par ce canal.  En utilisant une telle 
approche et un estimateur maximum a posteriori (MAP), et sous les hypothèses que le 
problème direct est linéaire et que les densités de probabilité de l'objet de du bruit ont une 
forme gaussienne.  On aboutit naturellement à un estimateur de la forme d'équation 0.2, 
dans lequel la matrice B a pour expression: 

WHQWHHB tt 1−
�
�
��

�
� += µ

 (0.5) 
où B dépend des paramètres H, W, Q, et µ, qui tiennent compte des propriétés du milieu 
et du système de mesure.  Le problème direct est linéarisé en calculant une matrice de 
sensibilité H définie par: 
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 (0.6) 
où Z(x) est un modèle par éléments finis du signal dynamique mesuré, z, produit par un 
changement de conductivité x autour d'une conductivité du milieu environnant xo.  Une 
colonne j de H représente le signal produit par un petit changement de conductivité dans 
l'élément j.  Les dimensions de H sont le nombre de mesures par le nombre d'éléments de 
conductivité.  Puisque, en général, on n'a pas d'information anatomique pour préciser xo, 
H est calculé autour d'une distribution homogène.  W est une matrice diagonale de la 
réciproque de la variance du bruit dans chaque élément du signal;  les valeurs peuvent 
être calculées à partir de la définition du signal, ou mesurées à partir du système 
tomographique. 

Pour éviter d'introduire des artefacts par une discrétisation trop grossière du 
milieu, le nombre d'éléments de conductivité indépendants doit être aussi élevé que 
possible.  Par exemple, si on désire une résolution spatiale équivalant à 10 pour cent du 
diamètre du milieu, il faut une centaine d'éléments indépendants.  Cependant, si on utilise 
16 électrodes, on ne possède pas assez d'information pour estimer autant de paramètres 
indépendants.  Ce problème est dit mal posé, et a besoin d'information a priori pour 
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produire une solution unique.  Q est une matrice de régularisation qui pénalise toute 
composante de l'image avec une fréquence spatiale au-dessus d'un seuil.  Les simulations 
ont démontré qu'un bon choix de seuil pour 16 électrodes correspond à 10 pour cent du 
diamètre du milieu.  Le paramètre µ contrôle la quantité de régularisation utilisée.  Une 
petite valeur de µ produit la meilleure résolution mais a tendance à amplifier le bruit de 
mesure; par ailleurs, une grande valeur de µ réduit la résolution pour améliorer la 
performance en termes de bruit.  La valeur de µ doit donc être choisie pour obtenir le 
meilleur compromis entre l'amplification du bruit et la résolution spatiale pour chaque 
situation expérimentale. 

Cette technique offre plusieurs avantages pour la reconstruction d'images.  Le 
modèle par éléments finis permet d'utiliser cet algorithme avec un corps de forme 
arbitraire, et la formulation MAP caractérise le problème en termes de paramètres du 
milieu et du système de mesure.  La possibilité de calculer une matrice de reconstruction 
signifie que la caractérisation du système peut être faite en temps différé et que, ensuite, 
la reconstruction d'images sera très rapide. 

0.2.3 Évaluation d'algorithmes de reconstruction d'images 

Pour évaluer le succès d'un approche de reconstruction d'images et pour comparer 
les algorithmes développés dans cette thèse avec ceux proposés dans la littérature, il est 
important d'avoir des critères de comparaison.  Quatre indices de performance de 
reconstruction d'images ont été définis.  Le noise figure (NF) est une mesure de 
l'amplification du bruit par le processus de reconstruction d'images.  Par comparaison 
avec un système de communication, on considère la matrice de reconstruction comme un 
récepteur à l'entrée duquel il y a un signal z et un bruit n.  Le signal de sortie du récepteur 
est l'image Bz avec un bruit Bn.  Le NF est le ratio du rapport signal sur bruit (RSB) à 
l'entrée et à la sortie du récepteur.  Cette valeur de NF dépend seulement de la matrice de 
reconstruction, qui est une fonction de µ. 
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Un second indice, le blur radius (BR), mesure la résolution de la reconstruction.  
Le signal produit par une cible ponctuelle est mesuré, l'image de ce changement de 
conductivité est reconstruite, et le rayon moyen de la zone qui contient la moitié de 
l'amplitude de l'image est calculé.  Étant donné que la TIE est plus sensible aux 
changements de conductivité à proximité de la surface du corps, la résolution dépend du 
rayon et le BR doit être calculé en fonction de la position radiale de la cible. 

Le position error (PE) est une mesure de la fiabilité de reconstruction de la 
position d'une cible.  Certains algorithmes, dont le «backprojection» (Barber, 1987), ont 
tendance à «pousser» la position d'un objet plus au centre de l'image qu'il ne l'était en 
réalité.  Le PE est défini comme la position radiale réelle de la cible ponctuelle moins la 
position radiale du centre de la zone du BR. 

Le dernier indice est une mesure de la sensibilité de la TIE et décrit la probabilité 
de non-détection d'un contraste.  Le calcul de cette probabilité tient compte de la matrice 
de reconstruction, du niveau du bruit de mesure et de la région d'intérêt autour du 
contraste.  Un contraste est plus facilement visible si une région d'intérêt est choisie parce 
que le bruit à l'extérieur de cette région est ignoré. 

0.3 Modélisation physiologique 

L'interprétation d'images en TIE est compliquée, car elle doit tenir compte de 
certaines réalités physiologiques.  Idéalement, l'algorithme de reconstruction d'images 
devrait tenir compte de tous les détails de l'anatomie et de la configuration du système de 
mesure.  Or, ceci n'a pas été possible.  Par exemple, il n'existe présentement aucun 
algorithme d'imagerie qui tienne compte de l'anisotropie du corps ou du mouvement des 
électrodes dû à la respiration et aux changements de posture.  Ceci indique que les images 
de changements de conductivité in vivo sont soumises à plusieurs sources d'erreurs.  Faute 
de techniques pour éliminer ces erreurs, il est important d'estimer leur importance et de 
comprendre leurs effets sur les images. 

On a analysé dans cette thèse le problème du mouvement des électrodes produit 
par la respiration, parce qu'il est apparu qu'il pourrait avoir un effet important sur la 
mesure de la fonction pulmonaire.  Les algorithmes de reconstruction d'images en TIE 
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font l'hypothèse que les changements observés dans les mesures d'impédance dépendent 
uniquement des changements de conductivité.  Or, les mesures effectuées à la surface du 
thorax dépendent aussi du mouvement de la cage thoracique.  Un modèle par éléments 
finis bidimensionnel des propriétés mécaniques et électriques du thorax a été utilisé pour 
simuler le mouvement des électrodes et des structures anatomiques produit par 
l'expansion du thorax.  Ensuite, les données mécaniques ont été utilisées avec une 
connaissance des propriétés électriques des tissus pour simuler l'ensemble de mesures 
d'impédance à la fin de l'inspiration et à la fin de l'expiration, en présence et en absence 
de mouvement des électrodes.  Finalement, des images ont été reconstruites à partir de 
ces données et comparées.  Les résultats indiquent que l'expansion du thorax introduit un 
artefact au centre de l'image, qui peut contribuer jusqu'à 20 pour cent de l'amplitude de 
l'image.  Bien que cette contribution varie selon l'anatomie, elle est relativement 
indépendante du volume courant.  Pour certaines applications où on s'intéresse 
uniquement au changement du niveau de l'activité physiologique, l'effet de cette 
expansion peut être négligé parce qu'il varie linéairement avec le changement de 
conductivité. 

0.4 Évaluation expérimentale 

Il est important dans un projet comme celui-ci, qui vise à déterminer l'utilité d'une 
nouvelle technique pour des études cliniques, qu'une évaluation expérimentale soit 
effectuée.  Une série de dix expériences a été effectuée sur le chien pour quantifier la 
précision des mesures de ventilation pulmonaire, d'instillation de fluide dans un poumon 
et de la détermination du poumon ayant subi l'instillation.  La ventilation a été mesurée 
sur l'image du changement de conductivité entre la fin de l'expiration et la fin de 
l'inspiration.  Des mesures ont été prises aux volumes courants de 200 ml, 500 ml, 700 
ml, et 1000 ml.  Les résultats indiquent une bonne corrélation entre l'amplitude de l'image 
et le volume courant du ventilateur, l'erreur moyenne de mesure par TIE étant de 90 ml. 

Ensuite, un cathéter a été placé dans un lobe du poumon droit avec un 
bronchosope, et des acquisitions ont été faites à la fin de l'expiration après instillation 
successive de 10 ml, 25 ml, 50 ml, 75 ml et 100 ml de solution saline.  Les images ont été 
reconstruites entre l'acquisition suivant l'instillation et une référence prise à la fin de 
l'expiration avant le début de l'instillation.  L'amplitude de l'image présentait une bonne 
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corrélation avec le volume du fluide instillé, et l'erreur moyenne de mesure par TIE était 
de 10 ml.  De plus, les images montraient clairement la région des poumons de l'animal 
ainsi que le poumon où le fluide avait été instillé. 

La phase de réabsorption de l'oedème pulmonaire a été mesurée par la TIE au 
cours des quatre heures qui ont suivi l'instillation du fluide dans un poumon, pour ensuite 
être comparée aux résultats obtenus par l'analyse de l'eau résiduelle dans les poumons 
extraits de l'animal.  Les résultats indiquent qu'il y a une dérive importante dans les 
données de TIE au cours de cette période, ce qui rend la comparaison imprécise.  Il est 
possible que cette dérive soit due au design électronique du système d'acquisition de 
données; elle pourrait être corrigée dans une nouvelle version de ce système qui est en 
cours de développement. 

0.5 Conclusions 

Bien que plusieurs questions soient encore sans réponses relativement à 
l'interprétation des images de TIE et à la précision de cette technique dans des conditions 
expérimentales et cliniques, cette thèse permet de tirer certaines conclusions. 

• Reconstruction d'images.  Les algorithmes de reconstruction d'images qui 
ont été développés permettent à la fois un calcul rapide de l'image et la prise en compte de 
la configuration et du niveau de bruit du système de mesure.  De plus, ces algorithmes 
sont relativement insensibles aux variations de la position des électrodes et de la forme du 
thorax. 

• Validation expérimentale.  Il est possible de mesurer par TIE certains 
paramètres de la fonction respiratoire pendant des périodes relativement courtes (moins 
d'une heure) avec une précision suffisante pour les besoins cliniques.  Le développement 
de systèmes d'acquisition de données plus stables devrait permettre d'accroître 
sensiblement la période utile de surveillance. 
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CHAPTER 1: 
INTRODUCTION 

1.1 Introduction 

The laws of physics state that in order to investigate the structure or function of a 
medium, it is necessary to inject energy into the medium, and then measure the 
interaction between the medium and the energy.  Medical technology has well explored 
this physical law by finding many different ways to inject energy into a medium, 
including x-rays, ultrasound, radio-isotopes, and others.  Electrical impedance 
tomography (EIT) continues this "tradition" by injecting electrical current and measuring 
the voltage distribution produced. 

EIT uses audio frequency electrical stimulation as an "energy beam" which 
interacts with a medium of interest producing a voltage distribution which is measured 
using electrodes on the medium surface.  Because the voltage at the electrodes depends 
on the geometry of the medium and on the distribution of electrical impedance within the 
medium, one can work backwards from a knowledge of these voltage measurements and 
the medium geometry to an estimation of the impedance distribution. 

Although, in itself, the electrical impedance distribution within a tissue is not of 
much clinical interest, the different tissues and fluids in the body have characteristic 
electrical impedances, and can potentially be distinguished on that basis.  Various 
physiological activities can be imaged by the changes in impedance distribution 
associated with the activity.  

 Although, in its present state, EIT does not offer the resolution necessary to 
become a general tool as has become computed tomography (CT) and magnetic 
resonance imaging (MRI), EIT shows clinical promise in various areas.  It has the 
advantage of requiring a relatively compact measurement system, a personal computer 
level of computing power, and a minimally cumbersome means of attaching to a patient.   
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Due to the limited spatial resolution currently available, EIT does not show much 
promise for anatomical imaging, but rather for functional imaging.  An anatomical 
imaging process is one in which the aim is to identify the forms and locations of 
structures within the body; while presently available EIT systems can easily locate  organs 
like the lungs and heart, they cannot clearly identify their shape nor any of the detailed 
structure within the organs.  On the other hand, a functional imaging process aims to 
measure the comportment over time of physiological processes.  The resolution 
requirements of a functional type of imaging are much reduced; the goal is typically to 
quantify the action, or to monitor changes in organ function over time and in response to 
other stimuli. 

In order to use EIT for studying a particular physiological phenomenon, it is 
necessary that the phenomenon be associated with a change in impedance.  Fortunately, 
this is true of many functions of clinical interest.  Impedance changes are associated with 
fluid and gas movement in the body, thus respiration, circulation, and digestive system 
activity are visible to EIT. 

Perhaps the most promising application for EIT is in the area of monitoring lung 
function.  The phenomena of interest, lung ventilation, lung perfusion, and extravascular 
fluid presence, are associated with the movement of conductivity contrasting fluids, and 
induce large changes in the conductivity distribution of the thorax.  One significant 
advantage of EIT over other imaging modalities in that, being non-invasive and 
minimally cumbersome, it could continuously monitor a patient over long periods. 

1.2 Objectives 

The feasibility of monitoring pulmonary function using EIT is investigated in this 
thesis.  This investigation can be divided into three sections: reconstruction of EIT images 
while taking into account the experimental conditions, physiological modelling of data 
acquisition in order to interpret reconstructed conductivity changes, and experimental 
evaluation of the technique. 
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1.2.1 Image Reconstruction 

Much work has been accomplished in image reconstruction for EIT; however, the 
many practical realities of data acquisition in a clinical environment are only beginning to 
be dealt with in the literature.  These difficulties include the non-circular geometry of the 
thorax, variability in electrode spacing, varying levels of measurement noise, and the 
possibility of faulty measurement channels.  The techniques developed in this thesis focus 
on taking into account these difficulties in experimental conditions while providing 
computationally inexpensive image reconstruction. 

The first approach developed to deal with this problem used an artificial neural 
network (ANN) approach to reconstruct images.  The advantage of the ANN is the ability 
to develop a "model" without requiring an explicit mathematical relationship.  A 
simulated "training set" of inhomogeneities in a medium and the EIT measurements 
produced from this set was used to train an ANN to reconstruct the conductivity 
distribution from the measurements.  By adjusting the noise level during the training 
process, it was possible to control the noise performance of the resulting ANN. 

This work is described in the article "A Neural Network Image Reconstruction 
Algorithm for Electrical Impedance Tomography", by A. Adler and R. Guardo, published 
in the IEEE Transactions on Medical Imaging (December 1994, pp. 594-600).  The text 
of this article comprises chapter 3. 

Another image reconstruction approach was developed based on a finite element 
model (FEM) of the forward problem with a maximum a posteriori (MAP) formulation 
(also known as a Baysian formulation) of the image reconstruction.  The FEM allows a 
modelling of an arbitrary geometry, and the MAP formulation states the problem in terms 
of probabilistic assertions about the original conductivity distribution, measurement 
system, and measurement noise.  This allows a natural interpretation of known system 
information in terms of the model parameters.  For instance, a defective measurement 
channel indicates a high probability of error on data acquired from that channel. 

In order to evaluate the success of this image reconstruction model, certain figures 
of merit are developed.  The quality of the image is measured by the blur radius (a 
measure of the resolution) and the position error (a measure of the fidelity of the position 
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of reconstructed targets).  The algorithm performance with respect to measurement noise 
is measured by the noise figure (a measure of the amplification of noise by the image 
reconstruction process), and the probability of detection of a contrast. 

This work is described in the article "Electrical Impedance Tomography: 
Regularized Imaging and Contrast Detection", by A. Adler and R. Guardo, which has 
been accepted for publication in the IEEE Transactions on Medical Imaging.  The text of 
this article comprises chapter 4.  Annex A compares the ANN and MAP reconstruction 
techniques. 

1.2.2 Physiological Modelling 

Use of EIT in a clinical environment implies the interpretation of images.  Ideally, 
the image reconstruction algorithms would take into account all anatomical and 
measurement configuration details, but in practice this has not been possible.  For 
example, there currently exist no imaging algorithms that take into account the presence 
of anisotropy, or the movement of electrodes due to posture changes and breathing.  This 
indicates that the images of in vivo conductivity changes are subject to certain errors. 

In the absence of ways to eliminate these error sources, it is important to 
understand their magnitude and effect in order to interpret images appropriately.  Analysis 
of the problem of electrode movement due to breathing was undertaken because it seemed 
to be the most pressing problem for EIT measurement of pulmonary function. 

A two dimensional anatomical finite element model of the mechanical properties 
of the thorax was used to simulate the movement of electrodes and anatomical structures 
due to breathing.  This mechanical data was then used in conjunction with tissue 
electrical properties to simulate the EIT measurements at end-expiration and end-
inspiration, from which images were reconstructed.  Results indicate that electrode 
movement due to breathing contributes significantly to reconstructed images, and a 
normalized image interpretation scheme to reduce the effect was proposed. 

This work is described in the article "Impedance Imaging of Lung Ventilation: Do 
we need to account for Chest Expansion?", by A. Adler, R. Guardo, and Y. Berthiaume, 
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which has been accepted for publication in the IEEE Transactions on Biomedical 
Engineering.  The text of this article comprises chapter 5. 

1.2.3 Experimental Evaluation 

It is, of course, important in a feasibility study of pulmonary monitoring by EIT to 
experimentally evaluate the technique.  A series of experiments on dogs was undertaken 
to determine the ability of EIT to measure certain lung processes. Lung tidal volume and 
the quantity of fluid instilled into a lung were measured, while the ability of EIT to image 
conductivity changes was verified by the identification of the lung subject to fluid 
instillation.  Results indicate that EIT is capable of determining the instilled lung, and 
show a strong linear correlation between the quantities measured by EIT and the 
magnitude of lung ventilation and fluid instillation.  The average error for EIT 
measurement of lung ventilation was determined to be 90 ml, while the error for 
instillation measurement was 10 ml.  Additionally, the reabsorbtion phase of pulmonary 
edema (PE) was measured by EIT and compared to the results obtained from gravimetric 
analysis of the extracted lungs.  Results indicated the presence of significant drift in the 
EIT data over time making the comparison inaccurate.  These results are presented in 
chapter 6. 
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CHAPTER 2: 
BACKGROUND 

2.1 Electrical Impedance Tomography 

Electrical Impedance Tomography (EIT) is an imaging technique which calculates 
the electrical conductivity distribution within a medium from electrical measurements 
made at a series of electrodes on the medium surface.  EIT data is acquired by 
successively applying a low amplitude audio frequency current across each pair of 
electrodes while measuring the voltage differences produced on all the other pairs of 
electrodes.  The measurement system used for these experiments has 16 electrodes; for 
each current pattern, there are 13 electrode pairs not used for current application at which 
the voltage is read.  At each pair of electrodes, a difference signal is calculated by 
subtracting one voltage from the other and then amplifying the result.  The data collected 
is then sent to the imaging system where it is processed.  Figure 2.1 summarises this 
process. 

+

+

Current
Source

Amplifiers

Controler

 Data
acquisition

Medium

+

Imaging System
Ω

 
Figure 2.1: Block Diagram of a typical EIT system. 

Inside the data acquisition controller these difference signals are demodulated and 
read by a digital to analog converter.  The demodulation reads the amplitude of the 
measured difference signal while removing electrical signals produced by physiological 
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processes (such as the ECG) by rejecting all contributions to the signal which are not at 
the frequency of current injection.  After current injection and voltage reading are applied 
across all electrode pairs there are a total of 13×16 = 208 values read, which are sent to a 
computer which calculates the EIT image.  This data set represents the conductivity 
distribution of the subject at the time of data acquisition. 

EIT poses no known electrical risk to the patient.  Studies of the cutaneous 
sensitivity of humans to electrical stimulation as a function of frequency (Dalziel, 1956; 
Geddes, 1971) indicate that, while the sensitivity is quite high to current at low 
frequencies, it decreases significantly with increasing frequency.  In experimental work in 
this thesis the current used was approximately one tenth of the level required for 
cutaneous perception by the most sensitive percentile of the population.  The current 
levels required to cause muscle contraction for cutaneous current injection are more than 
ten times higher than the perception values. 

2.2 Physics of the problem 

An arbitrary medium undergoing electrical stimulation, Ω, has electrical 
properties that vary as a function of position and time.  We represent these properties by 
the electrical conductivity σ(x,y,z,t) and relative permittivity ε(x,y,z,t).  Outside the 
medium there is no current flow because the conductivity is zero.  Energy is applied to 
the medium in the form of current injection on the boundary, which sets up a distribution 
of voltage and a pattern of current flow in the medium. 

Within the medium there is an electrical field E(x,y,z,t) which induces a current 
dc JJJ +=  

dt
dE

J

EJ

od

c

εε

σ

=

=

 (2.1) 
where Jc is the conduction current flow, Jd the displacement current, and εo is the 
physical constant 8.85×10-12 coul2/N-m2, the permittivity of free space. 

Because the excitation of the medium is sinusoidal, we can represent the electrical 
field as the phasor E, and the current phasor, J, as a function of E. 
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The expression ( ojωεεσ − ) represents the complex admittance (or the inverse of 

the impedance) distribution of the medium.  Often, it is assumed that the reactive 
component is small with respect to the conductive ( oωεεσ « ) in which case the medium 

can be modelled by real valued conductivity, σ. 

In order to formulate this problem in terms of an electric potential, V, such that 

VE −∇=  (2.4) 
we need to be able to assume that ∇×E=0.  In general, Faraday's law states that 

t
B

E
∂
∂−=×∇

 (2.5) 
where B is the magnetic field vector.  According to the analysis of Davey (1991), the 
quasi-electrostatic assumption that the magnetic field is constant is valid for injection 
frequencies up to 1 MHz.  Since EIT systems are within this limit, the potential 
formulation can be used. 

Additionally, because the medium is conductive, there will be no local charge 
build up and the charge density, ρ, is zero.  The continuity equation, therefore becomes 

0=−=•∇
t

J
∂
∂ρ

 (2.6) 

Combining equations 2.3, 2.4, and 2.6, we obtain 

( ) Ω=∇−•∇ in            0Vj oωεεσ  (2.7) 

The boundary conditions on Γ, the boundary of Ω, are formulated by fixing the 
normal current at every point of Γ.  Representing the normal vector by n, we have 

( )( ) ( ) Γ−−=∇•−−= on         
n

nn ∂
∂ωεεσωεεσ V

jVjJ oo
 (2.8) 

Together, equations 2.7 and 2.8 may be used to find the voltage distribution 
within the medium, after fixing the voltage reference at some arbitrary point in the 
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medium.  Two techniques have been used to solve these equations: analytic techniques, 
and numerical simulation.  Analytical solutions to these equations typically use series 
approximations (Isaacson, 1986; Chen, 1992; Shaw, 1993) or conformal mapping 
(Barber, 1985).  While important from a theoretical point of view, analytical techniques 
are only able to deal with single circular inhomogeneities in a circular medium.  
Numerical simulation using finite element or finite difference techniques is used by most 
groups investigating EIT (Yorkey, 1987; Cheney, 1990; Woo, 1993; Adler, 1993; 
Schuessler, 1994; Hua, 1988; Barber, 1992), because it allows the most general approach 
to the problem, including the simulation of a non circular medium with arbitrary 
inhomogeneities. 

2.3 Image Reconstruction 

There are two categories of reconstruction methods which have been proposed for 
EIT: static and dynamic reconstruction techniques.  Static reconstruction produces an 
image of the conductivity distribution in a medium based on one set of data, while 
dynamic image reconstruction produces an image of the change in conductivity 
distribution between the acquisition times of two data sets. 

2.3.1 Static Image Reconstruction 

Static reconstruction in EIT has been proposed by various groups (Yorkey, 1987; 
Cheney, 1990; Woo, 1993).  The basic technique used is the modified Newton-Raphson 
algorithm proposed by Yorkey (1987), a block diagram of which is shown in figure 2.2.  
This technique uses a finite element model of the medium to simulate the voltage 
measurements from the physical medium.  Initially, the medium is assumed to be 
homogeneous, and subsequently, using an iterative procedure, the conductivity 
distribution is modified to better simulate the measured data.  Iteration is stopped when 
the simulated data sufficiently well approximates the "real" data. 



10 

Current
Injection

Patient

and
EIT data

measurement

Real Data

Finite Element Model

EIT data
simulation Simulation Data

Does simulation
approximate

real data

Finishedyes

Update
conductivity
distribution

no

 
Figure 2.2: Modified Newton Raphson Algorithm  

Yorkey's technique functions as follows: Given a vector of voltage measurements 
from the physical medium v, and a finite element model F(σσσσ) which simulates the voltage 
measurements from a medium with conductivity distribution σσσσ, we define an error 
function φ such that 

( )� −=
i

ii
2

2
1 )(σφ Fv

 (2.9) 

The desired reconstructed conductivity distribution is the value of σσσσ which 
minimises φ.  At this point the derivative of φ with respect to σσσσ will be zero. 
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 (2.10) 

Since � is a non-linear function, we use a Taylor expansion to find a linear 
approximation of φ′ for a perturbation, ∆σσσσk, about a conductivity distribution σσσσk 
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The Hessian matrix φ″ can be approximated by 
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 (2.12) 
where the summation is calculated for all conductivity elements, l.  Using this expression, 
the value of ∆σσσσk which minimises the approximation of φ may be calculated. 

[ ] [ ] ( )vF −′′′−=∆ − )(1 σφφσ tk
 (2.13) 

Starting with an initial homogeneous conductivity estimate, σo = constant, ∆σσσσk is 
used to update the conductivity distribution at each iteration. 

 
kkk σσσ ∆+=+1

 (2.14)
 

One of the problems associated with the iterative technique is its instability.  It is 
not uncommon for an iterative procedure to produce physically unrealistic reconstructed 
images by either estimating negative conductivity values or by diverging toward infinite 
ones.  This instability is caused either by measurement noise (Schuessler, 1994), or by 
geometrical errors, such as reconstructing data from an elliptical phantom on a cylindrical 
finite element model.  Some improvement in this instability may be achieved by adding a 
regularizing term to the Newton-Raphson technique (Yorkey, 1987; Adler, 1993).  Using 
the regularization formulation, the error function in equation 2.9 is replaced by: 
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where the diagonal matrix Q and the parameter µ represent a priori information about the 
geometry of the medium and the noise in the measurements.  These regularization 
parameters are typically assigned values by heuristic considerations.  A variation on this 
approach is proposed by Cheney (1990) where only one iteration is used, allowing an 
increase in computational speed which compensates for the reduced accuracy. 

Many reconstruction techniques do not attempt to calculate the conductivity 
distribution everywhere, but use a priori geometrical information to restrict the number of 
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unknowns (Newell, 1992; Woo, 1993).  In these studies, a small number of unknown 
conductivities, such as for the heart, left and right lung, spine, and surrounding tissue will 
be assigned to the corresponding organs.  Image reconstruction then takes the form of a 
constrained least squares minimisation to find these parameters.  The advantage of this 
technique is the stability which is gained from reducing the number of parameters 
calculated.  It is no longer necessary to use regularization techniques because the problem 
is no longer under-determined.  Unfortunately, this technique is subject to the sensitivity 
of EIT to geometrical errors.  Small errors in the geometrical information (the shapes of 
the organs or the position and size of electrodes) can have a large effect on the 
reconstructed conductivity values. 

Besides the modified Newton-Raphson algorithm, the only other static 
reconstruction algorithm to be proposed is the layer stripping technique (Cheney, 1992).  
This technique reconstructs the conductivity distribution by first calculating the 
distribution in a "layer" of medium directly in contact with the surface, and subsequently 
using this distribution to calculate the conductivity of the next innermost layer, continuing 
until all "layers" in the medium have been calculated.  The layer-stripping technique is 
not iterative like the Newton-Raphson, in that the conductivity of any area, once 
calculated, is not subsequently updated.  At this time, the layer stripping technique does 
not seem to have been used with experimental data, and its potential is difficult to 
determine. 

In general, static reconstruction algorithms suffer from a high sensitivity to 
measurement error, as pointed out by Barber (1988), due to EIT being more sensitive to 
changes near the medium surface than it is to changes within the medium.  In order for 
static image reconstruction to be reliable, it is essential that the following error sources be 
carefully controlled: 

• Electrode positioning: This presents the largest source of systematic error 
in the data, and unfortunately, tends not to be present in simulation studies which often 
use the same geometry for simulating the medium as for reconstructing the conductivity.  
The positioning of electrodes on the thorax of a patient can be especially problematic, as 
rhythmic movement due to breathing tends to cause the electrodes to move (Adler, 1994).  
This type of problem can be solved by using a rigid electrode frame, in which the 
electrode positions can be located with high precision, and held in contact with the patient 
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using a conductive foam or saline solution (Guardo, 1990).  A rigid frame has the 
disadvantage, however, of being more cumbersome. 

• Variance between channels in the data acquisition hardware: Due to 
component variability and ageing, it can be difficult to keep the characteristics of all data 
acquisition channels the same.  It is possible to account for this error by systematically 
calibrating the hardware before every experiment. 

• Electrode contact area and contact resistance: These problems are 
especially difficult when attaching electrodes to a patient, as movement and perspiration 
of the skin, and drying of the electrodes tend to change these properties. 

2.3.2 Dynamic Image Reconstruction 

The advantage of dynamic reconstruction is the ability to reduce the effect of 
many of these sources of error by looking at the effect of changes in conductivity on 
changes in measurements.  Since even large changes in the medium produce changes in 
measurements that are relatively small compared to the measurements from the 
background conductivity distribution, the forward problem can be separated into a static 
and a dynamic component, where the dynamic component is assumed to be a linear 
function of the conductivity change. 

σσ ∆+=∆+ HFvv )( hh  (2.16) 
where vh is the voltage measurements from a homogeneous medium, F(σh) is a function 
of the homogeneous conductivity distribution, ∆σσσσ is the change in conductivity 
distribution, ∆v is the change in measurements, and H is a "sensitivity matrix" describing 
this linear relation.  Since the function F(σh) is difficult to calculate due to the sources of 
error discussed, its effect can be ignored by concentrating only on the changes (∆v and ∆σσσσ
).  Of course, being a linear approximation, dynamic imaging is only valid in a limited 
range, but still represents a very good technique for many problems.  Barber (1988) has 
shown that dynamic imaging is relatively insensitive to errors in electrode placements as 
long as these remain constant during the experiment. 

Dynamic image reconstruction was used in the first EIT reconstruction technique 
proposed by Barber (1985), Equipotential Backprojection.  This technique, by analogy 
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with CT backprojection reconstruction, calculates a number of "stream lines" which cover 
the region affecting any given electrode.  Each equipotential region is the area in a 
homogeneous medium in which the electric potential is between that of two 
corresponding adjacent measurement electrodes.  Figure 2.3 illustrates the equipotential 
region corresponding to measurement electrodes M+ and M- during the current injection 
pattern at electrodes I+ and I-.  Image reconstruction using this technique projects the 
change in measurement at each electrode pair across the equipotential region for that 
current injection pattern. 

Equipotential Region

Current Injection I+
_

I

M+M_
 

Figure 2.3: Equipotential backprojection regions for a measurement configuration. 

Although backprojection has received theoretical support in the work of Santosa 
(1990), it has several problems.  It is limited to a circular medium geometry, and current 
injection across adjacent electrodes.  From a performance point of view, backprojection 
"pushes" reconstructed target positions towards the centre of the medium, and tends to 
produce streak-like artefacts in the image.  Barber (1992) has since introduced a "filtered 
backprojection" algorithm, which can be understood as a type of sensitivity matrix 
technique. 

Sensitivity matrix techniques have been introduced by various groups (Barber, 
1992; Barber, 1988; Gencer, 1992) and perhaps can be best understood in terms of 
adaptive filter theory.  Defining the signal as the change in measurement due to a change 
in conductivity, one can calculate a set of basis signals zj, 1 ≤ j ≤ N, where N is the 
number of pixels in the image.  Each signal corresponds to a small change in conductivity 
in a pixel: 
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where z(σh) is the signal from a homogenous medium, and z(σh + δj), the signal from an 
almost homogeneous medium with a small perturbation in pixel j.  This set of signals 
forms a basis for the mapping of an image onto a measurement, and defines the 
sensitivity matrix H for the reconstruction, H = [ z1  z2  ....   zN].  Within the region of 
validity of the linear approximation, the signal can be considered to be a superposition of 
signals from each pixel's conductivity change.  Thus, the signal due to a vector ∆∆∆∆σσσσ of 
conductivity changes in each pixel is: 

σ∆= Hz  (2.18) 

Given an unknown conductivity change, we can calculate the signal, z, 
corresponding to this change, and can then decompose this signal into image components 
by finding the length of its projection on to each basis signal zj.  The value of the image 
pixel at j is Ij: 
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This image reconstruction technique is very robust to image noise and produces 
reasonable quality images.  However, due to the non-orthogonality of the signals in the 
basis, H, these techniques do not have the resolution that can be obtained using 
regularized inverse techniques. 

Several groups have proposed imaging techniques based on regularization (Hua, 
1988; Adler, 1993; Shaw, 1993).  An original conductivity change, x, is defined to 
produce a signal z by the EIT measurement process Hxz = , and an estimate x̂ of x is 
calculated by minimising the error function, φ, with respect to x, 

( ) ( ) ( ) ( )∞∞ −−+−−= xxQxxHxzWHxz tt µφ  (2.20) 
where H, W, Q, µ and x∞ are determined using a priori knowledge of the physics and 
geometry of the problem.  Each proposed algorithm has used different heuristic 
arguments to assign values to these parameters.  In terms of these parameters the estimate 
x̂ which minimises the error is 
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By using regularization, the EIT problem can be inversed using algebraic 
techniques.  The parameter µ controls the amount of regularization in the inverse 
solution.  Regularization allows control of the compromise between the noise 
performance and the resolution of the image.  Reconstruction using a low value of µ has a 
higher resolution (is better able to resolve two image targets close together) but poorer 
rejection of measurement noise, while a larger µ is able to better deal with the noise at the 
expense of poorer resolution. 

 The advantage of the regularization formulation is its theoretical support, and the 
ability to adjust a number of parameters to take into account a priori information about 
the problem.  Additionally, the inverse matrix can be precomputed, requiring only a 
matrix multiplication during image reconstruction, allowing regularization techniques to 
be as fast as other dynamic inverses. 

Another dynamic imaging technique uses artificial neural networks (ANN) to 
image EIT data (Guardo, 1991; Adler, 1993; Adler, 1994).  In these techniques, an ANN 
is "trained" with a set of EIT measurements and the (known) conductivity distribution 
from which the measurements were generated.  These training sets can either be 
simulated (Adler, 1994; Adler, 1993), or measured experimentally (Guardo, 1991).  The 
image reconstructions produce a good compromise of resolution and noise performance, 
but seem to be generally more sensitive to noise than other image reconstruction 
techniques.  The advantage of neural networks is the conceptual simplicity and the ease of 
implementation, while the disadvantage is the large computation time required to train the 
neural network, and the lack of a theoretical interpretation of the results.  Even once the 
network has been trained, it is specific to one problem geometry, and must be retrained 
for any change in the experimental condition. 

One disadvantage of all dynamic imaging techniques is the unwarranted 
assumption on the background conductivity distribution that must be made.  In order to 
reconstruct the change in conductivity from two sets of data, a sensitivity matrix is used 
which has been calculated about an assumed "average" conductivity distribution, 
normally a homogeneous one.  The dynamic imaging technique assumes that only the 
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change in conductivity, and not the "background" conductivity distribution, affects the 
measured voltage differences.  This assumption is not valid in the case of a thorax which 
has a very inhomogenous conductivity distribution, about which small changes take 
place. 

2.4 Image Interpretation 

Various practical difficulties affect EIT image interpretation in vivo.  These 
include the three dimensional extent of the medium above and below the measurement 
plane,  the presence of anisotropically conducting tissues, and the movement of electrodes 
due to breathing and posture changes.  The approach taken by most groups has been to 
develop more sophisticated image reconstruction techniques to take into account these 
difficulties.  Very little work has been done to determine the effect on the images using 
available reconstruction techniques, and to guide the image interpretation accordingly. 

One assumption which has been used in most image reconstruction techniques is 
that the reactive component of the complex admittance distribution, ����j���o, can be 
ignored.  However, the reactive component can only be ignored if ��«����o, and this 

condition is only valid for frequencies below 1 kHz in typical biological systems 
(Plonsey, 1969).  Certain groups (for example, Griffiths, 1987) propose imaging changes 
in the reactive component between two different excitation frequencies.  Some authors 
have proposed an image reconstruction technique which completely separates the in-
phase and quadrature voltage measurements and reconstructs two images independently 
from these (for example see Riu, 1992).  This simplification is, unfortunately, unjustified.  
Both the in-phase and quadrature measurements are functions of both the conductivity 
and the admittivity distributions. 

Another assumption that is typically made by reconstruction algorithms is that the 
impedance distribution is isotropic.  However, in the body, many tissues conduct 
anisotropically, the most important being the muscles, neural tissue and blood vessels.  
An investigation by Brekton (1992) uses a differential geometry approach and concludes 
that anisotropy in the conductivity distribution will have an effect on the positioning of 
the reconstructed contrasts.  Similarly, Eyübog∨ lu et al. (1992) simulate the effect of 
anisotropic conductivity in a circular region in an otherwise circular homogeneous 
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conductor, and calculate a signal due to the change in isotropy of the region.  They 
conclude that this signal is sufficient to perturb the image and must not be neglected in 
image reconstruction.  Karlon  (1994), uses a 3D finite element model to study the effect 
of skeletal muscle anisotropy for simulated transthoracic defibrillation, and concludes that 
this anisotropy can cause a variation of electrical parameters, such as the electrode to 
electrode transthoracic impedance, by as much as 50 percent.  Some steps toward 
reconstructing images of the anisotropy have been taken by Glidewell et al. (1993, 1994), 
who develop a model of the EIT forward problem based on a conductivity tensor 
formulation for a 3D finite element model of a canine thorax. 

Several groups have discussed the effect of variability in electrode positioning.  It 
has been shown that the dynamic imaging approach is significantly more robust in the 
presence of position errors than the static approach (Barber, 1988; Adler, 1994) as long as 
the electrodes do not move between the taking of the data sets.  In clinical applications, 
however, there can be significant electrode movement due to breathing or posture 
changes. 

Barber (1990) discusses the importance of accurately modelling the electrode 
positions and describes an algorithm using the measured EIT data to estimate and correct 
for these errors.  Unfortunately the effect of residual errors in electrode positioning on the 
images is not discussed.  Wolf et al. (1993) present an algorithm based on a 3D finite 
element model which determines electrode locations and boundary shapes based on 
impedance measurements.  They do not discuss the effects of these errors on the images. 
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Figure 2.4: Model of EIT image formation and noise 

A linear model for interpreting images has been proposed by Trudelle et al. (1995) 
which allows the image magnitude to be related to target volume.  The model used (figure 
2.4) describes the formation of an image contrast, y, from a target of volume x as a 
function of a factor, k, representing the radial position, relative height with respect to the 
electrode plane, and conductivity contrast of the target.  In order to correct for 
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experimental sources of error, k is calculated from the data sets.  In-vitro results show that 
the linear model is accurate over a wide range with a mean volume measurement error of 
6 ml. 

2.5 Clinical Applications 

The raison d'être of the lung is to move air so that oxygen can enter the blood 
stream and carbon dioxide can leave.  The conductivity of both air and blood contrasts 
with that of the surrounding tissues, blood being more conductive and air significantly 
less conductive, indicating that their movement could be measured by EIT.  Another 
conductivity contrasting substance affecting lung function is the fluid leaving the 
capillaries which, normally, is removed by the lymph, but, under conditions of pulmonary 
edema (PE) can accumulate in the perivascular space and, eventually, can fill the alveolar 
spaces. 

The magnitude and spatial distribution of the movement of these substances is of 
clinical interest, and the measurement of these quantities by EIT could possibly provide 
significant useful information for clinicians and researchers of pulmonary function.  For a 
measurement technique to be clinically useful, it must be able to either provide 
information which will help in early diagnosis; assist in the decision on the type and 
degree of treatment; or help to monitor the progression of the pathology to understand its 
course and the effect of various types of treatments.  The following characteristics 
represent an ideal measurement system for lung function (Leksell, 1991): 

• Accuracy / Repeatability:  Results should not vary depending on the 
clinician using the apparatus or between two measurements of the same patient. 

• Sensitivity:  The ability to measure small changes is important.  For 
instance, it has been shown that currently available measurements techniques require a 
fluid increase of 25% before reliable detection of PE.  An increased sensitivity would 
allow earlier detection, and hopefully a better prognosis. 

• Minimal Invasiveness:  This is especially important if a measurement is 
to be used as part of a patient screening. 
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• Inexpensive 

• Non cumbersome:  In an emergency or an intensive care unit where the 
patient cannot be easily moved and cannot co-operate with the staff doing the 
measurements, large, bulky equipment is inconvenient. 

• Imaging capable:  Lung function is rarely uniform but presents significant 
heterogeneity.  A technique which provides a single datum to represent the state of the 
lungs is not as useful as an image which shows the distribution within the lungs. 

The techniques proposed for measurement of pulmonary function can be 
evaluated with respect to these criteria (Staub, 1980; Leksell, 1991; West, 1992).  The 
following techniques are used in clinical or research environments: 

• Chest radiograph:  This is the standard technique used.  A plain film x-
ray of the chest is taken and is interpreted by trained clinicians.  The procedure has the 
advantage of minimal invasiveness, minimal cumbersomeness, and relatively low cost.  It 
provides an image of the lungs from which it is possible, to some extent, to identify the 
pathologies, from characteristic patterns in the images.  The disadvantage is the 
subjective nature of the analysis.  X-rays also cannot be used to monitor a patient because 
the radiation dosage would be excessive. 

• Spirometer:  Tests of ventilatory capacity rely on the measurement of 
inspired and expired air volumes by spirometer.  The measurement of the capacities and 
flow rates can provide a useful diagnostic to differentiate between various types of lung 
disease.  These tests are limited by the lack of an absolute reference point for lung volume 
(one cannot, for instance, measure the total lung capacity) and the technique's inability to 
determine regional differences in ventilation across the lungs. 

• Magnetic Resonance Imaging:  MRI can directly provide 3D images of 
the proton density (and thus water concentration ) in tissue.  One special advantage is the 
ability to reject the contribution of blood fluid (by rejecting moving water), thus allowing 
measurement of only the lung fluids of interest.  The disadvantage of MRI is the 
cumbersomeness and cost of the apparatus.  Since preparing a patient for scanning is a 
complicated and, in intensive care conditions, a possibly dangerous procedure, it is not 
possible to monitor a patient's condition with MRI.  
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• Nuclear Medicine:  Nuclear medicine images the distribution of a 
radioactive tracer introduced intravascularly or through the airways.  It is moderately 
invasive because blood samples are needed for calibration.  The technique gives a 
functional representation of the spatial distribution of ventilation and perfusion from the 
concentration of radioactive events.  With the proper selection of the tracer molecule 
according to its diffusion properties, this technique can provide a measure of many 
properties of the lung.  Nuclear medicine suffers from the fact that the equipment is bulky 
and the injection of the tracer is an invasive procedure. 

• Positron Emission Tomography:  PET allows the 3D imaging of the 
distribution of a radioactive tracer with reasonably high precision.  By careful selection of 
the tracer molecule the various volumes of interest can be measured: the blood volume, 
intravascular volume, and the gas volume.  The disadvantage of this technique is the 
cumbersomeness and the cost of the apparatus.  Like the other imaging techniques 
mentioned, PET cannot be used for monitoring. 

• Indicator dilution:  The method of double indicator dilution allows the 
measurement of extravascular fluid by measuring the difference in diffusion time between 
two indicators introduced into the circulation.  One of the indicators cannot diffuse 
through the blood vessel walls, while the other is highly diffusive in all lung tissues.  This 
results in a difference in the effective diffusion volume for each indicator and can be used 
to calculate lung air and fluid volumes.  Indicator dilution is inexpensive and has a 
reasonable accuracy.  It is quite invasive, requiring a catheter for the insertion of the 
indicators, but in an intensive care environment such a catheter may already be in place.  
The invasiveness and inconvenience of the procedure means that indicator dilution cannot 
be used to monitor the state of lung function. 

• Histological Appraisal:  A microscope image of a slice of lung tissue can 
provide much information about the pathologies of the lung.  Since a sample represents 
the lung condition in one place, it may not be indicative of the overall lung condition.  
While a trained clinician is able to learn much from this type of study, results do vary 
from expert to expert, and from sample to sample. 

• Transthoracic Impedance:  In this technique, two electrodes, one above 
and one below the thorax are used to inject a low amplitude AC current, while another set 
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of electrodes, placed near to each injection electrode, measures the voltage produced by 
this current.  The voltage read is amplified, demodulated, and the transthoracic impedance 
value is calculated from the ratio of the demodulated voltage to the injected current 
magnitude.  This impedance value depends on the anatomic and physiological condition 
of the thorax; it is sensitive to pulmonary activity, cardiac activity, posture, skin moisture, 
thorax shape and other factors.  By carefully analysing the changes in impedance over the 
cycle times of these activities, various groups have been able to make useful 
physiological measurements from thoracic impedance data.  For instance, Spinale et al. 
(1989) calculate extra-vascular lung water from the changes in the impedance value 
during the cardiac cycle.  There are several problems with transthoracic electrical 
impedance, as pointed out by Fien et al. (1979).  Firstly, impedance values depend on 
many factors from which it is difficult to determine the phenomena of interest.  Because 
of the large effect of posture and electrode position on transthoracic impedance values, it 
is difficult to compare values from different patients and even from the same patient on 
different days.  Additionally, an impedance value in ohms is difficult to relate to 
physiological quantities.  Because of anatomical variations, there is no constant 
relationship between, for instance, one ohm of impedance change and a given change in 
air volume in the lungs. 

In the light of the "ideal" pulmonary measurement system requirements, EIT 
shows significant promise.  It is non-invasive and minimally cumbersome, requiring only 
the attachment of several electrodes and wires to the patient.  This characteristic could be 
especially advantageous in an intensive care environment, where continuous monitoring 
of a patient's condition is desired.  EIT is potentially relatively inexpensive, and is capable 
of producing an (albeit low resolution) cross-sectional image of the thorax.  The 
sensitivity and accuracy of EIT in clinical applications have yet to be determined.  In this 
thesis, these quantities are investigated for two substances, air movement associated with 
lung ventilation and extravascular fluid presence in pulmonary edema. 

2.5.1 Lung Ventilation 

Two broad categories of pulmonary diseases can be defined: 
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• Obstructive diseases are caused by an increased resistance to airflow.  
Distinctions between the various obstructive diseases are blurred; examples include 
chronic obstructive pulmonary disease (COPD), chronic bronchitis, emphysema, and 
asthma.  Characteristic of these pathologies is a marked reduction in all indices of 
expiratory flow. 

• Restrictive diseases are caused by a restriction in the expansion of the 
lung, due either to alterations in the lung parenchyma, disease of the pleura or the chest 
wall, or deteriorated neuromuscular control of breathing.  These diseases are 
characterised by a reduced vital capacity and a smaller functional residual capacity (FRC).  
Examples of these diseases are interstitial pulmonary fibrosis, which increases the rigidity 
of the lung; pneumothorax, where air in the pleural space restricts the expansion of the 
lung; and pleural effusion, where the lung is restricted by the presence of pleural liquid. 

EIT is a promising tool for the investigation of pathologies of lung ventilation.  
Some work has been done to evaluate the capability of EIT to measure lung ventilation.  
In these studies, EIT data was acquired from electrodes around the thorax while lung air 
volume was measured by spirometer.  While results indicate good correlation between the 
measurements, they were obtained for individual patients, and no systematic work was 
undertaken to demonstrate whether these results can be reliably repeated. 

   
Figure 2.5: From Seagar (1987): Impedance Image at Maximum Inspiration 
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Figure 2.6: From Seagar (1987): Average change in image value over region of 
lungs as a function of inspired volume. 

Seagar et al. (1987) present the results of an experiment to verify the measurement 
of lung ventilation by EIT.  Figure 2.5 shows an image of the impedance change due to 
maximal inspiration.  In this image, the two lungs can be clearly distinguished, but seem 
to be "pushed" toward the centre of the image compared to a normal anatomical position.  
They also measure the average image as a function of inspired volume, figure 2.6.  This 
result shows an almost linear relationship between the image magnitude and lung volume. 

Newell et al. (1993) measures the image magnitude in each lung during one cycle 
of inspiration and expiration as a function of the change in lung volume (figure 2.7).  
These results show a linear correlation between the EIT image magnitude and lung 
volume measurement, and also demonstrate the possibility of extracting ventilation 
information separately for each lung. 

Clinical studies by Morice et al. (1993), and Campbell et al. (1994) use EIT to 
study patients with unilateral pleural effusion and pneumothorax.  EIT images of normal 
ventilation were taken prior to therapy, showing conductivity change mostly in the non-
affected lung.  Subsequently, images were acquired during the aspiration phase of the 
therapy, showing conductivity changes mostly in the affected lung.  They conclude that 
EIT can be used to measure changes in intrathoracic air content.  Unfortunately, the small 
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number of cases investigated does not allow the question of the reliability of detection of 
these pathologies to be addressed. 
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Figure 2.7: From Newell (1993): Peak resistivity in the lung field of a normal 
human subject increased as air was inspired. 

2.5.2 Pulmonary Edema 

Pulmonary edema is a pathological condition involving excess fluid in lung tissue.  
In a normal lung there is a considerable quantity of fluid, which, of course, is not 
edematous.  This fluid is found in the pulmonary circulation, the intracellular fluid, the 
intravascular fluid, and the pleural fluid.  PE results initially in an increase of 
extravascular fluid, and, as the condition progresses, a movement of fluid into the alveoli.  
The mechanisms that are involved in the movement of fluid into the lungs are described 
by the Starling equation which relates the movement of fluids across a boundary to the 
hydrostatic and osmotic pressures on either side and to the permeability of the boundary.  
Using this equation, the causes of PE may be classified in two categories: 

• Increased pressure:  An increase in the hydrostatic pressure in the 
pulmonary capillaries causes an increased flow of fluid into the interstitial spaces and, in 
severe cases, into the alveoli.  Increased capillary pressure can be caused by congestive 
heart failure or any disease that impairs flow through the lung.  Increased pressure edema 
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can also be due to an increased osmotic pressure due to a reduction in the protein or 
electrolyte concentration in the blood. 

• Increased permeability:  Increased flow out of the vascular system 
caused by an increase in the permeability of the pulmonary capillaries, often due to 
damage to the capillary bed from inhaled or circulating toxins.  This condition leads to 
adult respiratory distress syndrome (ARDS). 

Current methods for measuring lung water are limited to accuracies and 
sensitivities of approximately 25 percent, which suffices for measurements of gross PE 
but cannot be used for the early detection of interstitial edema (Staub, 1980).  EIT is 
potentially able to detect changes in the level of PE with a higher sensitivity.  
Unfortunately, very little work has been done to evaluate the effectiveness of this 
application of EIT. 

Vahid-Shahidi et al. (1993) uses a 3D finite element model of the thorax to 
simulate the detectability of localised pulmonary edema (PE) using EIT with random 
noise added to the measurements.  Images are reconstructed using the backprojection 
technique (Barber, 1985).  They conclude that changes of conductivity due to PE are 
detectable under achievable conditions of measurement noise.  Unfortunately, this study 
only simulates random electronic measurement noise and does not take into account the 
various physiological sources of error that occur. 

Newell et al., (1993, 1995) describe an experiment to verify the assessment of PE 
in dogs by EIT.  A pseudo-static EIT reconstruction algorithm (Cheney, 1990) is used to 
calculate the complex conductivity distribution in the animal.  Experimental animals were 
anaesthetised and ventilated, and, after a stabilisation period, PE was induced by the 
infusion of oleic acid, resulting in a steady increase in lung conductivity until death,  240 
to 300 min later.  The lungs were subsequently extracted and the ratio of wet to dry 
content was calculated.  In the five animals which received oleic acid, lung conductivity 
rose steadily by 4 to 10 percent above its initial value, whereas in one animal which 
received only saline injection, conductivity increased by 1 percent.  Figure 2.8 plots the 
change in conductivity as a function of wet/dry weight ratio; the Pearson correlation 
coefficient is 0.83.  Results indicate the presence of a change in the conductivity when 
pulmonary edema is forming and an absence of this change when it is not. 
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Figure 2.8: From Newell (1995): Changes in admittivity in the infused lungs 
plotted as a function of the wet/dry weight observed at the end of the experiment. 

2.6 Conclusions 

EIT as a medical imaging technique has matured significantly in the last decade.  
The problems initially considered were more concerned with engineering feasibility than 
clinical applicability.  The first image reconstruction algorithms dealt with data measured 
from a cylindrical homogeneous phantom, and experimental data was measured from 
individual subjects and was presented without comparison to clinical reference standards.  
Recently, as the engineering feasibility of EIT has been demonstrated, there has been an 
increasing tendency to consider problems more relevant to the clinical application of the 
technique: image reconstruction techniques which use finite element models to simulate 
arbitrary medium geometries and take into account noise in the experimental data have 
been proposed;  interpretation of EIT images reconstructed from data perturbed by 
various experimental difficulties such as electrode movement and anisotropy, has been 
considered; and, additionally, many groups have experimentally and clinically evaluated 
EIT. 

In this spirit of undertaking work of clinical relevance, this thesis presents a, 
hopefully useful, contribution to EIT research.   
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3.1 Abstract 

Reconstruction of Images in Electrical Impedance Tomography requires the 
solution of a non-linear inverse problem on noisy data. This problem is typically ill-
conditioned and requires either simplifying assumptions or regularization based on a 
priori knowledge. This paper presents a reconstruction algorithm using neural 
network techniques which calculates a linear approximation of inverse problem 
directly from finite element simulations of the forward problem. This inverse is 
adapted to the geometry of the medium and the signal to noise ratio (SNR) used 
during network training. Results show good conductivity reconstruction where 
measurement SNR is similar to the training conditions. The advantages of this 
method is its conceptual simplicity and ease of implementation, and the ability to 
control the compromise between the noise performance and resolution of the image 
reconstruction. 
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3.2 Introduction 

We consider the problem of dynamic imaging in Electrical Impedance 
Tomography (EIT), which involves estimating conductivity changes in a medium from 
electrical measurements on the medium boundary. Our tomographic system uses  16 
injection/measurement electrodes, where a set of electrical measurements is made by 
differential voltage measurements at all adjacent pairs of electrodes for each of the 16 
patterns of current injection. In order to reconstruct the conductivity changes during the 
interval t2 - t1 , two complete sets of measurements, one at t1, and the other at t2, are 
required. 

By restricting our interest to the conductivity changes rather than absolute 
conductivity values ( as in static imaging ), we gain three principal advantages: 

• due to variations in electrode contact resistance and positioning, and 
electronic hardware dependence on temperature, it is difficult to obtain sufficiently 
accurate measurements for static imaging. These variables tend to remain constant, 
however, allowing compensation for the inaccuracies produced by looking only at the 
changes in measurements. 

• static image reconstruction is highly non-linear, and requires accurate 
knowledge of the electrode positioning and medium geometry. The dynamic imaging 
problem is much more linear, and, as we show in section VI, relatively insensitive to 
geometrical errors. 

• Dynamic imaging has higher sensitivity to conductivity changes than static 
imaging, because it rejects the components of the signal and the noise which are common 
to the measurements. These changes in measurements produced by typical physiological 
phenomena rarely exceed 10 percent of the total measurements, thus allowing dynamic 
imaging to achieve a sensitivity improvement of 20 dB. 

The techniques that are currently used for dynamic image reconstruction may be 
classified into linear and non-linear algorithms. Many linear algorithms for dynamic 
image reconstruction have been proposed including Equipotential Backprojection 
(Barber, 1986), (Guardo, 1991) and more recently, sensitivity matrix methods (Barber, 
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1988), and regularization methods (Hua, 1988), (Woo, 1993). The principal non-linear 
algorithm used is the modified Newton-Raphson method (Yorkey, 1987), (Adler, 1993), 
which requires several orders of magnitude more calculation time than linear techniques. 
All of these techniques, while giving reasonable solutions, require simplifying hypotheses 
about the problem. In this paper we propose a new technique based on neural networks, 
which has the advantage of a simple mathematical formulation not requiring any of these 
assumptions. 

3.3 Forward Problem 

 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 
Figure 3.1: Finite element model and electrode placements. 

In a very vulgar sense, the neural network training process may be described as 
presenting a series of problems and their solutions to the network until it "figures out" the 
problem-solving technique. To do this training, we therefore need a training set, 
consisting of voltage measurements (problems), and the conductivity distributions which 
produced them (solutions). Originally we produced this training set experimentally 
(Guardo, 1991), but found this method overly time consuming to obtain the necessary 
size of training set. In this paper we use a finite element model (FEM) of the medium to 
numerically simulate our training set. 
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The FEM used, figure 3.1, is a two dimensional model based on triangular 
elements. The interior has 120 elements in which the conductivity is allowed to vary, and 
the boundary is divided into 96 much smaller elements restricted to one conductivity 
value; the electrodes placements are marked by arrows. We do not use a three 
dimensional model because, due to the fact that we are considering the dynamic problem, 
the measurement sensitivity to conductivity changes in the electrode plane in a 3D model 
is almost identical to the sensitivity in the 2D model. The conductivity pattern of the 
medium is represented by the vector r representing a parametrization of the element 
conductivities. Our model has n=121 degrees of freedom. After setting one node to a 
reference potential, one can solve for Vij , the voltage at node i during current injection 
pattern j, by 

( ) CYV 1−= σ  (3.1) 

where Y is the admittance matrix ( a function of the tissue conductivity ), and each 
element of Cij represents the current injected into node i during the excitation pattern j. 
Calculation of the vector of differential measurements, v, from V is represented by 
v = T(V(r)). This operator selects and subtracts the voltages at the nodes corresponding to 
electrode pairs in the physical situation to be modelled. 

Since we are looking for a linear solution, it is important to choose a good 
parametrization of the conductivity to maximise the solution linearity. Expressing the 
solution in terms of the conductivity σ is a poor choice, because negative values of σ do 
not represent possible conductivities in the medium, and we would therefore be forced to 
restrict the neural network to producing only positive solutions. We express the problem 
in terms of the log conductivity,  which corresponds to a possible conductivity for all real 
values. The change in measurements caused by an inhomogeneity ( in an otherwise 
homogeneous medium of conductivity σ ) is a linear function of the size of the 
perturbation to within 10% in the range .25 < σ < 4 as long as the perturbation stays at 
least 10% of the radius away from the boundary. For perturbations outside of this range, 
the change in measurements saturates. The effect of this saturation in the inverse problem 
is to cause an underestimation of  the conductivity changes.  

The dynamic measurement vector, f, (also referred to in this paper as the signal) is 
defined as the ratio of the measurements before and after the conductivity change 
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where N is the total number of measurements, and rb and ra represent the conductivities 
before and after, respectively. Because the changes are small compared to the 
measurements themselves, the divisor in this expression can be estimated by the v 
calculated for a homogeneous conductivity rh , giving 
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The rh can be factored out of this equation because V is inversely proportional to 
an increase everywhere in conductivity. 

Linearizing about 
2
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The matrix S104×121 is the sensitivity matrix for the FEM, containing, in each 
column i the change in signal produced by a small perturbation in element j of the 
medium. These vectors are subsequently used as training vectors for the neural network. 
The calculation of the partial derivative is calculated using the expression 
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3.4 Inverse Problem 

The inverse problem may be stated as finding the matrix Z, which, in the presence 
of noise n, best approximates, in the least squared error sense,  

( )n+≈ fZr  (3.6) 
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for all signals f. This Z is calculated by the training processes of the neural network, and 
subsequently is used as the reconstruction operator to estimate the conductivity changes r 

from the voltages measurements. 
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Figure 3.2: Neural Network configuration using ADALINEs. 

The neural network model used here is the Adaptive Linear Element, or 
ADALINE (Rogers, 1991), (Widrow, 1990), as shown in figure 3.2. Each ADALINE 
calculates the value of one conductivity element of r by summing the inputs weighted by 
the elements of the corresponding column of Z. The output of ADALINE i is thus 

� iij fz   summed over 1 ≤ j ≤ N. The values of Z are calculated or "trained" by the 

Widrow-Hoff learning rule, using a set of input vectors fk and their (known) desired 
responses from the network dk.  Training aims to minimise the error, f, for all training 
sets k: 

( ) ( )� −−=
k

kk
t

kk ZfdZfdφ
 (3.7) 

We choose the desired responses to be individual conductivity changes in each 
element, i.e. Iddd =… ][

21 n , for which the input vectors are IYIfff ==… ][
21 n . In order to 

train the network to deal with noise, we must include the expected noise, n, in the input. 
Using this training set, we carry out the following algorithm: 

• Initially, set all weights, Z, to small random numbers. 
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• Choose a random order of presentation of the input vectors to the network. 

• Begin training iterations: (Zi represents the weights at iteration i ) 

• Present a training vector plus random noise to the network, outputting:  

( )ni += fZo  (3.8) 

 • Calculate the error e = o - d, defined as the difference between the output, 
and the corresponding desired response. 

 • Update network weights by the learning rule: 

t
ii eoZZ α−=+1   (3.9) 

• Continue iteration until the rms error eet  is below an acceptable limit. 

The parameter α controls the learning rate; for stability, it's value must be less 
than the reciprocal of the maximum eigenvalue of  tYY  (Widrow, 1985). 

Once the training is completed, Z can be used as a reconstruction operator which 
calculates the change in conductivity distribution during the interval t2 - t1, from the 
measured voltage vectors v1 and v2. First, the reconstructed element conductivities are 
calculated, using: 
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and then the element conductivities are interpolated onto a rectangular co-ordinate frame, 
which can be displayed using various graphics rendering techniques. Once the neural 
network has been trained, the image reconstruction process is extremely rapid, requiring 
only a matrix multiplication.  

3.5 Ill-Conditioning of the Inverse Problem 

It may seem natural to ask why we are using a neural network approach to solve a 
linear problem rather than algebraic techniques. The answer lies in the ill-conditioning of 
the problem. In order to achieve an acceptably uniform spatial resolution, we divide the 
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medium into 120 conductivity elements, which must be estimated from 104 voltage 
measurements (the reciprocity theorem (Geselowitz, 1971) states that only half of the 256 
measurements taken are linearly independent and, additionally, we reject the 
measurements made at electrodes used for injection). This implies that the problem is 
under-determined, and that we require some source of extra information about the 
problem in order to determine the conductivity distribution from the measurements. This 
under-determination is worsened by the poor conditioning of the sensitivity matrix, which 
can be seen from the fact that conductivity changes in the middle of the medium produce 
much less signal than changes near the boundary; for instance, at 75 percent radius, the 
signal is ten times greater than it is in the centre.  

The ill-conditioning and under-determination imply that any matrix inverse will 
require regularization, the quantity and form of which must be determined from the 
mathematical formulation and the experimental situation. Using the neural network 
approach, we are able to perform an inverse directly from the FEM and the estimated 
signal to noise ratio, without any additional assumptions or analysis. 

The neural network training is affected by this ill-conditioning in various ways. 
The network initially "learns" to respond to training patterns near the boundary of the 
medium, and only begins to respond to training patterns near the centre once the 
performance on the boundary is nearly optimal. Additionally, the under-determination 
implies that the best possible spatial resolution is inferior to the size of the training 
patterns. Therefore, the network can never reproduce the training patterns exactly, and the 
error will never approach zero, but will only drop to a fraction of the initial error. This 
behaviour is discussed in section 3.6. 

We define the signal to noise ratio (SNR) of the measurements as 

nn
ff

t

t

meas =SNR
 (3.11) 

In the case of the training SNR, where there are many different training signals, f 
is defined as the signal produced by a unit conductivity change in an element in the 
centre. The SNR of the image is defined as the expected value 
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where ni is the rms noise value for measurement i, Zi is the ith column of Z, and A is a 
diagonal matrix of the areas of the elements (aii is the area of element i). The signal fo is 
produced by a conductivity change in the centre with amplitude such that the 
measurement SNR equals one. The expected value can be expressed as a sum in the 
denominator because the elements of n are statistically independent. 

The resolution of the image is a function of the radial position. We define the 
resolution of the reconstructed image at a given position as the square root of the area 
percentage occupied by 50% of the reconstructed image mass from a point conductivity 
change at that position. Thus, the image resolution is  

A11
Axxr t

t

image =
 (3.13) 

where 1 is a column vector of ones, and x is one in the elements closest to the image 
maximum accounting for 50% of the image mass, and zero elsewhere. Thus x must 
satisfy 

2
1=

r1
rx

t

t

 . (3.14) 
The square root in equation 3.13 is used to express the resolution in terms of the diameter 
rather than the area. 

In order to compare the neural network results with equipotential backprojection, 
we have calculated a matrix Zbackprojection which maps the backprojected image onto 
our FEM, allowing us to use the equivalent evaluation process on both techniques. 

3.6 Results from Simulations 

Neural networks N0, N1, and N2 were trained using 1500 iterations on the 
circular finite element geometry of figure 3.1. N0 was trained without adding any 
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expected noise to the training vectors, while N1 and N2 had SNRs of 5 dB and -10 dB 
respectively. The rms training error vs. iteration number is shown in figure 3.3. 
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Figure 3.3: Training Error vs Iteration for Neural Networks 

The performance of this reconstruction technique compared to equipotential 
backprojection on simulated data is shown in figure 3.4. Figure 3.4A shows the pattern to 
be imaged: two small non-conductive objects in a circular medium separated by one third 
of the diameter. This pattern was simulated on a much finer finite element mesh than was 
used for the training of the neural networks. Figures 3.4B, D, and F were reconstructed 
using the voltage measurements from 3.4A with no noise added, while figures C, E, and 
G used measurements with SNR of -5 dB. Reconstruction in B and C used weighted 
backprojection, D and E used network N2, and F and G used network N0.  

The network N0 has better spatial resolution at the expense of reduced ability to 
reject noise. Conversely, the N2 has significantly improved noise performance (roughly 
equal to that of backprojection) with a reduction in spatial resolution. The spatial 
resolution of N2 is better than that of backprojection, especially near the medium centre. 
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Figure 3.4: Reconstructed Images 
 A: Generating conductivity pattern 
 B: Image: No Noise  Backprojection 
 C: Image: -5 dB SNR  Backprojection 
 D: Image: No Noise  Network: -10dB SNR 
 E: Image: -5 dB SNR  Network: -10dB SNR 
 F: Image: No Noise  Network: No Noise 
 G: Image: -5 dB SNR  Network: No Noise 
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Table 3.1: Training SNR and Image SNR for various algorithms. 

Algorithm Training SNR Image SNR 

Backprojection  2.62 

Network N0 ∝ 0.22 

Network N1 1.33 0.69 

Network N2 0.33 1.58 
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Figure 3.5: Spatial resolution vs. radial position  
 A: Network N0 
 B: Network N1 
 C: Network N2 
 D: Backprojection 

The noise performance of the various networks, as measured by the image SNR, is 
compared with that of backprojection in table 3.1. As the SNR during the training is 
reduced, the network is able to better deal with noise, and the image SNR, for a given 
measurement noise, improves. Figure 3.5 shows the spatial resolution as a function of 
radial position for backprojection, and networks N0, N1,and N2. The radial position of 0 
represents the centre and 1 represents the medium boundary. 
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3.7 Geometrical Errors 
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Figure 3.6: Reconstruction Errors due to elliptical deformation 
 A: Generating conductivity pattern 
 B: Deformation: height/width = 2.0 
 C: Deformation: height/width = 1.5 
 D: Deformation: height/width = 1.2 
 E: Deformation: height/width =  1.1 
 F: No Deformation: height = width 
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One possible problem with the neural network approach is its specificity to the 
geometry and measurement configuration used during the training phase, meaning that 
any measurements made on a medium with a different geometry than the one used during 
training would introduce errors into the reconstructed image. In order to test the severity 
of this problem, measurements were calculated from media deformed into ellipses of 
various height/width ratios, and the images were reconstructed using the neural network, 
N0, trained on a circular medium; these images are shown in figure 3.6. The 
reconstruction error for each image is presented in table 3.2; it is defined as 

( ) ( )
c

t
c

c
t

c
reconst

rr
ZfrZfr −−=ε

 (3.15) 
where rc is the generating conductivity pattern, and f is measured from the deformed 
medium. 
 

Table 3.2: reconstruction error due to geometrical errors 

Training  
height/width 

Measurement  
height/width 

Reconstruction  
error 

Figure 

1.0 2.0 1.48 3.6B 
1.0 1.5 0.94 3.6C 
1.0 1.2 0.64 3.6D 
1.0 1.1 0.55 3.6E 
1.0 1.0 0.49 3.6F 

Geometrical errors, as long as they are small (<20%) seem to only introduce small 
errors (<30%) into the reconstructed images. This insensitivity is a property of the 
dynamic imaging method. Because of this property, we may use the neural networks 
trained on a circular geometry to image conductivity changes in the thorax, as shown in 
section 3.7. 

3.8 Results from Measured Data 

The reconstruction technique presented here is capable of giving acceptable 
results using data measured from our EIT system. Figure 3.7 shows images of two non-
conductive objects in a saline solution inside a cylindrical frame: one object is 2/3 of the 
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radius toward the front and the other is 1/3 of the radius toward the right. Figure 3.7A is 
reconstructed using network N2 while 3.7B uses backprojection. Figure 3.8 is an image 
of the conductivity change between expiration and inspiration in the thorax region of one 
of the authors (Adler). Data acquisition was gated on the QRS signal while the patient 
held his breath, thus the only conductivity change is due to change in lung air volume. 
Figure 3.8A is reconstructed using network N2 while figure 3.8B uses backprojection. In 
these figures, the darker areas represent areas of decreased conductivity.  

 

Right

FrontA

Right

FrontB

 
Figure 3.7: Images of two non conductive objects in saline solution  
 A: Image using neural networks 
 B: Image using backprojection 

In the case of figure 3.7, the neural network technique appears to produce clearly 
superior images, both in terms of resolution and noise. In figure 3.8 it is possible to 
distinguish two regions of decreased conductivity in approximately the region of the 
lungs with both imaging techniques; however, the neural network is able to give a higher 
resolution image, and without the streak-like artefacts of the backprojection. As data from 
our tomographic system tends to be quite noisy, typically 0 to 20 dB SNR, it was 



44 

necessary to use the network trained with the highest noise level, and consequently lowest 
image resolution. 

 

Right
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Right

FrontB

 
Figure 3.8: Image of conductivity changes (inspiration - expiration) in the author's 
thorax  
 A: Image using neural networks 
 B: Image using backprojection 

3.9 Discussion 

In this paper we have presented a neural network algorithm which trains a linear 
reconstruction operator to calculate the conductivity changes from the electrical 
measurements on a medium boundary. This operator is determined uniquely from a finite 
element solution of the forward problem and a knowledge of SNR expected in the real 
data. When trained without noise, the reconstruction has excellent resolution but poor 
ability to reject noise. Conversely, when trained with a large SNR, the reconstruction has 
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a much better noise performance, comparable to that of equipotential backprojection, and 
a resolution which, while poorer, is still better than that of backprojection. The 
advantages of this method are it's speed of image reconstruction, it's conceptual simplicity 
and ease of implementation, and the control of the compromise between the image 
resolution and image SNR. A possible disadvantage is the long calculation time required 
to train the neural network. 

Even though able to produce good solutions in comparison to other techniques, 
the neural network algorithm presented here is unable to deal with the non-linear aspects 
of the problem, such as the saturation of measurements produced by large conductivity 
changes, or the effect of the interaction between multiple regions of conductivity changes. 
It would be feasible to expand the neural network formulation to treat the non-linearities 
by the addition of hidden layers into the neural network formulation. In order to allow the 
network to adapt to the much more complex non-linear nature of the problem, a much 
more complete training set would be required, including multiple element conductivity 
patterns of varied amplitudes. Such an approach would be interesting in that it would 
provide a much faster non-linear reconstruction technique than the iterative methods 
presently used. 
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4.1 Abstract 

Dynamic electrical impedance tomography images changes in the conductivity 
distribution of a medium from low frequency electrical measurements made at electrodes 
on the medium surface.  Reconstruction of the conductivity distribution is an under-
determined and ill-posed problem, typically requiring either simplifying assumptions or 
regularization based on a priori knowledge. This paper presents a maximum a posteriori 
(MAP) approach to linearized image reconstruction using knowledge of the noise 
variance of the measurements and the covariance of the conductivity distribution.  This 
approach has the advantage of an intuitive interpretation of the algorithm parameters as 
well as fast (near real time) image reconstruction.  In order to compare this approach to 
existing algorithms, we develop figures of merit to measure the reconstructed image 
resolution, the noise amplification of the image reconstruction, and the fidelity of 
positioning in the image.  Finally, we develop a communications systems approach to 
calculate the probability of detection of a conductivity contrast in the reconstructed image 
as a function of the measurement noise and the reconstruction algorithm used.  
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4.2 Introduction 

Electrical Impedance Tomography (EIT) is a medical imaging technique which 
calculates the electrical conductivity distribution within a medium using electrical 
measurements from a series of electrodes on the medium surface.  A low amplitude 
alternating current is successively injected across pairs of electrodes while the voltage 
differences produced on the remaining electrodes are measured.  The conductivity 
distribution is then estimated using this measured data.  We are particularly interested in 
dynamic EIT (the measurement of conductivity changes) because of its increased 
sensitivity and ability to compensate for measurement unknowns. 

Dynamic EIT is of interest in studying physiological processes which modify the 
electrical conductivity of the body.  For instance, cardiac, respiratory, and gastric activity 
modify the conductivity distribution by the movement of liquids or gasses and can be 
imaged using EIT.  Several reconstruction techniques have been proposed for dynamic 
EIT, most of which use a linear reconstruction technique, although an iterative model has 
also been used, and are based either on a finite element or analytic models of the forward 
problem. 

In this paper we present a new algorithm based on regularization of the linearized 
forward problem, using a priori knowledge of the distribution of conductivity change.  
This algorithm allows a control of the compromise between the noise performance and 
the resolution in the reconstructed image, based on knowledge of the measurement noise 
in the hardware and the magnitude of the conductivity changes to be detected.  Because 
the algorithm is linear, the reconstruction process requires only a single matrix 
multiplication, and is several orders of magnitude faster than iterative techniques which 
require several matrix inversions.  We also develop several figures of merit with which to 
compare our technique to other proposed algorithms. 

Many proposed applications of EIT are concerned primarily with the detection of 
conductivity changes in a region of interest, and the image produced is used primarily as a 
means of rejecting contributions from activity in other areas.  In order to determine the 
limits of detectability of image contrasts, we develop a model of the probability of 
detection of a contrast as a function of the noise variance and the image reconstruction 
algorithm used. 
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The first proposed EIT reconstruction algorithm (Barber, 1987), equipotential 
backprojection, performed dynamic imaging.  This technique reconstructs images by 
projecting the change in measurements at each electrode pair across the equipotential 
region for that current injection pattern, multiplied by an image filter.  This equipotential 
region is the area in a homogeneous medium in which the potential is between that of the 
adjacent measurement electrodes; it is the fraction of the medium which most affects the 
corresponding measurement.  Backprojection produces reasonably good quality images 
with good performance under noise.  However, unlike the x-rays used in CAT scanning, 
currents in EIT do not move in a line, but cover the region from the current source to 
drain.  A bias is thus introduced into the image as the equipotential region is an 
approximation to the region producing the measurement change at each electrode.  
Another difficulty with backprojection is that, while it reconstructs an image pattern 
representing the conductivity change in the medium, it does not reconstruct the actual 
conductivity values.  From a performance point of view, backprojection tends to "push" 
reconstructed object positions toward the centre of the medium, and to produce streak-
like artefacts in the image.  

An iterative reconstruction using the Newton-Raphson technique with Tikhonov 
regularization was originally proposed by Yorkey (1987) for static reconstruction of EIT.  
Most iterative regularized approaches also have been proposed for static EIT, although 
the technique has also been used for dynamic EIT (Adler 1993; Shaw, 1993; Woo, 1993).  
These approaches can be formulated as the minimisation of an error function, φ 

( ) ( )( )22
2
1

QWZz σµσσφ +−=
 (4.1) 

where z is the measured signal, Z is a finite element model of the signal, and µ, Q, and W 
are parameters of the reconstruction algorithm.  The second term in equation 4.1 is a 
regularization term, the quantity of which is controlled by the parameter µ.  The 
reconstructed image is the conductivity distribution σ which minimises the error.  The 
identity matrix is used for both Q and W by Yorkey (1987) and Adler (1993) while Shaw 
(1993) and Woo (1993) use a matrix Q based on Z.  Selection of µ in these algorithms is 
done by the user,  based on qualitative considerations.  
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4.3 Dynamic Imaging 

In general, static reconstruction algorithms suffer from a high sensitivity to 
measurement errors (Barber, 1988), due to EIT being more sensitive to changes near the 
medium surface than to changes within the medium.  Thus a slight error in the positioning 
of an electrode will have as much effect on the voltage measurements as a large 
inhomogeneity in the centre of the medium.  The effect of these errors can be reduced by 
considering dynamic imaging, which takes measurement sets v1 at time t1, and v2 at t2, 
from which the change in conductivity distribution in the interval ( t1, t2 ) is calculated 
(imaged).  While considering only changes in measurements results in a loss of 
information, most proposed applications of EIT are concerned with the conductivity 
change rather than its absolute value (Barber, 1986). 

Dynamic Imaging offers many advantages in simplicity and robustness.  The 
simplest EIT measurement configuration uses EKG type electrodes placed directly on the 
patient's skin.  Many unknowns are introduced into the measurement process at this stage 
due to variability in the initial positioning of the electrodes, patient posture, electrode 
contact resistance with the skin and the gain of the acquisition electronics.  Dynamic 
imaging is able to deal with this variability by assuming that these variables remain 
constant over time.  If we model the effect of these unknowns on the EIT measurements 
by introducing random constants ai and bi for each pattern of current injection and 
voltage measurement, then the measurement set may be expressed by: 

iiii ba += uv  (4.2) 
where ui is the theoretical measurement value, vi is the actual measurement, and i is an 
index over all the measurements. 

We define the dynamic signal, z, for the time interval ( t1, t2 ) as 

( )21
2
1
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vv
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−
=

 (4.3) 
which in terms of u is 



51 

( )
( )��

�
�
�

�

�

�
�
�
�
�

�

�

+
++

−
=

�
�
�

�
�
�
�

�
++

−
=

21

21
2
1

21

21
2
1

21

2
1

1

2
iii

iii

ii

i

i
ii

ii
i

a

b

a

b
uu

uu

uu

uu

uu
z

 (4.4) 

This implies that dynamic imaging removes the effect of any multiplicative 
unknowns in the data (ai's) for small bi,  and reduces the effect of the additive unknowns 

(bi's) by a factor of ( )21
2
1

iiia uu + .  This greater immunity to variability in the measured 

data accounts for the robustness of dynamic EIT. 

4.4 Linearization of the Forward Problem 

Using the finite element method (FEM), we simulate the voltage distribution at E 
electrodes by current injection into a medium with a conductivity distribution discretized 
on N finite elements.  This model of the forward problem accepts a N×1 vector σσσσ of 
element conductivity values and calculates the voltage Vij at each electrode i for each 
current injection pattern j 

( ) CYV 1−= ����  (4.5) 
where Y is the admittance matrix of the FEM ( and is a function of the conductivity 
distribution ) and Cij represents the current injected into electrode i during current 
injection pattern j.  It is necessary to fix the voltage at one node to a constant potential in 
order for Y to be invertible.  Our EIT system makes differential voltage measurements 
between adjacent electrodes at all electrodes not used for current injection, giving M=E×
(E-3) measurements.  All measurements are used in the image reconstruction, even 
though, due to reciprocity (Geselowitz, 1971), only half of these measurements are 
linearly independent.  Calculation of the vector v of M voltage differences is represented 
by ( )[ ]����Vv T= .  For instance, if v9 is defined to correspond to the voltage difference 

between electrodes 4 and 5 during injection pattern 2, then the operator T will give 
T[V]9 = V42 - V52.  The dynamic signal z is defined as 
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for each measurement i, 1 ≤ i ≤ M, where σσσσ1 and σσσσ2 represent the conductivities at times 
t1 and t2, respectively. 

Throughout this article we use a two dimensional finite element model because of 
the gain in calculation time by not considering several layers of finite elements.  Although 
some amount of error is introduced into the simulated measurements by using a 2D 
model, the dynamic imaging process reduces this error as shown in section 4.3.  Our 
simulations indicate that this error is reduced by approximately three orders of magnitude. 
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Figure 4.1: Finite Element Model used in this paper. 

The results presented in this paper are calculated using the finite element model of 
figure 4.1, consisting of 572 triangular elements and 16 electrodes, indicated by arrows in 
the figure.  The electrodes correspond to EKG style electrodes used by our tomographic 
system, and are used for both current injection and voltage measurement.  

We linearize the forward problem by finding a matrix H and a parametrization f 
such that z = Hx where 

( ) ( ) ( )σσσ fff ∆=−= 21x  (4.7) 
f is chosen so that the linear approximation is valid over the largest possible range.   
Parametrization is necessary because, while conductivities of 0 and ∞ represent opposite 
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effects on the voltage distribution, they are not numerically equidistant from the 
background conductivity; a linear reconstruction algorithm can  indicate conductivities 
decreasing to zero but cannot show increases to ∞.  Another problem due to non-
parametrization is the difficulty in interpreting reconstructions indicating negative 
conductivities.   

The most commonly used parametrization is the logarithm conductivity, 
)log()log( 21 σσ −=x , which has the advantage of corresponding to a positive 

conductivity for any real value of x.  The log conductivity also allows easy interpretation 
of reconstructed values of x: the fractional change in conductivity from σσσσ1 to σσσσ2 is 

 

xe=
2

1

σ
σ

 (4.8) 
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Figure 4.2: Normalised mean signal vs. change in log conductivity contrast ratio. 

Figure 4.2 plots the mean signal due to a small contrast in a homogeneous 
medium normalised with respect to the area of the contrast as a function of the 
parametrization, x, of equation 4.8.  This relationship depends slightly on the radial 
position, and is shown for a contrast in the centre and half-way to the boundary.  This 
function is linear to within 20% in the region from x = -1 to x = 3, after which the curve 
saturates, indicating no increase in signal from an increasing contrast.  One interesting 
feature of this graph is the different saturation levels: conductive contrasts produce more 
signal than non-conductive ones.  In clinical applications, however, the range of 
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physiologically realisable conductivities is relatively small, and the effect of this non-
linearity will be reduced. 

Another parametrization recently introduced by Shaw (1993) is 

( )
σσ
σσσ

+
−

=
h

h
f

 (4.9) 
where σh represents the background conductivity of the medium.  This parametrization 
has the advantages of a larger region of linearity with respect to the signal than the log 
conductivity, but still does not take into account the different conductive and non-
conductive saturation levels.  It also introduces the constant σh which may be difficult to 
define in clinical applications where the background is non-uniform. 
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Figure 4.3: Normalised mean signal to area ratio for a circular contrast as a 
function of the contrast region diameter 

Fortunately, in practice, EIT responds linearly to many physiological processes, 
such as those involving movement of a fluid of a constant conductivity into a region of 
interest, resulting in an enlargement of the area covered by the fluid.   Figure 4.3 shows 
the normalised ratio of the mean signal from a circular contrast to the contrast area, as a 
function of the region diameter to medium diameter ratio.  The mean signal produced by a 
change in conductivity in a region is very nearly proportional to the area of the region.  
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This range of proportionality is much larger than the linear range of figure 4.2.  Many 
physiological activities, such as an accumulation of contrasting fluid, are more accurately 
modelled in terms of an expanding region of constant contrast, than a fixed region of 
increasing contrast.  It is this characteristic which accounts for the linearity of EIT image 
amplitude as a function of the intensity of activity for many physiological processes. 

In order to calculate the linear approximation matrix, H, we express equation 4.6 
in the case of a small change in conductivity distribution: σ1 = σ, and σ2 = σ+∆σ where 
∆σ σ« 2. 
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As a function of the conductivity parametrization ( ) ( )�������� ffo ∆== xx   , , 
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Expanding around xo for a small change xj in each element of x 
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From this expression, the H matrix in the linear approximation can be determined. 
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As a function of the admittance matrix of the FEM, this derivative may be 
calculated using  



56 

( )[ ][ ] ( ) ( ) ( )
ij

i
j

TT
	
	



�

�
�


�
−= −− CYYYV σσ

∂σ
∂σσ

∂σ
∂ 11

 (4.14) 

H is the sensitivity matrix of the linear transformation about the "background" 
conductivity distribution xo ( using image processing terminology it would be called the 
degradation matrix ). 

4.5 A MAP Regularized Inverse Model 

Our linearized model of EIT can be stated as: Estimate the conductivity parameter 

x given a measured signal z and degradation process 

nHxz +=  (4.15) 

where n is random noise.  One standard approach used to solve linear estimation 
problems is the least squares estimate: 

( ) zHHHx tt 1
ˆ

−
=  (4.16) 

This estimate is unsatisfactory for several reasons.  In a typical EIT configuration 
using E=16 or 32 electrodes, the maximum number of independent measurements 
possible is ( )1

2
1 −EE  (Geselowitz, 1971).  In order to achieve an acceptable spatial 

resolution in the reconstructed image  the medium must be divided into a sufficient 
number of independent conductivity elements.  As a rough estimate a resolution of 10 % 
of the medium diameter would require more than 10 conductivity elements in each 
direction, totalling more than 100 elements.  However, the number of independent 
conductivity regions that can be calculated from these measurements using a least squares 
estimate is too low.  Additionally, the matrix H Ht  is very poorly conditioned ( with a 
condition number of 8.2×1019 for our FEM ), because EIT makes current injection and 
measurement on the medium surface inducing higher current densities near the surface 
where conductivity contrasts will result in more signal than for contrasts in the centre.  
This kind of ill-conditioning problem is classic in image reconstruction and can be 
effectively approached using regularization. 
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The maximum a posteriori (MAP) approach to image reconstruction defines the 
solution as the most likely estimate �x  given the measured signal z and certain statistical 
information about the medium.  We choose this approach because it allows an elegant 
interpretation of the image reconstruction algorithm in terms of the statistical properties 
of the experimental situation.  Non statistical models such as Tikhonov regularization can 
be used to express the image reconstruction algorithm presented here, but, we feel, make 
the significance of the various reconstruction parameters less clear.  Additionally, the 
MAP approach can be implemented using relatively simple matrix algebra compared to 
other regularization techniques such as the truncated singular value decomposition or 
iterative techniques such as constrained least squares.  This section summarises the 
details of the MAP approach which are more fully explained by Demoment (1989) and 
Fortier (1993).  The following sections explain how this approach is applied to EIT image 
reconstruction. 

In order to simplify the reconstruction algorithm, we assume that the image 
statistical properties can be modelled by a Gaussian distribution of mean x∞ and 
covariance Rx: 

[ ]xx E=∞  (4.17) 

( ) ( )[ ] [ ] ∞∞∞∞ −=−−= xxxxxxxxR ttt
x EE  (4.18) 

Given these parameters we can model the distribution function of the image, f(x) 
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The a posteriori distribution function of z given a conductivity distribution x is 
derived from the definition of the problem (equation 4.15).  
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The difference z�Hx is entirely due to the noise n, which is assumed to be 
Gaussian, white, zero mean with covariance Rn.  Thus 
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where σ, in this and all subsequent equations in this paper, represents the square root of 
the variance and not the conductivity. 

The MAP estimate, �x , maximises the a posteriori probability distribution ( )zxf .  

This can be understood as finding the most likely image, x, to have produced the 
measured signal, z. 
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( )zxf  is maximised when the exponent is minimised 

( ) ( ) ( ) ( )[ ]∞
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∞
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t
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x  (4.23) 
yielding the estimate 

( ) ( )∞
−−−−− ++= xRzRHRHRHx 11111ˆ xn

t
xn

t
 (4.24) 

4.6 Parameters of the MAP estimate 

The noise covariance, Rn, measures the noise power in each component of the 
signal.  Measurement noise on each channel of the tomograph can be determined from the 
hardware; in this paper we consider each channel to have equal noise variance σn.  Rn is 
calculated using the definition of the signal [equation 4.6] 

[ ] ( )2h
iniin vR σ=  (4.25) 

where vh is the measurements from the medium on which the noise measurements were 
taken.  We define a matrix W such that 12 −= nn RWσ . 
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One convenient use of this matrix is to naturally deal with data sets containing 
faulty electrodes or measurement channels, which introduce large errors into the images.  
In the case of a faulty electrode, we assume that the noise on all signal components using 
that electrode is infinite, and the corresponding elements of Rn-1 are replaced with zeros.  
This formulation will then reconstruct the conductivity image corresponding to a reduced 
data set, which excludes the erroneous measurements. 

The properties of the image Rx and x∞ are less concrete than the noise properties 
and can only be estimated from a knowledge of the experimental configuration.  The 
expected change in the image E[x] is represented by x∞.  Without any specific knowledge 
of the physiological system being measured, conductivity changes are equally likely to be 
conductive as non-conductive; the expected image is therefore one of no conductivity 
change, and is best modelled by x∞ = 0. 

The covariance of the image Rx includes information on the amplitude of the 
image and also on the spatial frequency distribution.  The diagonal elements [Rx]ii 
 represent the variance of the amplitude of each image element, whereas the off diagonal 
elements are a function of the correlation coefficient r between a pixel in element i and a 
pixel in element j. 

[ ] [ ] [ ] jjxiixijx r RRR =
 (4.26) 

Since EIT has low spatial resolution due to the small number of measurements, it 
is unable to detect high spatial frequency contrasts in the image, indicating that the spatial 
frequency of the reconstructed distribution of conductivity change has little high 
frequency content.  Therefore, elements close to each other will have correlated 
reconstructed values.  Image reconstruction algorithms which assume no correlation 
between pixels tend to produce results dependent on the number of elements into which 
the medium is divided, because the area within each element, which is effectively forced 
to be correlated, becomes uncorrelated as the area is split into several elements.  

Instead of using equal image pixel variance, some groups (Shaw, 1993; Woo, 
1993) use a scaled diagonal Rx matrix such that 

[ ] [ ] �==
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We avoid this approach as it tends to "push" reconstructed contrasts toward the centre of 
the medium.  Instead, diagonal elements of Rx are set to σx2, while the off-diagonal 
elements account for the resolution of the medium.  For instance, using 16 electrodes 
there is not enough information to "see" resolution on the order of 5 % of the medium 
diameter.  We assume that pixels closer than this distance are highly correlated and pixels 
further apart are not correlated, with a gradual diminishing between the two extremes.  Rx 
can be interpreted as a spatial low pass filter.  

Unfortunately, this formulation is numerically unstable and difficult to invert.  
Instead, we construct a regularization matrix, Q, directly using a high pass filter to 
represent Rx-1.  A Gaussian high pass filter of spatial frequency ω0 has the form 
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using Fourier transform, the convolution kernel in the spatial domain is 
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where δ(x,y) is the Dirac delta function.  The filtering matrix F multiplies an image vector 
x to give a filtered image Fx.  Fij is calculated by centring the high pass filter in element i 
and integrating across element j 
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where Ej is the area of the element j and the centre of element i is (xi,yi) .  This 
integration was performed numerically on a mesh of 512×512 pixels.  We find it more 
convenient to express the filter cut-off frequency ωo in terms of the percentage of the 
diameter.  Using a grid of Np×Np pixels, 
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πω

pN
=

 (4.31) 

The regularization matrix Q is required to be symmetrical, and is calculated from 
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FFQ t
x
2σ=  (4.32) 

Since the filter convolution kernel has infinite extent, this formulation does not 
integrate over the complete domain of the filter.  The sum of each row of F will therefore 
not equal zero but be slightly positive, especially for those elements which are close to the 
medium boundary, indicating that the filter will include some filtering component at all 
spatial frequencies.  This behaviour is necessary in order for Q to be non-singular. 

This formulation of regularization may be interpreted as a penalization on high 
frequency components in the reconstructed image.  Regularization thus tends to improve 
the conditioning of the inverse solution at the expense of a degradation in the resolution. 

4.7 Regularization Parameter 

Using this formulation of the regularized inverse there remain two free 
parameters, σn and σx, which we combine into a single hyper-parameter µ which controls 
the amount of smoothing of the solution  
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 (4.33) 

from which we have the regularized inverse 

( ) ( )zBWzHQWHHx µµ =+=
− tt 1

ˆ  (4.34) 
where B(µ) is the image reconstruction matrix for a given value of µ.  We calculate a 
matrix B and multiply by z rather than solving the linear system as this allows the 
imaging problem to be separated into off-line and on-line sections.  B is calculated once 
for a given application; subsequent on-line calculation of the image from the 
measurements requires only a matrix multiplication, followed by mapping of x onto the 
finite element model, which is much less time consuming than solving the linear system.  
Using the FEM of figure 4.1 on a SUN SPARC 10/30 computer, the calculation of B 
requires 537 seconds, while the subsequent matrix multiplication and image 
reconstruction requires 0.25 seconds.  With some optimisation, this algorithm could be 
used for real-time imaging. 
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Many criteria can be used to guide the selection of this hyper-parameter of the 
MAP model (Galatanos, 1992).  The value of µ depends on many factors such as the 
number of finite elements in the image, and the regularization matrices W and Q.  In 
order to take these factors into account, we select the regularization parameter in order to 
control the amplification of noise in the reconstructed image.  Using the communications 
systems model of figure 4.4, we consider the reconstruction matrix to be a signal receiver: 
at the input there is a signal z and noise n producing the output signal Bz with noise Bn.   

H B+

x
z

n

x

 
Figure 4.4: Equivalent communications systems block diagram 

The signal to noise ratio of a random variable s is  
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Using this definition, the SNRs for the input and output signals, z and x can be calculated. 
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where 1 represents a column vector of ones, A is a diagonal matrix such that Aii is the 
area of element i, and M and N represent the number of measurements and image 
elements, respectively.  The noise figure (NF) is the output SNR to input SNR ratio.  This 
NF depends only on the reconstruction matrix and is a function of µ. 
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The signal used in this definition is z = Hxc , where xc is a small contrast in the 
centre of the medium.  In a given application, the desired noise figure for the 
reconstruction algorithm is chosen from a knowledge of the signals of interest and the 
level of noise present, and the value of µ corresponding to this NF is used.  

The reconstruction matrix with the minimum possible NF is calculated by the 
limit 

( ) WHQWHQWHHB ttt
min

111
NF lim −−

∞→
=+= µµ

µ
 (4.39) 

At this lower limit, B corresponds to the sensitivity matrix formulation for an 
appropriate choice of the matrix Q.  For instance, the algorithm of Gencer (1992), can be 
formulated as B = Q-1HtW where Q is a diagonal matrix such that 

[ ]iit
ii WHHQ =  (4.40) 

There is no practical upper limit to the noise figure; decreasing µ will increase NF 
until the matrix inversion becomes numerically unstable.  Of course, a reconstruction 
matrix which amplifies noise to this extent has no practical application.  The NF is a 
practical figure of merit with which to compare the noise performance of EIT image 
reconstruction algorithms.  Figure 4.5 illustrates the effect of the NF on the image 
reconstruction, where each image is shown as a wire frame mesh on the left hand side and 
as a grey-scaled image on the right.  Figure 4.5A shows the pattern to be imaged: two 
small conductive contrasting regions in a circular medium separated by one third of the 
diameter.  This pattern was simulated on a much finer finite element mesh than was used 
for the image reconstruction.  Figures 4.5B, D, and F are reconstructed using the voltage 
measurements from 4.5A with no noise added, while figures C, E, and G use the 
measurements with SNR of -3 dB.  Reconstructions in B and C use weighted 
backprojection, D and E use a reconstruction matrix B1, and F and G, matrix B2.  Both 
reconstruction matrices are calculated with a spatial filter matrix Q filtering 10% of the 
diameter; the NF of B2 is 2.0, while that of B1 is 0.4, equivalent to that of backprojection. 
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Figure 4.5: Reconstructed Images  
 A: Generating Conductivity Distribution 
 B: Measurements: No Noise  Reconstruction: Bebp 
 C: Measurements: -3dB SNR Reconstruction: Bebp 
 D: Measurements: No Noise  Reconstruction: B1 , NF=0.4 
 E: Measurements: -3dB SNR  Reconstruction: B1 , NF=0.4 
 F: Measurements: No Noise  Reconstruction: B2 , NF=2.0 
 G: Measurements: -3dB SNR Reconstruction: B2 , NF=2.0 
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Matrix B2 has better spatial resolution at the expense of reduced ability to reject 
noise.  Conversely, B1 has significantly improved noise performance with a reduction in 
spatial resolution compared to B2 but has better resolution than backprojection with 
equivalent noise performance. 

4.8 Algorithm Performance 

Evaluating the performance of EIT reconstruction algorithms is made difficult 
because the spatial resolution and sensitivity of EIT is highly dependent on the radial 
position.  Seagar (1987) presents an approach which characterises an image 
reconstruction algorithm on the basis of the figures of merit: resolution, accuracy, and 
contrast.  We propose that the accuracy and contrast can be more naturally described by 
the noise figure and the detectability of a contrast.  We also introduce a new figure of 
merit to measure the precision of localisation of the imaging. 

The resolution quantifies how close two contrasts must be before the 
reconstruction will blur them into one form, and is a function of the point spread function 
of a small contrast.  Because of the higher current densities near the boundary, there is 
considerably more sensitivity at the boundary than in the medium centre, and the 
resolution, which depends on the sensitivity, improves significantly as a contrast moves 
towards the boundary.  We define the blur radius (BR) as a measure of the resolution. 
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 (4.41) 
where ro and Ao are the radius and area, respectively, of the medium, and rz and Az are 
the radius and area of the zone containing half the magnitude of the reconstructed image 
from a point contrast.  Thus Ao = trace A, and 

δ>= � iiiz iAA xsuch that   allfor   (4.42) 
where the threshold δ is defined such that 
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We use this definition based on the image magnitude rather than the more 
traditional definition of width at half maximum, because the image maximum has a 
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higher variance due to noise than the image magnitude.  This definition is also more 
convenient when defining the probability of detection of a conductivity change. 

The precision of localisation of the imaging measures how well the position of an 
object is reconstructed.  Many algorithms, especially the backprojection algorithm, tend 
to "push" a reconstructed object towards the centre of the medium.  We measure this 
tendency with the position error (PE) 

 PE tedreconstrucsimulated ρρ −=  (4.44) 
where ρ is the radial position.  Thus, a positive PE indicates that a contrast is imaged 
closer to the centre than it should be.  The reconstructed position is defined as the centre 
of gravity of the zone, Az, used to define the blur radius.  

There are two adjustable parameters in this reconstruction technique, the 
regularization parameter, expressed in terms of the NF, and the filter low-pass cut-off 
frequency ωo, expressed in terms of diameter percentage.  Figure 4.6 plots the PE as a 
function of radial position for different NFs with a filter of 10% diameter, and figure 4.7 
plots the BR as a function of radial position under the same conditions.  In both of these 
graphs the performance of the reconstruction improves with increasing NF. 
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Figure 4.6: Position error vs. radial position for different noise figures 
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Figure 4.7: Blur radius vs. radial position for different noise figures 

Using these criteria the different algorithms proposed by various groups can be 
compared with the approach presented here.  The following six reconstruction matrices 
are calculated: 
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The matrices B5, B10, and B20 are calculated using the method presented here 
with the spatial filter cut-off frequency set to filter 5%, 10%, and 20% of the diameter, 
respectively.  BI corresponds to the method of Yorkey (1987), and BQ corresponds to the 
method of Woo (1993), where the QS is a diagonal matrix such that  

[ ] [ ]iiSii
t QWHH =  (4.46) 
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The Bebp is calculated by mapping the equipotential backprojection formulation 
of Barber (1987) onto our finite element mesh and scaling the resulting matrix by the 
backprojection filter.  Each element i,j of Bebp is 
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if element i is in the equipotential region for current injection pattern j and zero 
otherwise.  The co-ordinates (x,y) are integrated across the area of element i, and (xj,yj) is 
the location of the current injection dipole.  The NF of Bebp was calculated to be 0.40.  In 
order to meaningfully compare the different techniques, the regularization parameter µ for 
each reconstruction matrix was selected so all NFs equalled that of backprojection. 

Figure 4.8  compares these algorithms in position error as a function of radial 
position, and figure 4.9 in blur radius versus radial position.  In comparing these 
algorithms, the one that immediately stands out as having the poorest resolution and the 
highest position error is backprojection.  Of the remaining algorithms, the one with the 
lowest, and most uniform BR is BQ.  This performance, however, is achieved at the price 
of a significantly larger position error.  It seems that the use of a scaled matrix Q 
introduces a bias into the reconstruction. 
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Figure 4.8: Position error vs. radial position for different algorithms 
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Figure 4.9: Blur radius vs. radial position for different algorithms 

Besides these two, the algorithms perform similarly, except for a trade-off of 
resolution in the centre for resolution on the boundary.  For instance, while B5 has the 
lowest BR in the centre, it has the highest on the boundary.  At the opposite extreme is 
B20 and BI.  It is natural that BI would continue the trend of increasing filter diameter 
ratio, because the identity matrix is the limiting case for very large filter wavelength.  The 
best overall compromise of image resolution while avoiding significant PE is B10. 

4.9 Quantitative Imaging 

Although EIT is typically used for detection and monitoring of conductivity 
changes, it is important to understand how well the reconstruction process conserves the 
image amplitude, at least in the region where the linear approximation is valid.  Given a 
conductivity change x, the image reconstruction process calculates an estimate BHxx =ˆ .  
While this reconstruction degrades the image resolution, it should not affect the total 
image magnitude.  We define the quantitative gain (QG) as a figure of merit for the 
average amplification of the images by the reconstruction.  By summing the contribution 
of a uniform signal in each element of x, 
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Figure 4.10: Quantitative Gain versus Noise Figure 

Figure 4.9 shows the QG versus the NF for a 10% diameter spatial filter.  Except 
for NF close to the minimum value, NFmin = 0.26, the QG remains constant at a value of 
0.97, indicating that the reconstructed images can be interpreted quantitatively.  This is 
not the case for backprojection, however, where the QG is significantly greater than one, 
and also depends on the number of elements into which the medium is divided. 

4.10 Contrast detection 

In many practical clinical applications, EIT is used to detect conductivity changes 
in various organs, and it is important to be able to quantify this capability in order to 
determine, for a given application, whether the quantities of interest will be detectable. 

Using the model of figure 4.4, and a communications systems approach to 
calculating the error probability, the following quantities can be identified.  Given a 
symmetric channel where one of two possible signals z associated with the presence or 
absence of a conductivity contrast, xo, is transmitted across the channel B to the receiver.  
Thus, 
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The receiver, r, consists of summing the reconstructed elements conductivities in 
a region of interest surrounding the expected conductivity change.  The received signal is 
a scalar, s, with possible values 
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where the noise n has zero mean and variance 
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By setting the decision threshold at so/2, the probability of non-detection ( the 
probability of error ) can be shown to be (Papoulis, 1984) 
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where erfc is the complimentary error function, and so/σ is the signal to noise ratio at the 
receiver.  The simplest receiving filter uses the entire image as the received signal.  In this 
case the receiving filter r is a vector of ones, 1.  This result can be related to the definition 
of SNRout (equation 4.36), for an object in the centre of the medium xc, multiplied by a 
factor, K, which takes into account the covariance between the elements summed together 
in the receiver. 
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 For an arbitrary object xo, the SNRout must be multiplied by a gain factor G 

 c
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The probability of non-detection is, thus, a function of the original image, x, the 
NF and the SNRin. 
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This expression provides a natural way of understanding the significance of the 
NF parameter.  As the noise figure increases, the image becomes noisier and probability 
of failing to detect contrasts in the reconstructed image increases, while at the same time, 
the resolution improves, increasing the precision of locating contrasts.  The choice of 
compromise between resolution and noise performance can be based on this calculation.  
For example, in a clinical monitoring situation with EIT equipment of known noise 
output in which we want to be able to reliably detect 10 ml of fluid movement, the NF 
must be selected to constrain the probability of error from this signal to a desired 
tolerance. 

This simple receiving filter is in fact a poor choice; it is possible, however, to 
improve this P(ε) by using a receiving filter which is optimised to the region of interest in 
the image, and thereby rejecting noise outside of this region.  We select a receiving filter 
which contains the blur region from a point contrast in the original image.  By definition 
BR contains half the image magnitude, while the noise variance will decrease by the 
reduction in area due to the region of interest, (BR)2, assuming that the noise variance is 
constant across the image.  Even though this assumption is not valid, it allows an 
approximation of the improvement in detectability afforded by using a region of interest.  
The SNR in the region of interest will be 
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and the probability of non-detection of a contrast in a region of interest is 
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4.11 Discussion 

We have presented an image reconstruction technique for dynamic electrical 
impedance tomography based on a maximum a posteriori regularization approach, and 
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have developed several figures of merit to evaluate its performance.  This approach 
allows a theoretical interpretation of the image reconstruction algorithm which takes into 
account in a natural way the various a priori sources of information that we have: the 
noise magnitude in the measurement electronics, and the maximum spatial resolution 
attainable using a given number of electrodes.  From a practical perspective, this 
information can be taken into account by pre-calculating a reconstruction matrix, so that 
subsequent imaging requires only a matrix multiplication and can be accomplished in 
real-time. 

This approach has an adjustable regularization parameter which controls the trade-
off between the noise performance and the resolution of the imaging.  In order to compare 
different algorithms, we developed the noise figure as a parameter to measure the noise 
performance, so that two algorithms with equal NFs can be meaningfully compared in 
terms of resolution and imaging bias.  Using this comparison, we demonstrated that the 
algorithm presented here, compared to previously proposed algorithms, achieves the best 
resolution while avoiding introducing significant bias (not "pushing" reconstructed 
contrasts toward the centre of the medium).  

In order to quantify the significance of the NF, we introduced a communication 
systems approach to the detection of contrasts under measurement noise.  Reducing the 
NF reduces the noise in the reconstructed image and reduces the probability of non-
detection of a contrast.  In practice, the NF may be selected to ensure a reasonable chance 
of detecting a physiological event of interest. 

While the algorithm presented here performs well under zero mean, white 
Gaussian noise, a clinical measurement situation is not so simple: electrode contact 
quality is variable, electrodes move due to patient posture and breathing, and the medium 
is significantly inhomogeneous, to name just a few difficulties.  In order to interpret 
clinical impedance images, there remains much significant work to be done to understand 
the behaviour of this algorithm under these conditions. 
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5.1 Abstract 

Electrical Impedance Tomography uses surface electrical measurements to image 
changes in the conductivity distribution within a medium.  When used to measure lung 
ventilation, however, measurements depend both on conductivity changes in the thorax 
and on rib cage movement.  Given that currently available reconstruction techniques 
assume that only conductivity changes are present, certain errors are introduced.  A finite 
element model is used to calculate the effect of chest expansion on the reconstructed 
conductivity images.  Results indicate that thorax expansion accounts for up to 20 percent 
of the reconstructed image amplitude, and introduces an artefact in the centre of the 
image tending to "move" the reconstructed lungs closer together.  Although this 
contribution varies depending on anatomical factors, it is relatively independent of 
inspiration depth.  For certain applications in which one is only interested in changes in 
the level of physiological activity, the effect of the expansion can be neglected because it 
varies linearly with impedance changes.  We conclude that chest expansion can contribute 
significantly to the conductivity images of lung ventilation, and should be taken into 
account in the interpretation of these images. 
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5.2 Introduction 

Electrical Impedance Tomography (EIT) is a medical imaging technique which 
images the conductivity distribution in a medium from electrical measurements resulting 
from low frequency current injection at electrodes on the skin.  One of the promising 
applications of EIT is in cardio-pulmonary monitoring of intensive care patients.  The 
phenomena of interest, lung ventilation, lung perfusion, cardiac output, and lung fluid 
content, induce conductivity changes large enough to be measured by EIT.  The principal 
advantages of EIT in a monitoring environment are that it is non-invasive and minimally 
cumbersome, and potentially inexpensive enough to allow a system to be dedicated to 
each patient. 

For example, our tomographic system (Guardo, 1991) uses 16 EKG style 
electrodes surrounding the patient's thorax, with a thin co-axial cable connecting each 
electrode to the tomograph.  Because this configuration is not bulky or intrusive, and 
current injection is significantly below the threshold of cutaneous perception, it should 
not cause discomfort to a patient during prolonged monitoring. 

Several difficulties have been identified with EIT, the most important being the 
low spatial resolution, on the order of 10% of the medium diameter using 16 electrodes.  
This resolution is far too low for anatomical imaging, but may be of interest for 
functional imaging of physiological processes.  The application with which we are 
concerned in this paper, imaging of lung ventilation, is easily within the capacities of EIT. 

The other major problem is the low sensitivity: the largest physiologically 
realisable conductivity changes cause a 10% variation in the voltages measured, and most 
events produce far less signal than this.  It is generally recognised that EIT measurement 
hardware must have a precision of 0.1% (Guardo, 1991).  Combined with this low 
sensitivity to conductivity change, EIT has many sources of error in measurements, 
especially due to electrode positioning and contact resistance, which are affected by 
patient movement, posture, and skin perspiration. 

All imaging algorithms which have been proposed for EIT reconstruct the 
conductivity distribution assuming the electrical measurements depend uniquely on the 
conductivity ( for example see Webster (1992) ).  Respiratory activity, however, causes a 
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movement of the chest by as much as 10 percent of the anterior-posterior dimension.  In 
this paper the effect of this movement on the EIT measurements and on the reconstructed 
conductivity distribution is described, using a numerical model of the mechanical and 
electrical properties of the thorax. 

5.3 Image Reconstruction 

Two image reconstruction approaches have been proposed for EIT: static and 
dynamic imaging.  Static imaging involves reconstructing the absolute conductivity 
distribution from the voltage measurements, whereas dynamic imaging reconstructs the 
change in the conductivity distribution.  In general, static reconstruction algorithms suffer 
from a high sensitivity to measurement error (Barber, 1988), due to EIT being more 
sensitive to changes near the medium surface than it is to changes within the medium.  In 
this paper we consider dynamic imaging, which, while less general than static imaging, is 
more robust.  Images are reconstructed of the change in logarithm conductivity 
distribution between two sets of measurements, v1 and v2, taken at times t1 and t2 
respectively.  Our regularized linear reconstruction algorithm (Adler, 1995) defines the 
dynamic signal vector, z, as  
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Each component, i, of the signal represents a different pattern of current injection and 
voltage measurement.  Using this signal, the vector of image elements, x, is estimated, 
using the regularised image reconstruction formulation 
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This algorithm calculates a single reconstruction matrix B which takes into 
account various properties of the tomographic system in the parameters H, W, Q, and µ.  
W is a diagonal matrix of the reciprocal noise variances in each signal element; its value 
can be calculated from the definition of the signal or measured from the tomographic 
system.  H is a sensitivity matrix defined by 
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where Z(x) is a finite element model of the measured dynamic signal, z, due to a 
conductivity change x, and xo represents the background conductivity distribution.  H has 
dimensions of the number of conductivity elements by the number of signal components.   
Since, in general, we do not have anatomical information from which the background 
conductivity distribution can be calculated, it is assumed to be homogeneous. 

In order to avoid introducing artefacts by covering the medium too coarsely, the 
number of independently varying conductivity elements must allow a spatial resolution of 
at least 10% of the medium diameter.  Using 16 electrodes does not provide enough 
independent measurements to estimate each conductivity element, and some form of a 

priori information must be introduced.  Q is a regularization matrix which penalises high 
spatial frequency components in the reconstructed image.  We penalise all image 
components of spatial frequency 10% diameter and higher because the quantity of 
independent measurements available with the electrode configuration used does not 
permit resolving detail at this level.  The parameter ��controls the amount of 
regularization used, and has a strong influence on the performance of the image 
reconstruction.  A low value tends to produce the highest resolution images but at the 
same time amplify noise in the measurements, while a high value reduces the image 
resolution for an improved noise performance.  We determine µ in order to control the 
amplification of noise in the reconstructed image.  Using a communications systems 
model, we consider the reconstruction matrix to be a signal receiver: at the input there is a 
signal z and noise n producing the output signal Bz with noise Bn, and define the noise 
figure (NF) as the ratio of the input to output signal to noise ratio (SNR).  This NF 
depends only on the reconstruction matrix and is a function of µ. 
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 (5.4) 

All images reconstructed in this paper use a NF of 1.  In our imaging system,  the 
value of B is calculated off-line for the measurement configuration and geometry, and 
calculate only the matrix multiplication during the imaging.  In this paper the images 
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reconstruct the conductivity at 256 triangular elements; this image reconstruction takes 
0.10 s on our SUN SPARC 10/30 computer system. 

In order to determine whether the results of our simulations are a function of the 
reconstruction algorithm, or are generally applicable to EIT imaging, images were also 
reconstructed using the equipotential backprojection technique of Barber et al. (Barber, 
1987).  The ratio of image magnitude produced due to expansion and due to conductivity 
change using backprojection was within 5 percent of the value calculated using the 
algorithm presented here.  Since backprojection tends to "push" reconstructed contrasts 
towards the centre of the medium (Adler, 1995) artefacts due to electrode movement tend 
to be moved into the area of the lung images, and it is important to carefully select a 
region of interest that does not include these artefacts. 

5.4 Dynamic Imaging 

Dynamic imaging is able to significantly reduce errors due to unknowns in 
electrode position and medium geometry.  In order to demonstrate this effect, we simulate 
the finite element geometries shown in figure 5.1.  Figures 5.1A and 5.1B show a circular 
model with evenly spaced electrodes, indicated by arrows.  This is the same model used 
to reconstruct the conductivity images in figure 5.2, and there is thus no geometrical 
error.  Figures 5.1C and 5.1D show a medium with 10% rms position error on the 
medium geometry and the electrode configuration.  Figures 5.1B and 5.1D contain two 
conductive contrasts spaced by 1/3 the diameter half way toward the top of the medium, 
while 5.1A and 5.1C are homogeneous.  Figure 5.2 shows a wire frame plot of images 
reconstructed from these measurements.  Figure 5.2A is the dynamic image due to the 
change in measurements from 5.1A to 5.1B, i.e. the image due to no geometrical error, 
figure 5.2B images A-D with error in one measurement set and not the other, and figure 
5.2C images C-D with geometrical error in both measurements.  The results show that 
while the artefacts due to position error make 5.2B unrecognisable, 5.2C is almost of the 
same quality as 5.2A, except for a bias introduced into the positions and shapes of the 
contrasts. 
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A B

C D

 
Figure 5.1: A measurement configuration with geometrical and electrode 
placement error 

A−B A−D C−D

Figure 5.2:  Images from media with geometrical errors. 
 A: Measurements A-B 
 B: Measurements A-D 
 C: Measurements C-D 

Dynamic imaging is thus able to significantly reduce the effect of geometrical 
unknowns on image reconstruction as long as these perturbations stay constant over time.  
Additionally, dynamic imaging can deal with variability in the contact resistance and area 



82 

of electrodes, and differences in gains between channels of the measurement hardware.  
These physical constants are, in general, very difficult to control with sufficient accuracy.  
Iterative approaches to static image reconstruction (Woo, 1993; Yorkey, 1987) compare 
the measurements from the medium to those produced by the FEM and calculate the 
conductivity distribution necessary to best simulate these measurements.  In the sense that 
iterative algorithms compare measured data containing geometrical errors to simulations 
on known geometries, they are subject to the imaging difficulties incurred in figure 5.2B.  

5.5 Lung Ventilation and Electrode Movement 

A B

 
Figure 5.3:   Schematic diagram of rib cage movement during breathing. 
 A:   Rib Cage at end-inspiration 
 B:   Rib Cage at end-expiration 

Respiratory activity involves a rhythmic movement of the rib cage by as much as 
10 percent of the anterior-posterior dimension (Detroyer, 1985).  This results in a 
movement of the electrodes, which violates the assumption of constant geometry of 
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dynamic imaging, and tends to introduce artefacts into the reconstructed images which 
need to be taken into account in image interpretation. 

The three dimensional movement of the rib cage is complicated.  Inspiration 
results from  a combination of a contraction of the diaphragm, tending to vertically 
elongate the lungs, and an opening of the rib cage, tending to increase the lung cross 
sectional area.  The increasing lung volume decreases pressure, and, if the airway is open, 
causes inspiration.  This is schematically illustrated in figure 5.3.  The movement in the 
upper chest can be approximated as an up-down movement of the sternum and the 
anterior portion of the ribs while the posterior portion of the ribs remains fixed at the 
spine.  The relative contribution to the tidal volume from chest expansion and diaphragm 
movement can vary significantly, as a function of posture, tidal volume, and voluntary 
activity. 
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Figure 5.4: Normalised EIT sensitivity to off plane conductivity changes vs. radii 
of measurement plane 

Figure 5.4 shows the sensitivity of EIT to conductivity changes off the plane of 
measurement, measured in radii of the medium.  These results are simulated on a 
cylindrical medium for objects at four different radial positions, and the sum of all pixels 
in the reconstructed image is normalized with respect to the maximum value.  Images 
were also reconstructed using the filtered backprojection technique, yielding substantially 
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similar results.  A three dimensional FEM with an electrode diameter of 5 percent of the 
medium diameter was used for these simulations.  The vertical sensitivity is relativity 
constant as a function of radial position, except close to the boundary where objects off 
the measurement plane are less visible, and is not strongly dependent on electrode size 
when electrodes are smaller than the vertical sensitivity.  If a series of electrodes are 
placed in a plane around a cylindrical medium, the contribution to the measurements from 
contrasts off the electrode plane will be significant up to approximately one radius above 
or below the measurement plane, at which point its contribution to the EIT measurements 
is reduced to 13 percent of that of contrasts in the measurement plane.  Since the lungs 
extend significantly above and below the electrode plane, vertical elongation of the lungs 
due to contraction of the diaphragm will have a much less significant effect on EIT than 
other factors.  In this paper, only the effect of electrode movement due to chest expansion 
is modelled because this phenomenon should have the largest effect on impedance 
measurements. 

This movement is modelled in two dimensions as a forward displacement of the 
rib cage by an amount proportional to the distance anterior of the centre of the thorax.  
The lateral movement of the rib cage can vary between individuals from almost zero to as 
large as the movement in the anterior-posterior (AP) dimension.  The parameter L 
represents the ratio of the lateral to AP displacement.  Given a movement fraction of M of 
the AP dimension, APD, a point (x,y) on the rib cage has a displacement 

( ) ( ) ��
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� −−⋅ x+y=d ���

cc xx
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LyyM
 (5.5) 

where LD is the lateral dimension, (xc, yc) are the co-ordinates of the centre of the thorax, 
and �x  and 

�y  are unit vectors in the lateral and AP directions, respectively.  Thus for a 

movement fraction M = 0.1, for a thorax of 20 cm AP and 30 cm lateral dimension, with 
L=0.5, then the front (0 , +10 cm) and back (0 , -10 cm) of the thorax will move outward 
by 1 cm, and the sides (±15 cm , 0) will move outward by 0.5 cm. 
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5.6 Finite Element Modelling 

We use the finite element method (FEM) to solve for the mechanical and 
electrical properties of the thorax.  Our two dimensional FEM model based on 576 
triangular elements is shown in figure 5.5. 
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Figure 5.5: Finite element model of the electrical and mechanical properties of the 
thorax 

More elements are used in the simulation of EIT measurements than for the image 
reconstruction because this allows better representation of anatomical details.  The 
anatomy is based on CT scan data from a normal adult male.  Elements drawn with 
thicker lines form the lungs, the arrows pointing toward the thorax show the location of 
the electrodes, and the arrows pointing outward show the displacement of the rib cage 
during inspiration.  The medium is divided into three bulk tissue areas corresponding to 
the lungs, the spinal column and other tissue areas. 

Each of these tissues is assumed to be homogeneous and isotropic in its electrical 
and mechanical properties.  Thus, each tissue can be characterised by four properties: the 
modulus of elasticity, E, Poisson's ratio, υ, and the conductivity, σ, at expiration and 
inspiration.  There is a certain amount of disagreement on the mechanical and electrical 
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properties of tissues in the literature.  The values used in this study (Lai-Fook, 1976; 
Parker, 1990) are shown in table 5.1. 

 
Table 5.1: Mechanical and electrical tissue properties used in this paper. 

Tissue Modulus of 
Elasticity (E) 

Poisson's 
Ratio (υ) 

Conductivity (σ) 
Expiration 

Conductivity (σ) 
Inspiration 

Lung 2 kPa 0.47 120 mS/m 60 mS/m 

Skeletal Bone 5000 kPa 0.10 10 mS/m 10 mS/m 

Other Tissues 20 kPa 0.495 480 mS/m 480 mS/m 

Using the finite element method to solve the equations of elasticity, the 
displacement of all nodes can be calculated as a function of the rib cage displacement, the 
model geometry, and the elastic properties of each element.  A set of EIT measurements 
for a given thorax geometry and conductivity distribution is simulated using the finite 
element geometry of the thorax adjusted by the displacement calculated from the 
mechanical model. 

A two dimensional cross section of the thorax is modelled as a isotropic medium 
consisting of several bulk tissues of different mechanical properties.  Since the thorax has 
significant vertical extent above and below the plane of interest,  the vertical deformation 
is small, allowing the plane strain approximation, which assumes stresses in the z 
direction are zero.  Additionally, since respiration is a relatively slow phenomenon, we 
neglect dynamic contributions due to the inertia of tissues.  The static equilibrium 
conditions in terms of stress are: 
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where fx and fy are the externally applied body forces in the x and y directions, and σ and 
τ represent the stresses defined by 
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where u and v are the displacements in the x and y directions, respectively.  Substituting 
equations 5.Error! Bookmark not defined. and 5.7 into equation 5.6 we obtain the 
differential form of the plane elasticity equations (Reddy, 1992): 
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In an isotropic medium undergoing plane stress, the elasticity constants may be 
written in terms of the modulus of elasticity E and the Poisson's ratio υ of the material 
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Using this equation, the FEM is used to calculate the movement of all nodes as a 
function of the rib cage displacement.  Additionally, we ensure that the contact area of the 
electrodes is not changed by the calculated change in geometry of the medium. 

The electrical properties of a two dimensional isotropic medium can be 
represented by the electrical conductivity σ(x,y,t) and relative permittivity ε(x,y,t).  
Several tissues, especially muscle tissue, are anisotropic, but we do not consider this in 
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our model (Brekton, 1992).  Current is injected along the medium boundary, which sets 
up a distribution of voltage and current flow in the medium.  Within the medium there is 
an electrical field E(x,y,t) which induces a current 

to ∂
∂εεσ EEJ +=

 (5.11) 
where εo is the permittivity of free space.  For the purposes of this study, we neglect the 
effect of the permittivity, because we consider it to introduce a perturbation of the results 
that is less significant than the simplifications of the mechanical problem, such as treating 
the problem in two dimensions, already made. 

At low frequencies, we can approximate V−∇=E , and 0=⋅∇ J , giving 

( ) 0=∇⋅∇ Vσ  (5.12) 

The boundary conditions to this equation are determined by the distribution of 

current injection into the medium, and the requirement that the voltage be fixed at a 

reference point. 

The FEM is used to solve this equation to calculate the EIT voltages measured at 

the electrodes for each rib cage expansion level and conductivity distribution. 

5.7 Results 

Using this model, the EIT measurements in table 5.2 were simulated, for a lateral 

to AP rib cage movement ratio, L, of 0.5 and a movement fraction, M, of 10 percent.  In 

order to study the effect of expansion for a homogeneous medium, measurements were 

simulated for a condition where all tissue properties were set to those given for "other 

tissues" in table 1. 

Table 5.2: EIT measurements conditions simulated 

Measurement  Conductivity 
Condition 

Expansion 
Condition 

V0 Expiration Expiration 
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V1 Inspiration Expiration 

V2 Inspiration Inspiration 

V3 Homogeneous Expiration 

V4 Homogeneous Inspiration 

The images reconstructed are shown in figure 5.6; each conductivity distribution 

is shown as a wire frame on the left side, where the vertical axis represents the negative 

logarithm conductivity, and as a grey scale plot on the right, where darker regions 

correspond to decreased conductivity.  Each grey scale plot is normalised individually.  

Figure 5.6A images the change in conductivity distribution associated with inspiration 

due to both conductivity change and chest expansion, V2-V0; this corresponds to what 

would be actually measured on a patient.  If chest expansion did not occur and there were 

only conductivity changes, this would result in imaging V1-V0, shown in figure 5.6B.  

Similarly, if there was only chest expansion without conductivity change, imaging would 

give V2-V1, shown in figure 5.6C.  Figure 5.6D images the conductivity change due to 

expansion of a homogeneous thorax shaped medium reconstructed from measurements 

V4-V3.  For purposes of comparison, we include an image of conductivity change 

between end-expiration and end-inspiration for a tidal volume of 4 l using thoracic 

impedance measurements from a normal subject taken using our EIT system, figure 5.6E. 

The simulated images in both figures 5.6A and 5.6B are qualitatively similar to 

those produced experimentally except that the distribution of the lung images covers the 

thorax more uniformly than in the experimental image.  The effect of the chest expansion 

is to add a large, low amplitude artefact in the centre of the thorax, which "moves" the 

reconstructed lung regions closer to the centre.  The image produced by expansion of a 

homogeneous medium, 5.6D, has more than four times less contrast than the thorax 

expansion image, 5.6C.  This can be explained by the fact that most of the space made 

available in the thorax by expansion is filled by the lungs which increases the area filled 

with low conductivity tissue. 
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Figure 5.6: Images of conductivity change in the thorax. 
 A: Simulated expansion and conductivity change. 
 B: Simulated conductivity change only. 
 C: Simulated expansion only. 
 D: Simulated expansion for a homogeneous medium. 
 E: Measured data for tidal volume of 4 l. 

In order to quantitatively compare the contribution of each component of the 

images, we define the image magnitude as the sum of the pixels in a region of interest 

(ROI) of the reconstructed image.  The ROI chosen includes all the pixels except those 
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within 5 percent of the medium diameter of the boundary.  This choice of ROI allows 

exclusion of the artefacts produced at the electrodes. 

Figure 5.7 shows the normalized image magnitude as a function of the percent 

thorax expansion due to conductivity change and due to expansion for various values of 

the lateral to AP expansion ratio, L.  In calculating these values, the conductivity was 

assumed to vary linearly between its maximum and minimum values as a function of 

expansion depth.  In order to illustrate the percentage contribution of the two effects, 

figure 5.8 shows the ratio of expansion image magnitude to that of conductivity change as 

a function of  percent thorax expansion.  The contribution stays reasonably constant with 

respect to expansion, but varies considerably as a function of L, from an average value of 

18% at L = 1.0 to 2.5% at L = 0.0. 
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Figure 5.7: Normalized Image magnitude vs. percent thorax expansion 
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Figure 5.8: Ratio of expansion image magnitude to conductivity change image 
magnitude vs. percent thorax expansion 

These results depend somewhat on the values of the mechanical parameters.  In 

order to determine the sensitivity to these values, simulations were performed for a range 

of values of modulus of elasticity and Poisson's ratio for a thorax with L = 0.5 and one 

percent thorax expansion.  The ratio of image magnitude due to expansion to that due to 

conductivity change is presented in table 5.3.  The ratio remains relatively constant except 

where the simulated lung modulus or Poisson's ratio equals or exceeds that for other 

tissue.  Variations of the mechanical properties of skeletal bone produced changes of less 

than 3 percent to the expansion to conductivity change ratio. 

Table 5.3:  Ratio of expansion image magnitude to conductivity change image 
magnitude for various mechanical parameters.  

Expansion to 
conductivity 
change ratio 

Modulus of 
elasticity (kPa) 

Lung 

Modulus of 
elasticity (kPa) 

Other tissue 

Poisson's ratio 
 

Lung 

Poisson's ratio 
 

Other tissue 

0.1195 2.0 20 0.47 0.495 

0.1133 2.0 20 0.40 0.480 

0.0695 2.0 20 0.49 0.480 

0.1277 2.0 20 0.40 0.498 
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0.1184 2.0 20 0.49 0.498 

0.1222 0.5 5 0.47 0.495 

0.0893 4.0 5 0.47 0.495 

0.1315 0.5 40 0.47 0.495 

0.1222 4.0 40 0.47 0.495 

5.8 Discussion 

This paper presents an estimate of the magnitude of the artefact introduced into 

EIT images of pulmonary activity due to thorax surface electrode movement.  We have 

considered only the contribution from rib expansion in a two dimensional cross section, 

as this effect is the most important cause of electrode movement.  In order to completely 

characterise this problem, it will be necessary to use a much more detailed three 

dimensional anatomical model.  Our model, however, allows us to make several 

conclusions. 

• The expansion of the thorax contributes constructively to the measured 

change in conductivity.  The perturbation introduced into EIT images by the expansion is 

a broad zone in the centre of the image accounting for from 2% to 20% of the image 

magnitude.  The amplitude of this perturbation varies significantly with changes in the 

lateral to AP expansion ratio, and is affected by other anatomical differences also. 

• The percentage contribution to the total image due to conductivity change 

and expansion remains relatively constant with increasing rib cage movement, varying by 

up to 3% of the total image.  This effect indicates that image interpretation based on a 

reference level of physiological activity will largely eliminate the effect.  For instance, if a 

given image is known to correspond to 400 ml tidal volume in a patient, then 800 ml tidal 

volume should produce twice the image amplitude, and the relative contributions of 

expansion and conductivity change can be ignored. 
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CHAPTER 6: 
EXPERIMENTAL EVALUATION OF ELECTRICAL 
IMPEDANCE TOMOGRAPHY FOR MONITORING 

PULMONARY FUNCTION 

6.1 Introduction 

Many physiological processes of interest to studies of pulmonary function induce 
changes in tissue conductivity: heart and lung activity move air and blood and pulmonary 
edema introduces extravascular fluid, all of which contrast with the conductivity of 
thoracic tissue.  In the past, thoracic impedance has been proposed as a tool for 
monitoring pulmonary function in vivo; however, because of large variations in the 
normal values it was not considered a reliable technique. 

Electrical Impedance Tomography is evaluated as a technique to measure several 
physiological phenomena of interest to pulmonary function while avoiding the problems 
associated with transthoracic impedance.  Images of the change in conductivity between 
two sets of measurements taken at different times are reconstructed using the regularized 
linear reconstruction algorithm presented in chapter 4 with a noise figure parameter of 
0.5.  These images allow the effects of different physiological activities within the thorax 
to be separated by the different locations of the conductivity changes in the thorax image.  
Variations due to changes in electrode contact quality and skin resistance are typically 
seen at the outer edge of images and can be eliminated from the image interpretation by 
selection of an appropriate region of interest.  EIT also permits a relatively easy 
calibration so that measurements can be interpreted in terms of millilitres of volume 
change with an associated estimate of measurement error (Trudelle, 1995).  Additionally, 
EIT is non-invasive, potentially quite inexpensive and minimally cumbersome, requiring 
only the connection of several electrodes and wires to the patient. 

In this chapter the ability of EIT to determine quantities of physiological interest is 
studied.  The following capabilities of EIT are verified: 
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• Quantitative determination of physiological activity levels:  EIT 
measures the change in conductivity distribution from which it should theoretically be 
possible to quantitatively estimate a physiological function which modifies the 
conductivity distribution.  This is experimentally verified by imaging different levels of 
lung ventilation and fluid instillation into a lung.  Measurement of ventilation is verified 
by comparison to the ventilator tidal volume while instillation is verified by comparison 
to the fluid quantities instilled. 

• Rejection of extraneous physiological activities:  The Thoracic 
Impedance technique is considered to be unreliable because of its inability to reject 
physiological activities other than the one under investigation (Fein, 1979).  EIT 
accomplishes this rejection by careful control of data acquisition and selection of an 
appropriate region of interest in the reconstructed image.  This capability is 
experimentally validated in this study because measurement of ventilation requires 
rejection of cardiac activity and measurement of instillation requires rejection of both 
cardiac activity and lung ventilation. 

• Cross-sectional image production:  The advantage of EIT over currently 
used technologies for monitoring lung function is the ability to produce an image of 
conductivity change from which heterogeneities in lung function can be determined.  This 
capacity is validated by verifying whether the lung subject to fluid instillation can be 
determined from the EIT images. 

• Monitoring:  An advantage of EIT over currently used medical imaging 
technologies is the ability to monitor physiological function over time.  This capacity is 
verified by acquiring data during the reabsorbtion phase of the lung fluid and comparing 
the residual fluid quantity predicted by EIT to the value determined from the extracted 
lungs. 

6.2 Methods 

A block diagram of an EIT system is shown in figure 6.1.  A series of ECG style 
electrodes are connected around the subject's thorax.  The exact positioning of the 
electrodes is not critical, but it is important that they do not move during the monitoring.   
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These electrodes are connected to our EIT data acquisition controller (Guardo, 1991), 
from which data is sent to a computer which calculates the thorax image. 
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Figure 6.1: Block Diagram of our EIT system. 

Images are calculated of the change in the conductivity distribution in the patient's 
thorax between the taking of any two data sets.  This imaging approach is called dynamic 
EIT, to distinguish it from static EIT, which aims at reconstructing the conductivity 
distribution from one data set.  Dynamic imaging is significantly more robust because it is 
able to better compensate for measurement errors, variation in electrode positioning and 
is more sensitive to small conductivity changes (Adler, 1995). 
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Figure 6.2: Model of EIT image formation and noise 

The model of figure 6.2 describes the interpretation of an image contrast in a 
region of interest produced by a change in conductivity.  For example, an amount of fluid 
(x ml) of known conductivity is introduced into a lung, and an EIT image is reconstructed 
of the conductivity change produced from which a sum of image pixels (y) in the region 
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of interest (ROI) is calculated.  We would like to be able to calculate the volume of fluid 
and estimate the error in this calculation. 

Two sources of error are modelled, an error of measurement of the fluid when it 
was introduced (nMeas) and an error due to the electronic and imaging system (nEIT).  
Additionally, there is a conversion factor, k, between volume and image contrast.  The 
parameter k depends on the conductivity of the fluid, and its position relative to the plane 
of the electrodes.  Trudelle (1995) has shown that nEIT is a constant of the EIT system, 
and that this linear relationship is valid within 10 percent up to an instillation region 
covering 25 percent of the thorax diameter.  Thus, after calculating y from the EIT image 
the fluid volume is calculated from 

k
y

x =
 (6.1) 

The standard deviation of the error in this calculation of the fluid volume is expressed by 
σx, which we define as the EIT measurement error and use as the figure of merit for the 
measurement of a physiological process. 

The parameter k can be calculated numerically in situations where the geometry 
and anatomy can be accurately modelled.   However, this is not the case in this study, and 
the values of k and σx are estimated from the experimental data using the following 
statistical calculations. 

Given N experiments introducing quantities of fluid xi producing EIT image pixel 
sum yi ( 1 ≤ i ≤ N ), k is defined to be the value which minimises 
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The EIT measurement error is the standard deviation in estimating the fluid quantity x 
from the EIT image, y, and is calculated by 
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The ROI used for the calculation of y includes all the thorax area except the 20 
percent of the area closest to the surface.  This choice ensures that the lung area is 
included while image artefacts on the surface due to electrode movement are excluded.  
The value of k calculated by this model is valid for a particular electrode placement 
geometry and anatomy and for a given fluid conductivity.  Calibration of this parameter 
for various measurement configurations in a cylindrical saline filled thorax model is 
described by Trudelle et al. (1995). 

During the reabsorbtion phase, the fluid content is modelled to decrease linearly 
with time at a rate of r ml/min, expressed by the model 

rtx
k
y

o
t −=

 (6.5) 
where t is the time in minutes after maximum instillation, xo is the fluid volume at 
maximum instillation, and yt is the ROI pixel sum in the EIT image at time t.  The linear 
model used here is not ideal; the work of Mathay (1985) and Berthiaume (1988) shows 
that reabsorbtion in dog and sheep lungs can best be modelled using an exponential 
function.  The experimental data, however, represents a relatively short period compared 
to the time required for complete reabsorbtion, during which the difference between an 
exponential and linear model is small.  From a calculation of r, the expected error, σr, 
associated with the measurement of the fluid quantity during the reabsorbtion phase can 
be expressed by 

2

1
1

1 �
=

− �
�

�
�
�

� −−=
N

i
o

r
Nr rtx

k
yσ

 (6.6) 

Two choices of the ROI are shown in figure 6.3: the instillation region, Ri, which 
corresponds to the half of the thorax which contains the lung undergoing instillation; and 
the control region, Rc, which corresponds to the opposite half.  Two additional regions 
are defined: a whole thorax region, Rt, combining the pixel sum in both sides, and a 
difference region Rd, corresponding to the difference in pixel sum between Ri and Rc. 
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Figure 6.3: Choice of Region of Interest 

EIT is most sensitive to conductivity changes in the plane of the electrodes 
(refered to as the measurement plane), but since the pattern of electrical current flow 
covers the volume between the electrodes, it does respond to changes which occur above 
and below this plane.  The sensitivity drops to 50 percent at one half of the medium 
radius off plane.  For example, for a subject with an anterior-posterior dimension of 20 
cm,  EIT will be most sensitive to conductivity changes within 5 cm above and below the 
measurement plane.  Using a configuration of 16 electrodes does not provide enough 
information to allow EIT to produce a high resolution image; structures close to each 
other tend to be blurred together in the image.  The measurement configuration and image 
reconstruction algorithm used allow contrasts separated by more than one quarter of the 
radius to be distinguished.  The reconstructed position of a conductivity change is 
accurate to within 5 percent as long as the change is 10 percent of the diameter from the 
electrodes.  Reconstructed positions of conductivity changes close to the electrodes tend 
to get "pushed" toward the centre of the medium. 

When positioning the electrodes, it is not necessary to ensure that the spacing 
between all electrode pairs is exactly the same, as long as the electrodes do not move 
between the acquisition of the data sets to be compared (Section 4.4).  Computer 
simulations indicate that electrode positioning variability of 1 cm on a thorax of diameter 
20 cm produces no substantial change to the images produced. 

6.3 Experimental Protocol 

Ten large dogs (32.6 ± 6.3 kg) were anesthetized and paralysed.  After 
tracheotomy, animals were mechanically ventilated in a prone position.  In order to assess 
hemodynamic stability, heart rate, blood gas concentrations, and pulmonary arterial and 
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wedge pressures were monitored.  16 ECG style electrodes spaced evenly around the 
thorax 10 cm above the base of the rib cage, and 3 electrodes for measurement of cardiac 
activity were attached to each animal.  A current of 500 µA at 13 kHz was injected across 
pairs of adjacent electrodes.  EIT data acquisition was begun a minimum of one hour after 
preparation of the animal. Figure 6.4 shows a ventral view of the prepared animal with 
the EIT and ECG electrodes connected. The EIT electrodes are connected to the flat cable 
on the right side of the image. 

 
Figure 6.4:  Prepared animal with electrodes attached for the ECG and for EIT 
data collection.  

The data acquisition triggering protocol is shown in figure 6.5.  The EIT system is 
capable of demodulating the voltage at all electrodes for one injection pattern in 40 ms.  
In order to reject any contribution from cardiac activity, all data acquisition was triggered 
100 ms after the QRS peak.  Data for each injection pattern was acquired after subsequent 
QRS peaks.  One data set requires 16 heart beats during which the ventilation to the 
animal is stopped by clamping the airway tube from the ventilator.  The ventilation tube 
is clamped at end-expiration to fix the lung volume,  acquisition is triggered by the QRS 
peak until all current patterns have been applied, and then the ventilation is allowed to 
continue.  This triggering ensures that the contribution to the conductivity distribution 
from cardiac and lung activity will be the same for both data sets and will not appear in 
the image of the change in conductivity.  Control of ventilation and starting the EIT 
acquisition was done by human operators, while the QRS synchronization was performed 
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under computer control.  All EIT data measurements were repeated three times to 
calibrate for experimental noise. 

EIT Triggering

Cardiac Activity

Lung Ventilation

Acquisition # 1 2 15 16

Clamp Unclamp  
Figure 6.5: triggering schema for cardiac and pulmonary activity 

Lung ventilation was measured by imaging the difference between EIT data sets at 
end expiration and end inspiration.  Measurements were taken at ventilator tidal volumes 
of 200, 500, 700, and 1000 ml except on 3 dogs where all values from 100 ml to 1000 ml 
in 100 ml increments were taken.   After each change of tidal volume, the animal was 
allowed 5 minutes to stabilise while ventilated at a tidal volume of 500 to 700 ml.  All 
lung ventilation data was acquired before fluid instillation took place. 

In order to measure lung fluid content all EIT data was acquired at end-expiration 
at a constant level of lung ventilation, and images were reconstructed relative to a 
reference data set taken at end-expiration prior to fluid instillation.  Saline solution with 
added protein (5% Canine Albumin Solution) and a colouring marker (Evans' Blue) was 
instilled into a lobe of the right lung through a catheter positioned using a bronchoscope.  
Measurements were taken after successively instilling 10, 25, 50, 75 and 100 ml of fluid, 
and subsequently measurements were taken approximately every 30 min for the next four 
hours, to monitor fluid reabsorbtion. 

Just prior to sacrificing the animal, a reference set of images were taken to 
confirm the orientation of the EIT image with respect to the animal.  10 ml of saline was 
injected sub-cutaneously underneath the electrode just left of the centre of the back.  The 
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image reconstructed of this conductivity change allows the orientation of the animal in 
the images to be confirmed. 

After the last data acquisition, the lungs were extracted and the residual fluid 
content was measured using a gravimetric lung water technique, where the normal lung 
served as a control to calculate the residual amount of water in the instilled lung.  This 
technique has a coefficient of variation of 10% (Berthiaume, 1987), and is considered to 
be a standard for lung water measurement.  Additionally, the lung into which the fluid 
was instilled as indicated by the lobe stained with the colouring marker in the solution 
was verified. 

6.4 Results for Ventilation and Instillation 

EIT images of ventilation were reconstructed from data sets taken at end 
inspiration and end expiration at each value of tidal volume, while images of instillation 
were reconstructed from the difference between the reference and the post instillation data 
sets.  The reference image to confirm the orientation was calculated between end-
expiration data sets taken before and after the saline injection.  Figure 6.6 shows images 
of the conductivity changes for the dog in experiment #5.  On the left hand side, each 
image is shown as a wire frame plot where the conductivity change corresponds to the 
height, and, on the right hand side, as a grey scale image where magnitude of conductivity 
change is indicated by increasing colour contrast.  All wire frame images are shown at the 
same scale, whereas each grey scale was individually normalized to use the full range of 
colour contrast. 

Figure 6.6A is an image of the change in conductivity due to a tidal volume of 500 
ml, while figure 6.6B shows the conductivity change due to instillation of 100 ml saline 
in the right lung.  Since inspiration of air produces a non-conductive change, and fluid 
instillation produces a conductive change, the ventilation image is inversed by comparing 
end-inspiration to end-expiration in order to show both images on the same vertical scale.  
Figure 6.6C shows the orientation reference image.  The EIT images, while of low 
resolution, show the positions of the lungs, and clearly distinguish the right lung, which 
underwent instillation, from the control lung.  Additionally, the position of the sub-
cutaneous saline injection corresponds to the position imaged in figure 6.6C. 
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Figure 6.6: Images of the conductivity change in the thorax 
    A: Due to 500 ml tidal volume 
    B: Due to 100 ml fluid instillation 
    C: Due to injection of 10 ml under dorsal electrode 

Images are shown for a single animal, but are qualitatively similar to the images 
from the other animals.  The major difference between animals was in the separation 
between the reconstructed lung areas.  In some animals these areas were distinct whereas 
in others they were close enough together to form a single image contrast. 
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Figure 6.7: Conductivity change in the thorax from end 
  expiration to end inspiration vs. tidal volume 
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Figure 6.8: Conductivity change in the thorax vs. instilled fluid quantity 

The relationship between the magnitude of the EIT image and the level of the 
physiological process is determined by calculating the sum of all image pixels and 
graphing this value with respect to the volume change between the taking of the EIT data 
sets.  Figures 6.7 and 6.8 show graphs of the magnitude of the image sum as a function of 
the tidal volume and instillation fluid volume, respectively.  This data was calculated 
from experiment #3 where all 100 ml volume steps were measured.  The dashed line 
shows the best fit linear relationship.  Both graphs are normalised with respect to the 
1000 ml ventilation value. 

Table 6.1 shows the EIT measurement error for each animal for ventilation and 
for instillation.  In order to verify the linear model of figure 6.2, the Pearson r correlation 
coefficient is also calculated.  Results are not available for instillation on dog #5 due to a 
computer operator's error. 
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Table 6.1: EIT Measurement error and correlation coefficient for ventilation and 
instillation data sets. 
Dog 

# 
Ventilation 

(ml) 
Ventilation 

(r coefficient) 
Instillation 

(ml) 
Instillation 

(r coefficient) 
1 153 0.975   4.1 0.997 
2   69 0.995   2.7 0.999 
3   95 0.988   9.7 0.983 
4   43 0.998   5.7 0.995 
5   40 0.998  N/A N/A 
6   72 0.994  12.7 0.980 
7   68 0.994   6.8 0.991 
8 168 0.959 37.5 0.717 
9   82 0.992   7.3 0.992 

10 112 0.977   4.4 0.997 
Average   90 0.987  10.1 0.961 

Another way to describe this data is to compare the fluid volumes calculated from 
the EIT image interpretation model to the fluid volume levels used.  For instance, all EIT 
estimates for each dog for 50 ml fluid instillation are used to calculate a mean estimate 
and an associated standard deviation for this instillation level.  This calculation is then 
repeated for each instillation and ventilation level.  Figure 6.9 and table 6.2 show the 
values calculated for ventilation and figure 6.10 and table 6.3 show those for instillation.  
Additionally, a line showing the ideal linear relationship is plotted. 

Given measurements of the EIT image sum, yi, and a calculated value of ki,  
)1( Mi ≤≤  for a given level of activity for each animal, the average calculated activity 
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and the standard deviation of the estimate of this value is 
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Figure 6.9: Average volume from EIT image vs. Tidal Volume 
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Figure 6.10: Average volume from EIT image vs. Instilled fluid Volume 
 
Table 6.2: Average volume from EIT image and error for ventilation 

Tidal 
Volume 

( ml ) 

Average volume 
 from EIT image 

( ml ) 

Standard deviation 
Error 
( ml ) 

 200 209 89 
 500 523 68 
 700 699 55 
1000 988 55 

 
Table 6.3: Average volume from EIT image and error for instillation 

Instillation 
Volume 

( ml ) 

Average volume 
 from EIT image 

( ml ) 

Standard deviation 
Error 
( ml ) 

 10     5.6 12.6 
 25   19.4 13.5 
 50   40.0 24.3 
 75   78.5   4.6 
100 104.2 13.2 
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6.5 Results for fluid reabsorbtion 
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Figure 6.11: Images of conductivity change in the dog thorax for experiment #4. 
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Figure 6.11 shows images of conductivity changes in the thorax during the 
reabsorbtion of lung fluid for the dog of experiment #4.  All images are reconstructed 
with respect to the reference data set taken at end-expiration just before fluid instillation.  
The image labelled "500 ml V" reconstructs the conductivity at end-inspiration.  The next 
two images show different levels of fluid instillation, "25 ml I" and "100 ml I" reconstruct 
25 and 100 ml of fluid instillation, respectively.  While ventilation produces a decrease in 
the conductivity, fluid instillation produced a conductivity increase. 

The subsequent images, labelled "39 min", "91 min", "148 min", and "199 min", 
reconstruct the conductivity distribution at these time intervals after instillation.  It is 
interesting to note that the fluid region tends to move toward the front of the animal over 
the course of time.  This effect is evident, to varying extents, in all the animals.  Since the 
animals were in the prone position, this would indicate a downward movement due to 
gravity.  The EIT images, while of low resolution, show the positions of the lungs, and 
clearly distinguish the lung which underwent instillation. 
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Figure 6.12: Image magnitude vs. instillation volume and reabsorbtion time. 
  Symbol + : Pixel sum in Ri 
  Symbol o : Pixel sum in Rc 
  Symbol * : Pixel sum in Rd 

The EIT pixel sums in the regions Ri, Rc and Rd, are shown in figure 6.12 during 
the instillation and reabsorbtion phase of experiment #4.  Additionally, the curves fitted 
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during the instillation (equation 6.4) and reabsorbtion (equation 6.6) phases are shown. 
During the instillation, the pixel sum in the region Ri is almost identical to that in Rd. 
During the reabsorbtion phase, however, there is a drift in both Ri and Rc, which is 
reduced by taking the difference between these regions, as in Rd. 

Table 6.4 shows the values of the expected error of the EIT measurement for 
instillation, σi, and reabsorbtion, σr, for each animal and for each choice of ROI.  
Additionally, the residual fluid, xtmax, at the end of the experiment, tmax, is calculated 
from the EIT data by 

x x rtt omax max= −  (6.9) 
and is also calculated gravimetrically.  Data was not available for these calculations for 
experiments #1 and #5. 

Table 6.4: Residual water content and EIT estimation errors. 
Dog # Image Error (ml) 

Instillation 
Error (ml) 

reabsorbtion 
Residual 

Fluid (ml) 
2 gravimetric    63.7 
 instilled 3.09 13.35 110.0 
 difference 4.92 9.39  78.4 
 total image 2.51 25.31 137.3 

3 gravimetric    81.3 
 instilled 7.97 9.25  72.9 
 difference 8.51 10.69 106.6 
 total image 9.67 12.52  50.2 

4 gravimetric    78.5 
 instilled 5.50 10.87  78.8 
 difference 5.56 17.54  59.9 
 total image 5.86 26.67  95.3 

6 gravimetric    91.3 
 instilled 8.23 17.94  62.8 
 difference 7.23 25.55 185.5 
 total image 12.04 35.48  -66.1 

7 gravimetric    56.6 
 instilled 3.86 17.75  -20.7 
 difference 2.34 10.17 193.2 
 total image 6.45 33.36 -152.9 
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8 gravimetric    50.1 
 instilled 23.15 45.83 -196.0 
 difference 15.04 24.29  -85.6 
 total image 37.51 85.33 -313.3 

9 gravimetric    13.2 
 right 4.13 24.82  152.3 
 difference 5.79 19.55  140.2 
 total image 7.31 35.45  161.8 

10 gravimetric    45.1 
 instilled 6.35 1088.39 -4455.0 
 difference 14.57 42.23  221.5 
 total image 4.43 1446.54 -5937.8 

6.6 Discussion 

The performance of EIT in each of the four categories mentioned has been 
evaluated: 

• Quantitative determination of physiological activity levels:  EIT shows 
good performance in quantifying lung ventilation and fluid instillation: 

Lung ventilation:  EIT image magnitude is correlated linearly to lung tidal 
volume with a mean correlation coefficient of 0.987.  This indicates that the image can be 
used as an estimate of tidal volume;  the calculated average EIT measurement error for 
this application is 90 ml. 

Fluid instillation:  Image magnitude correlates well with the quantity of fluid.  
The mean correlation coefficient is 0.961 and is above 0.95 for all experiments except #8.  
The measurement error for EIT estimation of fluid quantity is 10 ml. 

• Rejection of extraneous physiological activities:  The data acquisition 
protocol used resulted in successful rejection of conductivity changes due to cardiac 
activity in both measurement of lung ventilation and tidal volume.  It is possible that 
some of the error in the measurements is due to variability in lung volume.  The relatively 
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low EIT measurement error values, however, indicate that the imaging process is quite 
effective at eliminating contributions from extraneous processes. 

• Cross-sectional image production:  Images of lung ventilation showed a 
zone of conductivity change distributed roughly equally on both sides of the thorax, while 
fluid instillation images showed a conductivity change zone clearly on one side of the 
image.  The location of this zone corresponded in all experiments to the instilled lung. 

• Monitoring:  The calculation of the residual lung fluid by EIT does not 
correlate well with the values determined from the extracted lungs.  The average 
difference between the residual fluid estimates in experiments #1 to #6 for the instillation 
region Ri is 20.9 ml.  In experiments #7 to #10 these errors are significantly higher.  This 
is possibly due to the fact that the EIT system was repaired between experiments #6 and 
#7 and the replaced parts may have had a larger electronic drift.  This data indicates that 
the EIT system used for these experiments cannot monitor conductivity changes over 
periods of hours.  It is, however, possible that this inaccuracy is caused by drift in the 
measurement electronics.  If this is the case, it should be possible to correct for this with 
improved electronic design of the EIT system. 

Certain sources of error have been identified in the experimental procedure.  
Firstly, the clamping of the airway tube by a human operator is potentially inaccurate.  As 
the ventilator was pumping continuously the operator had to time the closing of the tube 
to coincide with end-expiration and end-inspiration.  Some of the scatter of the data 
points at a given tidal volume (for example in figure 6.7) may be to due this difficulty.  
Since the air flow changes much more quickly at end-inspiration than end-expiration, 
variability in the clamping at end-inspiration would have more effect on lung volume than 
variability at end-expiration.  Since the only image reconstructions which used data 
acquired at end-inspiration was for the lung ventilation, this would explain the higher EIT 
measurement error for ventilation than instillation. 

Additionally, during time taken for the data acquisition the air volume in the lungs 
may have decreased due to uneven CO2 / O2 exchange rates.  Under anesthesia dogs have 
a resting O2 uptake of 6 ml/kg/min, or about 200 ml/min for a 35 kg dog (Cain, 1977; 
Shardonofsky, 1990).  Under normal conditions the respiratory exchange ratio (the ratio 
of CO2 out to O2 in) is about 0.8, leaving a net volume loss in the lungs of approximately 
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40 ml/min.  However, during periods of apnea, R falls and the net volume loss may 
increase considerably.  Using a volume loss estimate of 40 ml/min during the average 
time taken of about 15 s from the clamping the airway tube until the end of data 
acquisition, there is an average of approximately 10 ml less lung volume at the end of the 
data acquisition than at the beginning.  This value is relatively small compared to the 
ventilation tidal volumes measured.  The development of more technically advanced EIT 
systems which can acquire data more rapidly should eliminate this problem. 

Selection of the ROI has a significant effect on the calculated EIT measurement 
error.  Table 6.5 compares the measurement errors for three different regions of interest: 
the instilled region (Ri), the difference region (Rd), and the whole thorax region (Rt).  
The average EIT measurement error is calculated for instillation for experiments #2 to #4 
and #6 to #10 and the average error in measurement of the reabsorbtion is calculated for 
experiments #2,#3,#4 and #6.  Since ventilation produces a conductivity change across 
the whole thorax, the ROI analysis cannot be used for these data sets.  The lowest error is 
in Ri, followed by Rd, with the highest error in Rt.  It seems that the selection of a smaller 
ROI contributes to reducing errors. 

Table 6.5:  EIT measurement errors for different ROIs. 
ROI Instillation 

( ml ) 
Reabsorbtion 

( ml ) 
 Ri    7.8 20.9 
 Rd    8.0 38.2 
 Rt   10.7 69.7 
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CHAPTER 7: 
DISCUSSION AND CONCLUSION 

7.1 Summary 

This thesis evaluates EIT as a technique for the measurement of lung function.  
There are several clinical applications which could benefit from this technology should it 
be feasible and have sufficient accuracy.  Current pulmonary monitoring techniques, 
based on mechanical measurement of flows, volumes and pressures, typically measure 
one global parameter for lung function and do not allow investigation of regional 
inhomogeneities.  Current imaging techniques, on the other hand, due to their 
invasiveness, cost, and cumbersomeness do not allow monitoring of the lung function 
over time. 

Although EIT has low spatial resolution compared to these imaging modalities, it 
has the advantage, due to its non-invasiveness, of temporal resolution.  With currently 
available technology, rates of 6 images/second are possible, and this should increase with 
newer versions of EIT equipment.  The most attractive feature, however, is the possibility 
of continuously imaging over periods of hours, enabling the equipment to monitor 
changes in lung function associated with changing activity, administration of a drug or 
with the progression or resolution of a pathology. 

In this thesis this question has been approached from two perspectives.  From a 
theoretical perspective, image reconstruction algorithms were developed, and certain 
physiological difficulties which affect the image interpretation were modelled.  From an 
experimental perspective, the ability of EIT to quantify some basic lung functions was 
verified. 

Two different techniques for image reconstruction have been developed, an 
artificial neural network algorithm (ANN), and a maximum a posteriori (MAP) based 
regularization technique.  The key advantage of both of these techniques is the ability to 
take into account properties of the measurement system, such as the level of noise in the 
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data and the maximum attainable spatial resolution.  With the ANN technique this 
property is a function of the training set used; by using a higher noise level in the training 
data, the network was able to perform better in response to measurement noise.  In the 
MAP approach this adaptation is possible because the algorithm is based on a statistical 
description of the measurement system. 

One advantage of these techniques in an experimental application is the definition 
of algorithm performance in terms of the measurement system rather then the data set.  If 
the reconstruction depends on the data, all calculations need to be done for each data 
acquisition, whereas these algorithms calculate a reconstruction matrix once, and each 
image reconstruction requires only a matrix multiplication and a mapping into image 
space.  These differences can be significant: while the image reconstruction takes 0.25 
seconds on a SUN SPARC 10 system, calculation of the matrix for the MAP algorithm 
requires 537 seconds, while for the ANN, network training requires several hours. 

In order to compare these algorithms with reconstruction techniques proposed by 
other groups, several figures of merit were defined.  The noise performance of an 
algorithm is measured with the noise figure, the position error  measures the precision of 
reconstruction of an object's position, and the image resolution is measured by the blur 

radius.  Using these figures of merit, the MAP technique is compared to the 
reconstruction techniques proposed by Yorkey et al. (1987) and Woo et al. (1993) in 
chapter 4, and the MAP and ANN algorithms are compared in annex A. 

The non-linearity of EIT poses several difficulties, which, at present, are not taken 
into account in the image reconstruction techniques proposed.  It is therefore important to 
be able to interpret reconstructed images with an understanding of the possible 
contributions of these difficulties.  Chapter 5 discusses the determination of the effect of 
electrode movement on EIT images of lung ventilation.  While several other image 
interpretation difficulties exist, it was felt that this was the most important consideration 
for interpretation of pulmonary function.  A finite element model of the mechanical and 
electrical properties of the thorax was used to simulate the EIT measurement contribution 
from thorax expansion and from lung conductivity change during breathing.  Results 
indicate that thorax expansion contributes constructively to ventilation images and 
accounts for from 2 to 20 percent of the image magnitude, depending on the geometry of 
the movements of the rib cage. 
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The ability of EIT to measure certain pulmonary functions was experimentally 
evaluated in dogs: measurement of the level of lung ventilation was validated by 
comparing the EIT image magnitude to the tidal volume measurement of the ventilator; 
quantification of fluid presence in a lung was compared to the volume of fluid instilled; 
and determination of which lung received the fluid was verified by comparison to the 
extracted lungs.  Results indicate that EIT can always determine the affected lung, and 
can measure ventilation and instillation with a mean error of 90 ml and 10 ml, 
respectively. 

Additionally, EIT measurement of the reabsorbtion of lung fluid was compared to 
gravimetric appraisal in the extracted lungs.  Unfortunately, the amount of residual fluid 
calculated from the reconstructed image had a substantial error due to drift in the data 
measurements.  While EIT measurement of short time scale (less than an hour) 
phenomena was relatively good, measurement of changes over longer periods are subject 
to electronic drift in the measurements.  This difficulty is possibly due to the design of the 
EIT system used (HEMOS III, see Guardo et al. (1991) ) and may be less significant in 
the most recent system design (Savoie, 1994).  These results are discussed in chapter 6. 

7.2 Future Work 

EIT is sufficiently new as a technology that abundant possibilities for 
improvement and validation exist.  This section presents the open questions that, in the 
opinion of the author, are most important for the measurement of pulmonary function. 

7.2.1 Image Reconstruction and Interpretation 

•  Complex impedance distributions. Most image reconstruction algorithms 
typically assume that there is only a conductive component to the impedance.  Lungs, 
however, show significant admittivity at the frequencies used by EIT (Surowiec, 1987; 
Foster 1989; Nopp 1993).  The assumption that tissue is purely conductive may introduce 
errors into reconstructions.  Some authors (for example Riu, 1992) propose separately 
reconstructing in-phase and quadrature images from the in-phase and quadrature 
measurements, respectively, but this assumption is clearly too simplistic. 
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It would seem that the MAP model proposed in chapter 4 could be adapted to take 
into account the admittivity of the medium.  As previously shown, the voltage 
distribution in the medium can be expressed by 

( ) 0=∇−•∇ Vj oωεεσ  (7.1) 

The finite element model can be adapted to accept two parameters for each 
element, a conductivity and an admittivity, and calculate a vector, v, of in-phase and a 
vector, u, of quadrature voltage measurements.  The dynamic signal vector, z, would 
become 
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where each pair of components, 2i-1 and 2i, of the signal represents the in-phase and 
quadrature components, respectively, from a pattern of current injection and voltage 
measurement. Using this signal, the vector of image elements conductivities and 
admittivities, x, is estimated, using the regularised image reconstruction formulation 

( ) WzHQWHHx HH 1−+= µ  (7.3) 
where HH indicates the complex conjugate transpose of H.  The parameters W, Q, and µ 
would be the same as those used in the conductivity only algorithm, while the sensitivity 
matrix, H, would be defined by 
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 (7.4) 
where Z(x) is a finite element model of the measured dynamic signal, z, due to a 
conductivity and admittivity change, x.  The parameter xo represents the background 
conductivity and admittivity distribution.  H would have dimensions of twice the number 
of finite elements by the number of signal components. 

Unfortunately, even with a reconstruction model of the complex impedance 
change, in vitro verification would be difficult.  It would be necessary to construct several 
targets for the saline tank with the same conductivity but different dielectric properties. 
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•  Regularization Schema.  The MAP image reconstruction algorithm 
presented here uses a quadratic model for the regularization term because it allows a 
simpler, matrix algebra implementation from which the reconstruction can be performed 
without iterative calculations.  The disadvantage, however, is that this term does have a 
strong tendency to blur edges. Recently, however edge preserving regularization schemes 
(for example Bouman, 1993) have been proposed.  It might be possible to achieve 
improvement in image quality by adapting the regularization to this sort of approach. 

•  Use of an esophageal reference electrode.  The utility of an esophageal 
reference electrode has been suggested by Schuessler (1995) to improve image resolution 
and noise performance of the image reconstruction.  The MAP image reconstruction 
model could be able to incorporate this information with relatively minor changes. 

•  2D reconstruction of 3D distributions.  Image reconstruction algorithms 
based on 2D models show good performance in reconstructing the position of a target in a 
3D medium, although there is a certain tendency to "push" off-plane conductivity changes 
toward the centre of the image.  In the case of imaging a target with large vertical extent, 
there would be a contribution from in-plane and off-plane conductivity changes.  It would 
be important to understand the relationship between the vertical extent of the conductivity 
change to the amplitude of the image. 

•  Effect of the inhomogeneous "background" conductivity distribution. 
In dynamic EIT, the reconstruction algorithms tend to calculate a sensitivity matrix using 
the assumption that the impedance variations are superimposed on a homogeneous 
background distribution.  This assumption is not justified, especially in the case of the 
thorax.  For instance, the non-conductive lungs "hide" the heart by reducing and distorting 
the current density in that region compared to that of a homogeneous medium.  This 
could imply that cardiac conductivity changes are less visible and also possibly wrongly 
positioned.  While it might be possible to obtain sufficient anatomical information to 
correctly reconstruct the background conductivity, it seems more promising to model this 
effect in order to understand how to interpret images in light of this difficulty. 

•  Resolving quantitative conductivity estimates.  Since EIT is sensitive to 
errors in the geometrical model, has low spatial resolution, cannot image the 3D extent of 
an object, and is non-linear in response to large conductivity changes, it would be 
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important to understand whether actual resistivity changes (in units of ohms) could be 
calculated from the image.  While these values are calculated by algorithms such as the 
one proposed by Cheney (1990), their accuracy has not been carefully determined in vivo.  
This question can be considered to be equivalent to the problem of accurately determining 
the value of the conversion factor, k, of figure 6.2. 

•  Effect of anisotropic tissue on image reconstruction.  While the 
development of image reconstruction algorithms which take into account tissue 
anisotropy presents significant difficulties, evaluation of its effect on image 
reconstruction should be relatively straight forward.  In vitro modelling of anisotropic 
conductivities is currently possible with a saline filled tank, and it would also be possible 
to develop finite element models of the forward problem to take anisotropy into account. 

7.2.2 Clinical evaluation 

A recent version of the EIT hardware (Savoie, 1995), offers the capability of 
measuring 16 channels of EIT data at a frame rate of 5.5 Hz simultaneously with readings 
of the electrocardiogram (ECG) sampled at 90 Hz.  Standard indices of airway flow, such 
as the forced expiratory volume or the forced expiratory flow, are typically measured over 
time intervals of a second or more, and are perhaps within the capabilities of this system.  
Another significant possibility would be the monitoring of variations in the functional 
residual capacity (FRC) over short periods.  These variations are typical of restrictive 
lung diseases such as pneumothorax and pleural effusion, and cannot currently be 
measured without a pressure chamber which restricts access of medical staff to a patient.  
Since restrictive lung diseases typically have significant regional variation, EIT would 
offer the additional advantage of being able to produce a cross-sectional image of 
distribution of these variations. 

Continuous monitoring of these variables for a patient in intensive care would 
allow changes in lung function over time to be recorded, and, in critical conditions, the 
setting of an alarm.  In order to use EIT in these applications, certain questions need to be 
investigated experimentally. 

•  Linearity of conductivity change with physiological processes.  While 
the results of chapter 6 indicate the linearity of EIT image magnitude as a function of the 
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level of lung ventilation or fluid instillation, these tests were performed in the normal 
physiological ranges and extreme conditions were not investigated.  This relationship 
should be investigated over a wider activity range and for ventilation into each lung 
individually. 

•  Comparing EIT measurements from two different subjects.  In order to 
compare physiological processes in two different subjects it is important to understand 
the relative contribution of the different processes.   For instance, using the model of 
Trudelle et al. (1995) for the experimental data discussed in chapter 6, a parameter kv can 
be defined relating image magnitude to ventilator tidal volume, and a parameter ki which 
relates image magnitude to instilled fluid volume.  While there is considerable variability 
in these values between animals due to anatomical differences, it is possible that the ratio 
ki/kv is relatively constant between animals.  It would be important to determine whether 

this ratio is constant, and if not, whether its variability can be understood in terms of 
anatomical parameters. 

•  Stability during long term monitoring.  Many physiological processes of 
interest take place over hours or days.  While the results in chapter 6 show that the EIT 
system used had a significant measurement drift over four hours, it is possible that this 
problem can be overcome with improved electronic design of the measurement system. 

•  Measurement of respiratory indices.  One potential application of EIT is 
the calculation of the indices of respiratory flow that are currently measured by 
spirometer.  These indices of respiratory volume and flow have an important diagnostic 
function, especially in distinguishing between obstructive and restrictive lung diseases.  
EIT could provide additional information from the cross-sectional image of the lungs 
which would show the fraction of the lungs actually involved in communicating air.  This 
could facilitate the detection of pneumothorax or pleural effusion. 

Two standard indices of ventilatory capacity are most commonly used (West, 
1992).  The forced expiratory volume (FEV) measures the maximum volume exhaled in 1 
second, while the forced expiratory flow (FEF) is the average flow during the middle half 
of the spirometer curve.  The FEF is defined to be half of the vital capacity divided by the 
time taken to exhale from 25 to 75 percent of the vital capacity.  In order to make these 
measurements EIT must be able to acquire data sufficiently rapidly.  Since the standard 
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indices of respiratory function are typically normalised with respect to the vital capacity 
(West, 1990), there is no need to have an external measurement to allow conversion of 
the EIT image magnitude into volume units.  If it were possible to acquire EIT data at 20 
images per second, this would indicate a worst case error of 5 % in the measurement of 
the FEV, if no other sources of error were present.  This level of error would be 
acceptable for this application especially since only relatively large changes in this index 
are considered to be clinically significant (West, 1992).  

•  Measurement of air flow.  The measurement of air flow is more difficult 
than the measurement of volume because the EIT image can be most easily interpreted as 
an index of volume, and the flow must be calculated from the change in this volume as a 
function of time.  Typically, this calculation amplifies the noise in a signal, and may make 
the calculated output too noisy to be useful diagnostically. 

7.3 Conclusions 

Although many questions still remain open with respect to the interpretation and 
accuracy of EIT results in experimental situations, this thesis does allow some 
conclusions to be made. 

•  Image reconstruction.  Image reconstruction algorithms have been 
developed which provide fast image calculation and are able to take into account 
information about the configuration and measurement accuracy of the EIT system.   
Additionally, these algorithms are significantly robust in the presence of measurement 
uncertainties such as the electrode position and thorax shape. 

•  Image interpretation.  Certain physiological sources of error such as 
electrode movement due to breathing introduce errors into EIT images.  In the case of 
electrode movement, is possible to take into account these difficulties in the interpretation 
of images because the amplitude of the artefact introduced correlates linearly with the 
image magnitude. 

•  Experimental Validation.  EIT can measure lung ventilation and lung 
fluid instillation which take place over short (less than one hour) time intervals with a 
clinically useful precision.  The mean error for measurement of lung ventilation is 90 ml 
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and for lung fluid instillation is 10 ml.  Additionally, EIT can produce an image from 
which the instilled lung can be determined.  Thus, EIT is able to provide quantitative 
measurement of lung processes as well as an image from which certain spatial 
inhomogeneities in lung function can be determined. 
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ANNEX A: 
COMPARISON BETWEEN NEURAL NETWORK AND  

MAXIMUM A POSTERIORI APPROACHES TO 
IMAGE RECONSTRUCTION 

A.1 Introduction 

Two approaches to image reconstruction have been proposed in this thesis.  An 
algorithm based on artificial neural networks (ANN) is discussed in chapter 3, and a 
maximum a posteriori (MAP) technique is elaborated in chapter 4.  The advantage of 
both of these techniques is their ability to adapt to the conditions in which the EIT 
measurements are made.  Conditions such as the experimental noise level, the electrode 
positions, and the form of the thorax can be taken into account.  The ANN takes these 
conditions into account by including them into the set of training measurements, and the 
MAP is adapted by careful selection of the a priori statistical descriptions of the medium 
on which the algorithm is based. 

Another advantage of these techniques is the ability to reconstruct the 
conductivity image at low computational cost.  While the calculation of the MAP 
estimation matrix is long, and the training of the reconstruction network even longer, the 
image reconstruction in both cases can be described by a single matrix multiplication, 
which can be calculated efficiently.  Given a signal vector, z, the conductivity change 
image, x, is estimated from 

Bzx =  (A.1) 
where the matrix B has dimensions of the number of voltage measurements by the 
number of image elements.  In order to keep notational consistency with chapter 3 the 
reconstruction matrix calculated by the ANN is labelled N. 
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A.2 Performance of Neural Networks 

The properties of the ANN reconstruction matrices are shown in table A.1.  These 
are the same results presented in table 3.1 with an additional column representing the NF 
for each matrix, calculated using equation 4.38.  Additionally, a matrix Bebp is calculated 
which maps the filtered backprojection algorithm (Barber, 1987) onto the finite element 
geometry.  This allows comparison of the algorithms using the figures of merit (blur 
radius (BR) and position error (PE) ) developed to evaluate the MAP model. 

Table A.1:  Noise properties of backprojection and neural network algorithms. 

Algorithm Training SNR Image SNR Algorithm NF 

Bebp  2.62  0.40 

N0 ∞ 0.22 13.42 

N1 1.33 0.69  2.05 

N2 0.33 1.58  1.28 
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Figure A.1: Position error vs. radial position for different noise figures 

Figure A.1 shows the PE and figure A.2 the BR as a function of radial position, 
where a radial position of 0 indicates the centre of the medium and 1 indicates the 
boundary.  These results indicate that the algorithm trained without noise, N2, has the best 
performance in terms of position error and resolution, followed by N1, N0 and finally by 
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Bebp.  These results are consistent with those of chapter 4, which indicate that an 
improvement of the performance of an algorithm in PE and BR tends to be at the expense 
of Noise performance. 
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Figure A.2: Blur radius vs. radial position for different noise figures 

A.3 Comparison of ANN and MAP techniques 

In order to compare the ANN reconstruction algorithms to those developed using 
the MAP technique, matrices are calculated using the same FEM geometry (and thus the 
same number of image elements) as was used to train the ANN algorithms. 

BF is calculated using the MAP model with a spatial filter of 10 percent of the 
medium diameter and a regularization parameter chosen to ensure a NF of 2.0.  
Additionally, a matrix BI is calculated corresponding to the technique proposed by 
Yorkey (1987), also with a NF of 2.0. 

Figure A.3 illustrates image reconstructions of a simulated data set using these 
various techniques.  Each image is shown as a wire frame mesh on the left hand side and 
as a grey scaled image on the right.  Figure A.3A shows the target pattern.  Figures A.3B, 
D, and F are reconstructed using the measurements from A.3A with no noise added, while 
figures C, E, and G use measurements with a SNR of 0 dB. 
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Figure A.3: Reconstructed Images  
 A: Generating Conductivity Distribution 
 B: Measurements: No Noise Reconstruction: BI , NF=2.0 
 C: Measurements: 0 dB SNR Reconstruction: BI , NF=2.0 
 D: Measurements: No Noise Reconstruction: BF , NF=2.0 
 E: Measurements: 0 dB SNR Reconstruction: BF , NF=2.0 
 F: Measurements: No Noise Reconstruction: N1 
 G: Measurements: 0 dB SNR Reconstruction: N1 
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Reconstructions in figures A.3B and C use BI (Yorkey, 1987), A.3D and E use BF 
(MAP model), and A.3F and G use N1 (ANN model).  All matrices have similar noise 
performance (as would be expected since they were calculated for the same NF), and 
although resolution is similar in all cases, BF and N1 have slightly better resolution than 
BI. 
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Figure A.4: Position error vs. radial position for different noise figures 
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Figure A.5: Blur radius vs. radial position for different noise figures 
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The algorithms N1, BF, BI and Bebp are compared in terms of the figures of merit 
BR and PE.  Figure A.4 shows the PE and figure A.5 the BR as a function of radial 
position.  The algorithm which has the poorest performance, both in terms of PE and BR 
is backprojection.  This comparison is somewhat unequal, however, because the noise 
performance of Bebp, with a NF of 0.40, is significantly better than that of the other 
algorithms, all of which have an NF of 2.0.  In terms of PE, the three remaining 
algorithms have almost equal performance, averaging less than 0.02 when the radial 
position is below 0.8.  In terms of BR, however, N1 and BF have better resolution near 
the centre while BI is better near the boundary. 

It is interesting to note that the ANN and MAP techniques perform very similarly 
in resolution as a function of radial position.  Unfortunately, since it is difficult to 
theoretically estimate the performance of an ANN algorithm, it is not possible to 
determine whether this functional similarity is due to a relationship between the 
algorithms.  It is possible, however, that the fact that both MAP and ANN algorithms are 
designed to take into account the same properties of the measurement system ensures a 
certain similarity in performance. 
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