
30 SESSION 3. RECONSTRUCTION I

Resolution guarantees in EIT including random and systematic errors

Bastian Harrach1 and Marcel Ullrich1

1Department of Mathematics, University of Stuttgart, Stuttgart, Germany, harrach@math.uni-stuttgart.de and

marcel.ullrich@mathematik.uni-stuttgart.de

Abstract: To improve the practical applicability of elec-

trical impedance tomography is a great ongoing challenge.

Theoretical identifiability results exist for noiseless con-

tinuous boundary measurements. However, little is known

about what can be achieved with a finite number of realisti-

cally modelled electrodes in a setting including modelling

and measurement errors. In this paper, we sketch how to

derive rigorous resolution guarantees for such settings.

1 Introduction

Notation: χM denotes the characteristic function of a set M

and eig(A) the set of eigenvalues of a square matrix A.

We consider a conductive object Ω ⊆ R
n (n ∈ {2,3})

with a conductivity distribution

σ : Ω → R, σ(x) = σB(x)χΩ\D(x)+σD(x)χD(x), (1)

where σB(x) is the background conductivity and σD(x) the

inclusion conductivity of an inclusion D⊆Ω. The inclusion

is characterized by a contrast to the background with

inf
x∈D

σD(x)≥ σDmin > sup
y∈Ω\D

σB(y), σDmin ∈ R. (2)

Furthermore, let (ω1,ω2, · · · ,ωN) be a resolution partition

of Ω (see Figure 1). In Section 3, we sketch how to verify if

a realistically modelled measurement setting (see Section 2)

yields enough information to design an inclusion detection

method that fulfils the following guarantee.

Resolution guarantee (RG):

(a) A resolution element ωi will be marked if ωi ⊆ D.

(b) No resolution element will be marked if D = /0.

2 The measurement setting

The setting is given by current-voltage measurements on

a finite number of (almost perfectly conductive) electrodes

E1,E2, . . . ,EL. We assume that a contact layer between each

electrode Ei and Ω leads to a contact impedance z[i].This set-

ting is mathematically modelled by the complete electrode

model (CEM), cf. [1]. For a conductivity distribution σ and

contact impedances given by the components of z ∈R
L, the

measurement matrix is defined by

R(σ ,z) =
(

R[i, j](σ ,z)
)L−1

i, j=1
∈ R

L−1×L−1
, (3)

where the components R[i, j](σ ,z) are given by the measure-

ments as in Fig. 1. The matrix R(σ ,z) is symmetric, cf. [1].

To allow for modelling and measurement errors:

(a) The background conductivity σB(x) is given approxi-

mately by σ0(x) with ‖σB −σ0‖∞ ≤ ε ∈ R.

(b) The vector z (contact impedances) is given approxi-

mately by z0 with ‖z− z0‖∞ ≤ γ ∈ R.

(c) There are noisy measurements Rδ (σ ,z) given with

an absolute noise level δ ≥ ‖R(σ ,z)− Rδ (σ ,z)‖2,

δ ∈ R. Possibly replacing Rδ (σ ,z) by its symmet-

ric part, we can assume that Rδ (σ ,z) is symmetric.
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Figure 1: Setting with a sample resolution for Ω = [−1,1]2.

3 Verification of the resolution guarantee

Let σ0(x), z0, ε , γ , δ and σDmin be given. We define

σBmin(x) := σ0(x)− ε, σBmax(x) := σ0(x)+ ε, (4)

zmin := z0 − γ(1, . . . ,1), zmax := z0 + γ(1, . . . ,1), (5)

τi(x) := σBmin(x)χΩ\ωi
(x)+σDminχωi

(x) (6)

for i ∈ {1,2, . . . ,N}. Then the RG is possible if

N
max
i=1

min eig(R(τi,zmax)−R(σBmax,zmin))<−2δ . (7)

The proof is based on the monotonicity relation

σ1 ≤ σ2, z1 ≥ z2 ⇒ R(σ1,z1)−R(σ2,z2)≥ 0. (8)

The main idea is to consider (7) as a worst-case scenario

test for Algorithm 1 (cf. [2] for γ = 0).

Algorithm 1: Mark element ωi if

min eig(R(τi,zmax)−Rδ (σ ,z))≥−δ . (9)

3.1 Numerical results

Let Ω be given with a resolution partition as in Fig. 1. Fur-

thermore, let σ0 ≡ 1 and z0 = (1, . . . ,1) ∈ R
L be approxi-

mations of the background conductivity σB(x) and the vec-

tor z (contact impedances), respectively. Additionally, let

σDmin = 2 be a lower bound of the inclusion conductivity.

Then (7) is fulfilled for a background error of ε = 1%,

an absolute measurement noise level of δ = 0.9% and ex-

actly given contact impedances (γ = 0). Hence, the RG is

possible. In particular, Algorithm 1 fulfils the RG.

The results can be extended to the case of approximately

known contact impedances.

4 Conclusion

This paper presents the possibility of a rigorous resolution

guarantee for a realistically modelled electrode measure-

ment setting including modelling and measurement errors.

The resolution guarantee can be verified by a simple test.
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