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Abstract: A finite difference scheme is introduced to solve

the D-bar equation. The D-bar equation arises in electrical

impedance tomography (EIT) when using the complex geo-

metrical optics solutions to recover the conductivity within

a body. This scheme is second-order and is first used on a

test equation for error analysis and then used to reconstruct

EIT images using the D-bar method.

1 Introduction

In 1996, A. Nachman [1] developed the D-bar method,

which proved that the inverse conductivity problem in 2-D,

described by A. Calderón [2], has a unique solution. This

method reduces to finding the solutions to the D-bar equa-

tion

∂̄kµ(z,k)−
1

4π k̄
t(k)ei(kz+k̄z̄)µ̄(z,k) = 0 (1a)

lim
|z|,|k|→∞

µ(z,k) = 1, (1b)

where z ≡ x+ iy, k ≡ k1 + ik2, ∂̄k ≡
1
2
( ∂

∂k1
+ i ∂

∂k2
) and t(k)

is the non-physical scattering transform, which contains all

data information. The conductivity, γ , can be recovered by

the relation γ
1
2 (x,y) = lim|k|→0 µ(z,k). Nachman suggests

solving an equivalent integral equation to find µ . Current

numerical implementations of the D-bar method solve these

integral equations as is done in [3–5]. We seek to solve the

D-bar equation (1a) as a partial differential equation using

finite differences.

2 Methods

To account for the complex conjugate operator on µ in (1a),

we solve the equivalent system of equations found by equat-

ing the real and imaginary parts of (1a). Thus, we seek to

solve

1

2
(

∂

∂k1
u−

∂

∂k2
v)− (au+bv) = 0 (2a)

1

2
(

∂

∂k2
u+

∂

∂k1
v)− (bu+av) = 0 (2b)

where µ(z,k) ≡ u(z,k) + iv(z,k) and 1
4π k̄

t(k)ei(kz+k̄z̄) ≡

a(z,k) + ib(z,k). We approximate the first derivatives in

the D-bar operator using centered finite differences. This

leads to an O(h2) truncation error for a uniform mesh spa-

cing, h. We truncate the complex domain to a finite domain

Ω = [−R,R]2 for implementation, and impose the numer-

ical boundary condition approximation µ(z,k)|∂Ω = 1. The

resulting scheme reduces to solving a 2N2x2N2 linear sys-

tem, as in [3–5], where h = 2R/(N +1). Here the system is

sparse with O(N2) non-zero entries.

3 Results

To test our solver, we use the test function µ1(z,k) =

e−|k|2−|z|2−2i(k1k2+xy)+ 1 for fixed z and assume no scatter-

ing, resulting in the equation ∂̄kµ1 = f with boundary con-

dition µ1|∂Ω = g. Thus, we solve (2) but with the right hand

sides of (2a) and (2b) replaced by α(z,k) and β (z,k), re-

spectively, where f = α + iβ and a = b ≡ 0. A plot of the

relative errors when solving (1a) can be found in 1a. Note

the plateau in error that occurs for R = 2. This is caused by

the imposed Dirichlet boundary condition on the finite do-

main, the approach also taken by [3–5]. For small enough h,

the other error plots will also plateau, but will decrease with

order two until that point. This suggests that the scheme

converges with order two, but further analytic work is re-

quired to prove this. Figure 1b shows cross-sections of re-

constructions of a concentric circle target with radius 0.3

inside a unit circle. The error plateau is evident since the

reconstructions are almost identical for larger values of N.

Despite this plateau, the conductivity is reconstructed. Im-

provements in the reconstruction can be made by adjusting

R and a regularization parameter in the D-bar method. This

solver also works when reconstructing images using exper-

imental data.
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Real part using 2nd order scheme
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(a) Plateaus in the error occur because of the boundary approx-

imation.
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(b) Reconstruction of a concentric target with analytically cal-

culated scattering transform.

Figure 1


