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Abstract: To improve the practical applicability of elec-
trical impedance tomography is a great ongoing challenge.
Theoretical identifiability results exist for noiseless con-
tinuous boundary measurements. However, little is known
about what can be achieved with a finite number of realisti-
cally modelled electrodes in a setting including modelling
and measurement errors. In this paper, we sketch how to
derive rigorous resolution guarantees for such settings.

1 Introduction

Notation: y), denotes the characteristic function of a set M
and eig(A) the set of eigenvalues of a square matrix A.

We consider a conductive object Q C R" (n € {2,3})
with a conductivity distribution
0:Q—=R, o(x)=0p(x)xa\n()+opx)xp(x), (1)

where op(x) is the background conductivity and op(x) the
inclusion conductivity of an inclusion D C Q. The inclusion
is characterized by a contrast to the background with

inf GD(X) > Opmin > SUp O'B(y)7 ODmin € R. 2)
xep yeQ\D
Furthermore, let (), @,,--- ,@y) be a resolution partition

of Q (see Figure 1). In Section 3, we sketch how to verify if
arealistically modelled measurement setting (see Section 2)
yields enough information to design an inclusion detection
method that fulfils the following guarantee.

Resolution guarantee (RG):
(a) A resolution element w; will be marked if w; C D.
(b) No resolution element will be marked if D = 0.

2 The measurement setting

The setting is given by current-voltage measurements on
a finite number of (almost perfectly conductive) electrodes
E\,E,,...,Er. We assume that a contact layer between each
electrode E; and Q leads to a contact impedance Zl This set-
ting is mathematically modelled by the complete electrode
model (CEM), cf. [1]. For a conductivity distribution ¢ and
contact impedances given by the components of z € RE, the
measurement matrix is defined by

R(0,2) = (R[i.,j](G?Z))Lq

c ]RLflefl7
i,j=1

3)
where the components RI"/!(5, z) are given by the measure-
ments as in Fig. 1. The matrix R(0,z) is symmetric, cf. [1].

To allow for modelling and measurement errors:

(a) The background conductivity og(x) is given approxi-
mately by op(x) with |0 — 0|l < € ER.

(b) The vector z (contact impedances) is given approxi-
mately by zp with ||z —z¢]| < Y ER.

(c) There are noisy measurements Rg(0,z) given with
an absolute noise level 8§ > ||R(0,z) — R5(0,2) |2,
6 € R. Possibly replacing Rs(0,z) by its symmet-
ric part, we can assume that Rs(0,z) is symmetric.

rr

I i
E; T
@i
Es @T U = Rl
E,
L EL
Figure 1: Setting with a sample resolution for Q = [—1,1]2.

3 Verification of the resolution guarantee

Let op(x), 20, €, ¥, 6 and Opyy;, be given. We define
O-Bmax(x) = O-O(x) +e, 4
Zmax ‘=20 + Y(L B 1)7 ©)
(0)

Omin(x) 1= 0o (x) — €,
Zmin =20 — ¥(1,..., 1),
Ti(x) = O-Bmin(x)%Q\a); (x) + OpminXo; (x)

forie {1,2,...,N}. Then the RG is possible if

N .
max min eig (R(%, Zmax) — R(Omas: 2min) < ~26. ()

The proof is based on the monotonicity relation

01<0y,z1>22 = R(01,21)—R(02,22) > 0.

®)

The main idea is to consider (7) as a worst-case scenario
test for Algorithm 1 (cf. [2] for 7 = 0).

Algorithm 1: Mark element w; if

min eig (R(7,Zmax) —Rs(0,2)) > —9. 9)

3.1 Numerical results

Let Q be given with a resolution partition as in Fig. 1. Fur-
thermore, let 6y = 1 and zg = (1,...,1) € RE be approxi-
mations of the background conductivity op(x) and the vec-
tor z (contact impedances), respectively. Additionally, let
Opmin = 2 be a lower bound of the inclusion conductivity.

Then (7) is fulfilled for a background error of € = 1%,
an absolute measurement noise level of § = 0.9% and ex-
actly given contact impedances (y = 0). Hence, the RG is
possible. In particular, Algorithm 1 fulfils the RG.

The results can be extended to the case of approximately
known contact impedances.

4 Conclusion

This paper presents the possibility of a rigorous resolution
guarantee for a realistically modelled electrode measure-
ment setting including modelling and measurement errors.
The resolution guarantee can be verified by a simple test.
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