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Abstract: Implementation of efficient methods to handle 
calculations in EIT is a key issue to address 3D electrical 
property reconstructions. Following a transport back-
transport method, we develop in this work an adjoint 
approach and define explicit forward and back-projection 
operators. It allows reducing the size of matrices involved 
in reconstruction. This framework has been tested on 
experimental data acquired in vitro on a saline phantom. 

1 Introduction 

Forward problem solution and sensitivity computations 
are the fundamentals of Electrical Impedance Tomography 
(EIT) [1]. Standard approach is to use Finite Element 
Methods (FEM) to derive both admittance matrix and 
Jacobian from an elemental discretization of conductivity. 
Calculation parallelization [2] and deduction of nodal 
Jacobian [3] offer ways to enhance calculus efficiency. 

In most EIT systems, the same measurement 
configuration is used per injection configuration. Then, 
following a transport back-transport method [4], we 
explicitly define forward and back-projection operators 
from potential gradients. It allows using inversion 
algorithms without explicit Jacobian assembly. Matrix size 
involved in reconstruction is proportional to the number of 
electrodes E instead of the number of measurements. 

2 Methods 

We elaborate our framework supposing the electric 
potential ܞ א Թே linear per element and considering a 
piecewise constant conductivity discretization ો א Թே. 
2.1 Sensitivity calculations, adjoint framework 

Classical estimation of Jacobian coefficient is based on the 
perturbation approach [5]. Two configurations are 
considered: the actual measurement configuration, and a 
virtual measurement configuration in which source and 
detector have been interchanged. In this work, the 
Jacobian matrix is factorized with matrices containing 
elemental potential gradients. They can be determined by 
standard FEM formulation [6]. Using only the gradient 
matrices, a forward operator is defined and solves a direct 
transport problem. A back-projection operator is also 
defined and transports back residuals into the imaging 
domain. The profit of such a formulation relies upon the 
size of gradient matrices ۵ א Թேൈா used in inversion, 
versus the larger size of standard Jacobian matrix, 
typically ۸ א Թேൈாమ. Inversion is then done with a 
standard preconditioned conjugate gradient (PCG). 

2.2 Experimental device 

Experimental measurements are performed on a saline 
phantom of 4cm diameter featuring 14 equally-spaced 
copper electrodes with a custom-built EIT system [7]. 

2.2.1 Reconstruction approach 

The implementation of the framework, adapted from the 
EIDORS library [8], is first validated on simple test cases 
in 2D before exploring reconstructions from noisy 
simulated measurements. Reconstructions are then 
performed against experimental data.  

3 Results 

Reconstructions from simulated data (Figure 1) exhibit a 
correct behaviour of the framework and PCG algorithm 
used for inversion. The framework performs also well in 
experimental situation (Figure 2). 

  
Figure 1: 2D difference reconstructions from simulated data 
with 5% additive Gaussian noise 

  
Figure 2: 2D difference reconstruction from experimental data, 
with estimated 5% noise 

4 Discussion 

The framework presented in this work allows inversion 
without explicit Jacobian calculations, working only with 
potential gradient matrices for injection and measurement 
configuration. It has been validated against both simulated 
and in vitro experimental measurements.  

Further investigation might consider reconstructions 
that favour sparse solutions and make use of non-linear 
inversion algorithms. 
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