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Abstract: We consider modelling and imaging in EIT un-

der some a priori inequality constraints on conductivity. In-

stead of constrained optimisation, we reformulate the model

equations with respect to some monotone functions that en-

compass these constraints. We address the cases of posit-

ivity and boundness, posing the inverse problem using reg-

ularised nonlinear least squares. The results demonstrate

significant spatial resolution improvements.

1 Introduction

The motivation for this work is to introduce a robust and

simple to implement computational scheme appropriate for

the cases where inequality constraints on the electrical con-

ductivity are available a priori. Although several con-

strained optimisation algorithms are readily available [1]

the methods presented here are appealing for their imple-

mentation simplicity. In the medical EIT setting, this type

of prior information is likely attained through the literature

on the targeted physiological phenomenon [2].

2 Methods

The scalar conductivity function σ : B → ℜ, is related to

a finite set of real valued observations ζ ∈ ℜm through the

model

ζ = M(σ)+n, (1)

where M : σ 7→ ζ is the nonlinear forward EIT mapping and

n is some additive noise corrupting the data. Suppose fur-

ther that σ is a priori known to belong within a subspace S.

To enforce this assumption we introduce the injective map-

ping ν : ℜ(B)→ S(B) from the space of real functions over

the domain onto a subspace S(B)⊆ ℜ(B), such that

σ(x)
.
= ν [γ(x)], (2)

and conversely γ(x) = ν−1[σ(x)], where ν−1 : σ 7→ γ al-

ways exists and it is continuous. Based on this one may

formulate another forward model F : γ 7→ ζ , such as

ζ = F(γ)+n, where F(γ) = (M ◦ν)(γ). (3)

2.1 Positivity

To impose positivity prompts to consider the subspace S
.
=

{σ(x) ∈ B|0 < σ ≤ ∞} where a suitable choice for ν is the

exponential function scaled by a relaxation factor κ 6= 0

ν [γ(x)]
.
= eγ(x)/κ , x ∈ B, (4)

Under this transformation notice that the perturbations in

the original and surrogate unknown functions, from refer-

ence points σ∗,γ∗ are related by

δσ
.
= eγ/κ(eδγ/κ −1). (5)

To linearise the model (3) at (σ∗,γ∗), we appeal to the

chain differentiation rule,

∂γ F(γ∗) δγ = ∂γ(M◦ν)(γ∗) δγ = ∂σ M(σ∗)σ∗κ−1 δγ, (6)

where ∂σ M(σ∗) is the Jacobian of M. In this way, the linear

approximation of the inverse problem for γ becomes

δζ = ∂σ M(σ∗)σ∗κ−1 δγ +n. (7)

2.2 Boundness

As an extension of the above scheme we consider mapping

the conductivity into the subspace S
.
= {σ(x) ∈ B|0 < p ≤

σ ≤ t < ∞} for some a priori known bounds p < t, using

the scaled logistic regression function

ν [γ(x)]
.
= p+

t − p

1+ e−γ(x)/κ
. (8)

In this instance the perturbations δσ and δγ from a fixed

reference are related via

δσ = ν(γ +δγ)−ν(γ) = w(γ,δγ)ν1(−γ), (9)

where w(γ,δγ)
.
= (t−p)(1−e−δγ/κ )

(1+e−(γ+δγ)/κ )
, and ν1(γ)

.
= 1

1+e−γ/κ . Ap-

pealing to the chain differentiation now yields the linearised

problem for δγ as

δζ = ∂σ M(σ∗)
(

ν(γ∗)− p
)

ν1(−γ∗)κ
−1 δγ +n. (10)

3 Results

To test the performance of our scheme we formulate the

inverse problems as least squares problems based on (1)

and (3) respectively. We then apply the Gauss-Newton al-

gorithm for a few iterations while we regularise the linear

problems using smoothness imposing regularisation.
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Figure 1: Top row, the target σ and the reconstructions using

two Gauss-Newton iterations with smooth priors [2] on the ori-

ginal (middle) and positivity preserving model (right). Below, the

corresponding images for a different target by implementing two

iterations on the bound preserving model. Regularisation matrices

and parameters are kept fixed to aid comparison of the results.

4 Conclusions

This work demonstrates how to obtain a constrained solu-

tion of the inverse problem in EIT using unconstrained op-

timisation. The proposed framework is computationally

simple and can be used in conjunction with various inver-

sion algorithms.
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