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Figure 1: Phantom geometry 
(MR magnitude). 
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Abstract: The electrical conductivity of soft tissues 
can be reconstructed from imaging with MR Electrical 
Properties Tomography (MR-EPT). The reconstruction 
method used here is based on an inverse problem 
formulation, with two advantages over a direct 
inversion approach: a) no spatial differentiation is 
needed and b) the regularization term determines the 
resolution of the reconstructed data. The process is 
exemplified using phantom (gelatine and saline) data. 

1 Introduction 

Magnetic Resonance Electrical Property Tomography 
(MR-EPT) is a relatively new strategy for estimating a 
tissue’s electrical conductivty and permittivity 
distribution. It offers the potential of high resolution 
admittance mapping as compared to electrical 
impedance tomography (EIT) without the need for 
electrodes as are needed for magnetic resonance EIT 
(MR-EIT). The general approach for conductivty 
imaging with MR-EPT is to obtain a phase image 
and/or B1 map image of the RF field produced using 
specific pulse sequences. This image can be 
manipulated to estimate the conductivity distribution. 
Typically, this manipulation requires second 
derivatives be computed from the phase data. This is an 
undesirable process that is prone to amplify noise.  
Other approaches have included algorithms that lower 
this requirement to first derivatives, reducing 
sensitivity to noise. Here we describe an alternative 
method that solves the MR-EPT problem using an 
inverse problem formulation that does not require 
differentiating the input image. 

2 Methods 

2.1 Inverse approach formulation 

In MR-EPT, the electrical conductivity ı can be shown 
to be proportional to the Laplacian of the phase of the 
transmit B1 field: ߪሺݎሻ ൎ ଵఠఓ ȟ߶൫ܪାሺݎሻ൯.              (1) 

The inverse is true as well: if ı(r) is known, the phase 
can be obtained by solving ο߶ ൌ  ሻ. Using anݎሺߪߤ߱
iterative inverse formulation approach, the updated 
value of ı is given by ߪ௪ ൌ ߪ  ߪߜ  where ߪߜ ൌ ሺܬ்ܬ  ሻିଵܮ்ܮߙ ቀ்ܬ൫߶൫ܪାሺݎሻ൯ െ ߶   ൯ቁǤ    (2)ߪܮ்ܮߙ

Here J is the Jacobian of the conductivity to phase 
mapping, L is a regularization matrix, and  is a 
regularization parameter used to stabilize the inversion. 
We have implemented this inversion using two 
different regularization terms: a) a quadratic/Laplacian 
approach and b) a Total Variation functional approach 
[1,2]. A Primal Dual Interior Point Method 
optimization scheme is used for the Total Variation 

approach, which produces images with sharper 
contrasts at boundaries.  

2.2 Data acquisition 

A custom gelatin phantom 
(10% gelatin, 1% NaCl) 
was constructed with three 
rows of circular wells with 
increasing diameters (5, 10, 
15mm). Each series of 
wells was filled with saline 
solutions with increasing 
conductivities (~3, 5, 8 
S/m). Cupric sulphate was 
added for MR contrast 
(Figure 1). Data was 
acquired on a Philips 
Achieva 3T platform, with a 
standard 3D SE sequence; phase images were used for 
reconstructing the conductivity. Two-dimensional 
reconstructions of the electric conductivity based on 
our inverse approach are presented in Figure 2.  

 

Figure 2: MR-EPT reconstruction with the inverse formulation 
approach: a) with quadratic regularization; b) with Total Variation 
regularization. 

Conclusions 

Reconstruction of MR-EPT conductivity data based on 
an inverse formulation approach is demonstrated here. 
The primary advantage of this approach is that is does 
not require differentiation of the phase data. An 
additional advantage is that custom regularization 
approaches can be considered for enahncing image 
quality. For instance, a priori anatomical information 
obtained from other MR variants (i.e. T2-weigted 
imaging) might be used as spatial priors. 
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