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2 SESSION 1. APPLICATIONS I

Welcome to EIT 2014
Andy Adler1 and Bartłomiej Grychtol2

1Carleton University, Ottawa, Canada, adler@sce.carleton.ca
2Project Group for Automation in Medical Engineering, Fraunhofer IPA, Mannheim, Germany

Abstract: On April 24–26 2014, the 15th Interna-
tional Conference on Biomedical Applications of Electri-
cal Impedance Tomography (EIT 2014) takes place at the
Glen House Resort in Gananoque, Canada. Exciting devel-
opments are taking place in EIT: developments in hardware,
software, and reconstruction algorithms, and new clinical
applications and better understanding of the current ones.
This paper introduces this fascinating conference.

1 Introduction
Electrical Impedance Tomography (EIT) estimates the dis-
tribution of impedance within a body from electrical stimu-
lation and measurement on the body surface. EIT shows
significant promise for medical monitoring and imaging
with applications to thoracic, brain, breast, abdominal and
prostate imaging.

We have all written an introductory paragraph like the
previous one, many, many times. And – each time – we
try to compress the text, just a little more. Why? We are
looking forward to the day when there is no longer a need
to explain EIT; when there is no longer the need to call it
a promising, "new" technology. Instead, we would like to
write, "EIT devices are increasingly used in applications A,
B and C, based on evidence of improved patient outcomes
and safety [refs D, E, F]". At our 15th International Con-
ference on Biomedical Applications of EIT, we look for-
ward to this day, and review how far along this road we
have come.

When discussing EIT’s potential, one joke has been of-
ten made, referring to the frustrations of a technology that
shows much promise, and many challenges: “I wish EIT
would either work properly, or fail consistently. That way
I can move on with my life." However, joking aside, there
are reasons to be enthusiastic about EIT and its potential.

2 Conference
This conference gives an excellent view of the many excit-
ing developments in EIT. Some brief comments are given,
but space prevents referring to individual innovations. For
this, please see the full proceedings!

• Scientific interest in EIT is strong and growing.
Within its traditional areas of interest there is in-
creasing interest and appreciation of the unique in-
formation it can provide. We see improving collabo-
ration between mathematicians, engineers, physiol-
ogists and clinicians; and also interaction with the
corresponding geophysical community. Novel im-
age reconstruction and analysis approaches are pro-
posed, incorporating deep mathematical insights and
concern for the challenges of EIT data.

• Commercial devices are now available. Two compa-
nies (both sponsors of the conference) sell EIT de-
vices which are approved for clinical use. This will
help address a big limitation which has kept many re-
searchers from using EIT.

• Medical results are promising. EIT is now begin-
ning to move beyond the stage of validation to other
gold standards, and is being used for prospective in-
terventions, and to detect physiological conditions for
which no other technology is available.

3 Discussion
In a recent review[1], a continuous increase in scientific in-
terest in EIT was noted, which was explained by the evi-
dence of a clinical need; this trend has continued (Figure
1).
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Figure 1: Number of publications vs publication date on
VILI/VALI (Ventilator Induced/Associated Lung Injury), LPV
(Lung Protective Ventilation) and lung EIT published in peer-
reviewed journals. (Image credit: Inéz Frerichs; Source: ISI Web
of Knowledge, Thomson Reuters, New York, USA.)

The review offered two suggestions: (1) think about
the physiology and pathophysiology ... to provide insights
which lead to therapeutic interventions and (2) analyse EIT
images in creative ways. When we look at the interesting
collection of papers for this conference, we feel optimistic.
Many novel insights and creative ways to acquire and anal-
yse EIT are proposed. We will soon say?

EIT is a promising lifesaving technology, . . .

References
[1] Adler A, Amato MB, Arnold JH, Bayford R, Bodenstein M, Böhm

SH, Brown BH, Frerichs I, Stenqvist O, Weiler N, Wolf GK, “Whither
lung EIT: where are we, where do we want to go, and what do we need
to get there?", Physiol Meas, 33:679–694, 2012.
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Imaging Epileptic Seizures in a Rat Model using Electric Impedance
Tomography and its Clinical Implications

Anna Vongerichten, Gustavo Sato dos Santos, Kirill Aristovich, Andrew McEvoy, Matthew Walker,
David Holder

Dept. Medical Physics and Bioengineering and Inst. of Neurology, University College London, UK

Abstract: The potential of Electric Impedance Tomo-
graphy (EIT) for localising seizure foci was examined in a
rat model of epilepsy. The known seizure focus was suc-
cessfully imaged, which appeared as a transient (~10 ms)
decrease in impedance during spikes – due to the opening
of ion channels, followed by a gradual increase in imped-
ance as cells swelled.

1 Introduction
Epilepsy is the commonest neurological condition which
is characterized by recurrent, unpredictable seizures due
to synchronized neuronal firing. Of those with chronic
epilepsy, 20-30% will not respond to antiepileptic drugs,
though many can be treated surgically if a seizure focus
can be localized [1]. EIT was previously used in an an-
imal model to image the seizure focus, as accompanying
cell swelling increases brain impedance [2]. Changes in
impedance due to neuronal activity have been presented be-
fore [3]. Here, the first-ever impedance images of both the
fast neural response (due to ion channel opening) as well
as the slower impedance signal (due to movement of water
from extra- to intra-cellular space) during epileptic seizures
in rats are presented.

2 Methods
30-channel subdural grid electrodes were implanted over
the somatosensory cortex of 9 adult Sprague-Dawley rats
under general anaesthesia. Epilepsy was induced by intra-
cortical injection of 4-aminopyridine, picrotoxin or penicil-
lin. Impedance was recorded with a custom-made program-
mable current source and an amplifier (ActiveTwo AD-box,
Biosemi, Netherlands). An AC current with a frequency of
1.7 kHz and 60 µA amplitude was injected between differ-

ent pairs of the electrode grid. Sample results are shown
(Figure 1).

3 Conclusions
Following interictal epileptic spikes, there were reprodu-
cible fast neural impedance decreases of -0.26±0.09%
(mean±SD, 3562 interictal spikes) 7 ms preceding the
peak of the interictal spikes, and impedance increases of
0.57±0.32 %, starting 50 ms after each interictal spike and
lasting up to 2 s with no difference between seizure mod-
els. For seizures, there were significant peak impedance
increases of 2.21±1.16% (201 seizures in total) but no con-
sistent impedance decreases. The impedance changes oc-
curred focally around the injection site and were consist-
ently imaged with a resolution of ~0.4 mm. Impedance
measurements could potentially be used to localize seizure
onset zones and track seizure spread in human epilepsy pa-
tients.
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“Cell swelling, seizures and spreading depression: an
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Holder, “A novel method for recording neuronal depol-
arization with recording at 125-825 Hz: implications
for imaging fast neural activity in the brain with elec-
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put., 49:593–604, 2011.

Figure 1: Example of an induced seizure. Solid line: EEG signals, dotted line: corresponding impedance changes. Top row: corres-
ponding EIT images showing focal onset and spread of seizure (depth of slice = 1 mm).
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Towards Endoscopic EIT: Ex vivo Assessment of Human Prostates 
Shadab Khan1, Aditya Mahara1 and Ryan Halter2 
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Abstract: Following robotic assisted laparoscopic 
prostatectomy (RALP), surgical margins are assessed for 
presence of cancerous tissues. An EIS/EIT based approach 
to identify benign and malignant tissues was evaluated. 
Excised prostates were probed using a micro-endoscopic 
EIT probe, and impedance measurements corresponding to 
benign and tumorous regions are compared. 

1. Introduction 

Prostate cancer is one of the most commonly occurring 
cancers in men. Following RALP, often used for treating 
organ-confined disease, surgical margins of the excised 
prostate are microscopically assessed for presence of 
cancerous tissues. Unfortunately, this assessment is a 
time-consuming process requiring hours to days to 
complete. By the time this evaluation is completed, the 
patient has left the operating room and the surgeon is no 
longer able to resect additional tissues suspected of 
harboring cancer.  

To this end, we developed an EIT system and 
microendoscopic EIT probe that we intend to use to 
intraoperatively evaluate surgical margins. 

2. Methods 

Hardware setup: A newly developed EIT system was 
used to collect data [1]. A 9-electrode microendoscopic 
probe was fabricated to make measurements within a 
10mm diameter region. Eight of the 9 electrodes were 
arranged on the periphery of the probe, and one electrode 
was placed at the probe center. Impedances were 
evaluated by driving currents through pairs of electrode in 
contact with sectioned prostate while induced voltages 
were recorded and logged from all other electrodes.  
Clinical protocol: Experiments were performed at the 
Dartmouth Hitchcock Medical Center (DHMC), Lebanon, 
NH under an Institutional Review Board (IRB) approved 
protocol. Patient consent was obtained prior to undergoing 
a RALP procedure. Following prostate excision, it is sent 
in a sealed container to the Pathology lab, where the 
specimen dimensions are noted. At this point, we have 
access to the prostate for collecting the EIT data. The EIT 
system is positioned near to the pathology bench, to 
minimize probe cable lengths. 

For each case, we probe the exterior surface of the 
prostate at the apex, base, and on the right and left lateral 
surfaces of the prostate (these represent locations with 
high incidences of positive surgical margins). The probed 
site is marked with green ink to allow localization of 
probing site afterwards. The prostate is then sectioned into 
~3mm thick tissue specimens. 

Multiple locations on the internal surfaces of the 
prostate specimens are probed. Specifically, the left and 
right surfaces of 3-4 sections are selected and probed, and 
inked pins are inserted through the slices to identify the 
position and orientation of the probe during the 
histological assessment of the slides. 

3. Results and Conclusion 

Measurements taken on the exterior surface of the prostate 
were grouped according to their location on the prostate, 
i.e., apex, base and lateral surface. Figure 1(c) shows the 
averaged magnitude and phase values across the 
frequency. It can be observed that the impedance 
measurements vary corresponding to the prostate anatomy 
(Zlateral > Zapex > Zbase). Additionally, impedance magnitude 
and phase spectra shown in Fig. 1(d) indicate that, in 
general, Ztumor > Zbenign, which is consistent with the data 
reported previously [2]. 

These results obtained from a limited pilot study are 
very motivating, and we intend to collect more data to 
statistically evaluate differences in electrical properties 
between regions and tissues types of the prostate. 
 

 
Figure 1: (a) Prostate being probed with a 9-electrode 
endoscopic probe, (b) Electrode arrangement on the probe head, 
(c) Magnitude and phase spectra for one of the prostate cases 
(exterior), (d) Impedance magnitude and phase spectra of 
internal surface measurements at 10 kHz for benign and 
tumorous regions. 
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Abstract: In this study EIT was used to monitor brain 

impedance changes due to variations in cerebral fluid 

content during dehydration treatment of edema patients. 

30 patients with cerebral edema were continuously imaged 

for two hours after the initiation of dehydration treatment. 

Results show that overall impedance across the brain 

increased significantly 5 minutes after dehydration 

treatment started. And different brain tissues have 

different reactions towards dehydration 

1 Introduction 

Cerebral edema is a clinical condition with excess 

accumulation of fluid in the intracellular or extracellular 

space of the brain and a common emergency condition in 

neurology. In the past few decades mannitol dehydration 

treatment has been proven to be effective for brain edema 

and has been widely used clinically.  

Some initial studies were conducted either with exposed 

brain or on neonatal brain where skull impedance is less. 

The group at UCL first demonstrated that the UCLH Mark 

EIT system could generate reproducible EIT images of 

epileptic seizures, functional activity, and the phenomenon 

of spreading depression in anaesthetized experimental 

animals with a ring of electrodes on exposed brain. We 

have demonstrated that subarachnoid hemorrhage and 

intracerebral hemorrhage could be detected by EIT.  

In this study EIT is usedf or real-time and non-invasive 

imaging and monitoring of impedance changes due to 

variation of cerebral fluid content during dehydration 

treatment of edema patients. 

2 Methods 

EIT data were measured in 

real time using an EIT 

monitoring system (FMMU-

EIT5)developed by our group 

for brain imaging. The 

system consists of 16 

electrodes. Electrodes were 

placed around the head. 

Currents were driven in turn 

through pairs of electrodes 

opposite each other and voltages on other adjacent 

electrode pairs were measured. The working frequency of 

the system ranges from 1 kHz to 190 kHz, the current 

from 500uA to 1250uA with a measuring accuracy at 

±0.01% and the common mode rejection ratio over 80 dB. 

In this study 1mA-50 kHz alternating current was used. 

30 patients with cerebral edema and need of dehydration 

treatment were included,.  

For each patient 0.5g/kg of mannitol solution was 

administered via intravenous infusion in 20 minutes. 

Differential images were reconstructed with a reference 

measurement before mannitol administration.   

3 Results 

The results show that the overall impedance changes 

inside the brain increased significantly after mannitol 

injection. In Figure A, during the injection, the large areas 

of EIT images became increasingly blue indicating 

impedance increase in brain, whereas the lesion areas 

showed much less increase. When the impedance reached 

the peak after the injection, it remained at the peak for the 

remainder of the monitoring period. For Figure B, 

although the results during injection were similar, the 

impedance changes start to decrease after the end of 

injection. Two hours after the beginning of the injection, 

the impedance returned to its initial value. 

 
                  A                                            B 

4 Conclusions 

The results indicated that EIT was able to reflect the 

impedance variation induced by loss of brain fluid content 

during dehydration. The results also showed that the effect 

of mannitol dehydration treatment was more long-lasting 

in some patients than in others. Furthermore, our initial 

results suggest that different brain tissues have different 

reactions towards dehydration agents---normal brain 

tissues had more significant dehydration than the diseased 

tissues.  
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Cancer Identification during Breast Surgery Using Electrical 
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Abstract: In this paper, electrical impedance spectroscopy 

(EIS) analysis was employed to evaluate the dielectric 

property of breast tissues. The complex impedance was 

recorded by a bio-impedance meter in the frequency range 

of 3 kHz to 1000 kHz. Non-linear Least squares regression 

was implemented to fit the measured data into Cole-Cole 

model. It was observed that significant differences existed 

between breast cancer and benign tissues. 

1 Introduction 

Breast cancer is the most common malignant tumour 

among women worldwide. It has been discovered that 

malignant breast tumors have significantly different 

impedivity than normal tissues [1-3]; therefore electrical 

impedance spectroscopy analysis has emerged as a 

promising indicator for breast cancer detection [4-5]. 

During a breast cancer excision surgery with ambiguous 

malignance judgment, the result of frozen biopsy during 

operation is adopted as a vital reference of the final 

surgery route (mastectomy or Breast-conserving 

operation). However, the method involves visual 

inspection and tissue pathology (‘frozen sections’) and 

fails to detect 12-25% of cancer during breast surgery, 

which means inaccurate tumour identifications lead to 

under- or over- treatments [6]. As the complimentary 

method of the frozen biopsy, EIS detector has the potential 

to be adopted as a hand-held real-time device which will 

undoubtedly facilitate clinical decision and help reduce 

erroneous decisions. Moreover, understanding the 

fundamental electrical property of breast tissues is vital 

important for some non-invasive impedance imaging 

techniques, such as electrical impedance tomography 

(EIT). In this paper, EIS analysis was applied to measure 

the electrical property of breast tissues in order to obtain 

some valuable a priori information for further research. 

2 Methods 

In vitro breast tissues were collected from 300 women 

under mastectomy. Tissue specimens identified by biopsy 

were categorized in three groups: breast cancer (CaB), 

benign fibro-adenoma (BFib) and non-hyperplastic 

mammary glandular tissue (MG). The complex impedance 

was recorded by a bio-impedance meter in the frequency 

range of 3 kHz to 1000 kHz. Non-linear Least squares 

regression was implemented to fit the measured data into 

Cole-Cole model: 

      
     

  (     )
                             (1) 

Three parameters were statistically obtained including 

characteristic frequency   , fractional power   and 

static/infinite impedance ratio      .  

Student's t-test was applied in this paper, which is 

appropriate for statistically analysing on small number 

groups with Gaussian distribution. Moreover, it is one of 

the standard and popular methods in medical statistics. Up 

to present, the sample quantity is still quite limited. For 

one specific sample, the measurement is affected by 

random noises which satisfy Gaussian distribution. 

Therefore, t-test can be applied to determine if two sets of 

data are significantly different from each other.  

3 Results 

 
Figure 1: The typical bio-impedance spectroscopes of breast 

tissues. Spectroscopes are fitted to the Cole-Cole model. 

4 Conclusions 

In this paper, EIS technique was implemented to analyse 

the electrical property of breast tissue (Fig. 1). We found 

that the Cole characteristic frequency     is an excellent 

indicator of the presence of breast cancer since it has 

much higher value than normal tissues (Tab. 1).  Student's 

t test showed that significant difference (p<0.05) existed 

between CaB and BFib for    and      ; while difference 

was observed between BFib and MG for       as well. 
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Table 1: The mean average and standard deviation of tissue Cole-Cole parameters 

Tissues    (kHz)         

CaB             0.57±0.16           

BFib                               

MG 14.3±14.8  0.54±0.11 1.47±0.28 
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Wearable sensors for patient-specific boundary shape estimation 
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Abstract: It has been shown that accurate boundary form 
of the forward model is important to minimise artefacts in 
reconstructed EIT images.  This paper presents a proposal 
for a wearable device based on a network of flexible 
sensors to evaluate patient-specific boundary form of the 
forward model for lung EIT. Simulation of approaches 
using ideal sensors are presented that reconstruct 
boundaries with low shape error. 

1 Introduction 

The rapid generation of accurate forward models of 
subject-specific human thorax for EIT still presents a 
challenge.  Despite the fact that some numerical methods 
e.g.  [1], mechanical methods e.g. [2] and computational 
methods e.g. [3] have been proposed, these are either 
computationally demanding or impractical for the 
pediatric clinical environment.  

At present, there is no sensor-net available for dynamic 
measurement of boundary shape for EIT. Use of line-of-
sight measurements for monitoring paediatrics is 
impractical for continuous monitoring within the ICU. 

Conductive bend sensor technology [4] has received 
considerable attention in health rehabilitation applications 
with advantages of being low cost, flexible, light, 
wearable and require simple interfacing circuitry. Bend 
sensors have been investigated for use in geometry 
reconstruction [5] but no records have been found for 
patient-specific model reconstruction. 

2 Methods 

The proposed boundary shape evaluation system is 
comprised of a series of bend sensors to measure curvature 
of  boundary section and reconstruct a B-spline curve.  
Perimeter can be further estimated by the inclusion of a 
stretch sensor. Work was undertaken to select and 
calibrate a suitable sensor, test reconstruction algorithms, 
establish optimum number of bend sensors and validate 
reconstruction algorithms. 

Of the commercially available resistive type bend 
sensors compared one provided acceptable repeatability 
and consistent linear resistance-curvature relationship.  
This was the Abrams Gentile sensor (www.ageinc.com).    

A geometric rotational transformation algorithm 
proposed by [5] was modified and used to simulate 
reconstruction using ideal bend sensors: 

𝑃!!     =   𝑂! + 𝑟! (1) 
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Where Pi is the initial point, O, the centre of bend 
radius, Pf, the final point, s the sensor length and κi the 
curvature.  

An alternative algortihm is also proposed where the 
cumulative sum of subtended angle sκi is used to evaluate 
the derivative of the curve at each sensor end-point. A 
degree 2 B-spline is interpolated through these values and 
the curve is reconstructed by integrating the derivative 
spline over its length and scaling by the sum of sensor 
lengths resulting in a degree 3 curve.  

In both cases errors can be reduced by evaluating the 
difference of  the sum of angles and 2π rads, dividing by 
the number of sensors give mean angular error to apply to 
each angle before reconstruction. 

Two approaches to reconstruction were used: the 
whole curve in one direction (uni), and two halves starting 
from one point and reconstructing in CW and CCW 
directions and averaging the two final points (bi). 

The rotational algorithm was used to reconstruct an 
ellipse using 4 to 20 sensors in steps of 2 and the mean 
error defined as distance of reconstructed points from the 
true curve to determine if an optimum number of sensors 
could be found 

Both algorithms were used on a B-Spline section from 
a neonatal CT by calculating mean curvatures over a 
sensor length and reconstructing.  Errors were measured as 
distances from true parametric point and projected 
distance to true curve for different numbers of sensors. 

3 Results 

When the rotational algorithm was used to reconstruct and 
ellipse using 4 to 20 sensors then mean error (𝜀) vs no. of 
sensors (n) displayed the relationship 𝜀 ≈ !"#

!!
 (R2 = 0.99). 

Using 8 sensors, 𝜀 is a little more than 1 mm, 6 sensors 
almost doubles the error.  With the neonate boundary, 
there was insignificant difference between the uni-
directional and bi-directional errors, though this was not 
so for the 16 sensor reconstruction, where the bi-
directional approach showed significant improvements. 

The derivative algorithm appears not to yield greater 
accuracy for 8 sensors, but initial indications are that with 
16 sensors there are significant improvements. 

4 Conclusions 

There are initial indications that the use of bend sensors 
within a wearable device could provide boundary shape 
reconstruction.  This has been demonstrated using a 2D 
boundary and further work is required for increasing 
accuracy and establishing methods for 3D boundary to 
improve the forward model. 
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In Vivo Estimation of the Scalp and Skull Conductivity  
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Abstract: The scalp and skull conductivities (sc, sk 

respectively) are determined from Electrical Impedance 

Tomography (EIT) data using the Gauss-Newton method 

(GN). Our best estimates of sc and sk are 0.58 S/m and 

0.008 S/m respectively. It is necessary to use the true head 

geometry.   

1 Introduction 

Although many authors have reported in vivo values for 

sc and sk, most of them refer only to particular regions of 

the head. For example, it is reported in [1] that sc in a 

selected region is 0.43 S/m, and in [2-4] that sk in various 

regions is in the range 0.0078-0.0801 S/m. In EIT, where 

the whole head is modelled, it is typical to set all regions 

of each tissue to a single conductivity value. Here we 

determine sc and sk by comparing experimental EIT data 

with such a model. Our approach is to fit a geometrically 

accurate head model having two unknowns, sc and sk, to 

a set of real measurements by performing a few iterations 

of the Gauss-Newton method to regress the measurement 

into the model. The GN formula to evaluate  is shown in 

(1) where  is [sc;sk], J is the 2-parameter Jacobian, 

Vmeas is the measurement vector, and Vi is the model 

prediction for i, and i is the iteration index.  
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2 Methods 

Three measurement trials on a single human subject were 

carried out on three different dates. EIT measurements 

were recorded at 100 frames per second with 32 

electrodes. Three head models (called Model1, 2, and 3) 

having 338k, 396k, and 53k elements respectively were 

used. Model 1, the geometrically accurate head model for 

the subject, was available from MRI scans. In this model, 

both isotropic and anisotropic (radial: tangential ratio of 

1:10) skull conductivities were implemented for 

comparison. The sensitivity of the method to various 

effects was tested and found to be small: by simulation, 

the dependence of the results on electrode shape and 

position, and on contact impedance, was found to be 

small, of order 1%; experimentally, the results obtained 

from multiple installations on the same subject on 

different days also varied by about 1%. 

By carrying out a large number of simulations with a 

wide variety of conductivity values for CSF, grey matter 

and white matter, and studying the resulting correlation 

with scalp and skull conductivity results, we conclude that 

there is no significant dependence of our results upon the 

accuracy of the CSF, grey matter and white matter 

conductivity values. 

Equation (1) was employed to evaluate  with 15 

iterations (both  are finally converged). The estimated sc 

and sk are 0.58 S/m and 0.008 S/m, respectively, for both 

the isotropic and anisotropic versions of Model1 (see 

table). Compared to the reported values [1], sc is 

significantly larger, while sk is at the low end of the range 

of previously reported values [2-4]. It should be noted that 

the  values determined here are effectively from the 

whole head, in contrast to the small selected regions used 

in [1-4]. The surface plot of the error term in our iteration 

procedure is shown in Fig.1, showing a distinct trough in 

the region of the preferred values. The dependence on sc 

is weak in the range 0.4-0.8 S/m, while being much more 

strongly dependent on sk in the region 0.008-0.010 S/m.  

Table: The evaluated  (S/m)1 and prediction relative error1  

 
Model1 (reference) Model2 Model3 

Isotropic Anisotropic Isotropic Isotropic 

scalp 0.58.026 0.58.026 0.23.007 0.45.019 

skull .008.0005 .008.0005 .017.0011 .006.0007 

Err. 0.28.008 0.28.008 0.32.005 0.33.012 
1 The value represents in the format of mean±standard deviation 

 

 
Figure 1: The relative error from the variation of sc and sk  

The evaluated  values from Model2 and 3, non-

subject specific models, are different to Model1 and the 

errors are higher. The estimation from Model3 is closer to 

that from Model1, probably since their geometry is quite 

similar (despite the relatively poor mesh refinement of 

Model3). Model2 is geometrically different to both of the 

other models; even when it was scaled to the same size as 

Model1, the estimated sc and sk values are 0.29 and 

0.0137 S/m, close to the results in the table.   

3 Conclusions 

We find that the determination of the scalp and skull 

conductivities by using EIT are strongly dependent on the 

true head geometry, necessitating the use of subject-

specific anatomical scans, by MRI and CT. The results 

obtained using such a subject-specific model are 

consistent with values in the literature [5,6].  
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Abstract: We measured the time difference and weighted 

frequency difference conductivity images to monitor the 

changes of temperature and tissue property in a liver 

phantom due to the microwave ablation. Pixels in regions 

of interest were compared between conventional boundary 

surface electrode method and focused configuration with 

an internal electrode. 

1 Introduction 

Image-guided thermal therapy has been used for treating 

of focal metastatic hepatic tumours instead of the standard 

surgical resection because it is minimally invasive. In 

order to improve the safety and predict the local 

recurrence, it requires real-time monitoring method for 

temperature changes and the tissue property changes via 

successive images. MRI is a good candidate to monitor the 

internal temperature and property of the tissue with a high 

resolution. However, it is limited by MR compatible 

ablation method and cannot confirm the status of tissue 

after treatment immediately [1]. Ultrasound has a merit for 

applying ablation and monitoring together, but it required 

well-trained operator and interpretation [2]. Since the time 

series of bio-impedance and its spectrum can present 

temperature changes and tissue property changes together, 

time-difference and frequency-difference conductivity 

imaging method may be proposed to monitor them during 

ablation [3]. In this study, we used an internal electrode 

and weighted frequency difference conductivity images to 

improve the sensitivity and estimation for ablated region 

during microwave ablation. 

2 Methods 

The experimental setup for EIT monitoring with a liver 

tissue during microwave ablation is shown in Figure 1. 

Ablation was performed with a frequency of 2.45 GHz 

(Sulis VpMTA generator, Microsulis Medical Ltd, 

Denmead, UK) and delivered using a 1.8 mm diameter 

needle-shaped applicator (Accu2i pMTA applicator, 

Microsulis Medical Ltd, Denmead, UK). We inserted 

microwave applicator tip into ex-vivo porcine liver 

(~500g), situated in a cylindrical tank filled with 

physiological saline (0.9%). 16-channel KHU Mark2.5 

EIT system was connected to electrodes surrounding the 

tank [4]. A thermometer tip was placed beside of 

applicator tip to record the temperature of heating zone. 

We applied the ablation as 60W power in 2mins. Data was 

acquired at 10 and 100 kHz in a scan using dual frequency 

projections. Time difference and frequency difference 

images were reconstructed with EIDORS and weighted 

frequency difference algorithm. We compared the 

sensitivity and region estimation from the reconstructed 

images with and without using an internal electrode.  

Figure 2: Time difference and weighted frequency difference 

conductivity images with and without using an internal electrode.  

3 Conclusions 

We performed the experiment using dual frequency EIT 

during microwave ablation in ex-vivo porcine liver. Time 

difference image provide conductivity changes due to the 

temperature changes. On the other hand, weighted 

frequency difference images showed conductivity change 

associated with cellular changes better. And when we use 

focused electrode configuration with an internal electrode, 

SNR is better in the regions of interest. 
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Figure 1: Liver phantom for experiment. 
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Abstract: We developed fabric based pressure sensors 

with PU or PVDF nanoweb to improve the sensitivity. 

Sandwiched structure of new fabric sensor with PVDF 

provided the high sensitivity when using complex 

impedance variation. It also showed better hysteresis, 

creep and relaxation property. The new fabric sensor will 

be used to measure pressure distribution via impedance 

imaging .  

1 Introduction 

For a gait analysis and pressure sore imaging, there is a 

demand to measure the pressure distribution on a large 

area. Plenteous single cell based pressure sensors have 

been used as an array type. However, this kind of array 

pressure distribution sensor is required a complex 

manufacturing process and has a large crosstalk among 

multiple signals, thick, heavy and too costly. In order to 

integrate with wearable healthcare monitoring system, we 

considered conductive fabric materials for costless and 

flexibility and resistance changes depending on the 

amount of pressure. Unfortunately, the resistance variation 

is determined by the intrinsic property of commercial 

conductive fabric materials and its variation is small.  

Recently, we developed the fabric pressure sensor 

combined with nanoweb to increase the complex 

impedance variation for pressure change. In the 

preliminary test, we present the basic properties of the 

new fabric pressure sensor for a gait analysis and pressure 

sore imaging.  

2 Methods 

2.1 Materials 

We prepared three types of pressure sensors using 

commercialized conductive fabric, polyurethane (PU), and 

polyvinylidene fluoride (PVDF) in Figure 1(a). A 

conductive fabric of 15×5 cm
2
 was cut for the first sensor. 

The second sensor was made up of a piece of PU nanoweb 

sandwiched in two pieces of same conductive fabric. The 

third sensor was the same as the second sensor except of 

exchanging the PU to PVDF. The PU and the PVDF were 

prepared by electro-spinning process. The thickness of all 

sensors were less than 300 m. Since all of them has a 

large air space inside, they are good for air permeability.   

2.2 Evaluation methods 

We evaluated the sensitivity of pressure sensors when 

applying the 25 gm weight to the sensors up to 300 gm in 

the measurement configuration as shown in Figure 1(b) 

and (c). For testing the creep and relaxation of the fabric 

sensors, 300 gm weight applied at the centre of fabric for 

100 seconds and removed it for another 100 seconds, 

repeatedly. We acquired impedance values for 20 minutes. 

We tested hysteresis of sensors and timing response in the 

same configuration. 

 

 
(b) 

 
(a) (c) 

Figure 1: (a) Three kinds of fabric pressure sensors and 

measurement configuration for impedance of (a) conductive 

fabric and (b) fabric with nanoweb sensors. 

3 Results and conclusions 

From the sensitivity evaluation for three different sensors, 

the variation of impedance in fabric with PVDF nanoweb 

had the largest changes due to the applied pressure 

because of large amount of changes in imaginary part. 

Also, the selection of sensing frequency was important 

and it provided the characteristic for fabric material and 

weaving methods. There was a creep and relaxation of 

fabric sensors when applying pressure continuously and 

after removing the weight. To reduce them, we applied 

age forming with high pressure. The new fabric sensor 

with PVDF produced better hysteresis and timing response 

than intrinsic commercial conductive fabric sensor. We 

may produce high sensitive impedance images with the 

new fabric sensor. 

 
Figure 2: Magnitude of complex impedance variation of three 

different fabric sensors according to increasing weights. 
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Abstract: A low-parametric reconstruction method for
human bladder volume estimation has been developed
and compared to the conventional image-based global
impedance method. Main advantages of the new method are
conductivity invariant volume estimate and increased accu-
racy for medium to high bladder volumes.

1 Introduction
In most applications of electrical impedance tomography
(EIT), a tomographic image is sought. In some applications,
however, the resulting images are processed to estimate a
small set of parameters. One example is bladder volume
estimation, where the reconstructed image is secondary and
an accurate volume estimate is of greater importance. Previ-
ously, the linear correlation of global impedance (GI) calcu-
lated from reconstructed EIT images has been used to esti-
mate volume [1]. However, this approach conflates changes
in bladder volume with varying urine conductivity [2]. In
this work, a new low-parametric reconstruction approach
for EIT is presented and compared with the established GI
method in terms of accuracy, influence of urine conductivity
and noise stability.

2 Methods
Simulated EIT data for various bladder volumes and urine
conductivities were generated in Matlab based on a sim-
plified, anatomically inspired FEM-model using EIDORS
and Netgen. Image reconstruction was carried out with
EIDORS adapted for low-parametric reconstruction.

The model consists of a cylinder ø 30 cm containing an
eccentrically placed sphere representing the bladder. Two
rings of 32 electrodes are placed on the surface. Unit
conductivity was assigned to the background. Parametric
sweeps for bladder volume from 50 ml to 550 ml, bladder
contrast from 1 to 3 and SNR from 101 to 104 were calcu-
lated. Bladder position was a function of radius.

For the GI method, images were reconstructed using the
GREIT algorithm [3], and their total value summed (global
impedance, GI). A cubic function relating GI and bladder
radius was fitted to the results of the sweep at contrast 2 and
SNR 104 and used for all radius estimations.

Direct low-parametric reconstructions were obtained
with EIDORS’s iterative Gauss-Newton solver with
Tikhonov prior adapted such that the sought solution was
limited to two parameters, the Jacobian was approximated
with the perturbation method, and the forward solution was
calculated using a 3D FEM. The sought parameters were the
radius and conductivity contrast (w.r.t known background)
of a single spherical target, whose position was a function
of the radius.

3 Results
Table 1 shows the relative errors of the GI method (up-
per value in each cell) and the proposed parametric recon-
struction (PR) (lower values). At low bladder volumes,
both methods show high errors, but GI outperforms PR. For
medium and high volumes, PR shows a clear advantage.
Volume estimates based on PR show much lower sensitivity
to varying urine conductivity (represented in terms for dif-
ferent image contrasts), but higher sensitivity to noise than
those based on GI. While the error of GI is relatively con-
stant at a high level, PR shows excellent results only if little
noise is present (SNR 103–104).

4 Conclusions
Our results indicate that low-parametric reconstruction is
a promising approach to bladder volume estimation in the
face of unknown urine conductivity. For the purpose of pre-
venting reflux to the kidneys and overflow incontinence, the
poor performance at low volumes is not a severe drawback.
The high sensitivity to noise – and therefore to such prac-
tical difficulties as inexact modelling of abdominal shape,
electrode positioning and movement, as well as contact
quality – is a drawback which we hope to address in the
future by better regularization.
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Table 1: Comparision of relative radius errors in % for conventional GI (upper value) and new parametric approach (lower value).
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Abstract: EIT shows potential for monitoring fast chang-
ing conductivity profiles, such as heart and lung physiol-
ogy and chemical processes. In such cases, the measure-
ments which constitute an EIT frame are not taken simul-
taneously. Several approaches have been proposed to inter-
pret such data, but have not been systematically compared.
We formulate and compare temporal EIT solvers on simu-
lation data.

1 Introduction
Electrical Impedance Tomography (EIT) has relatively low
spatial resolution; however, it has a high temporal resolu-
tion, which offers the possibility to capture rapid physio-
logical changes [1]. Thus EIT is used in applications where
the underlying conductivity change is rapid compared to the
frame rate. In this case, the data within a single EIT frame
will not represent the same conductivity distribution. Mea-
surement data di is measured at time t:

di = Jim(t)+n (1)

where Ji is the ith row of the Jacobian (sensitivity) matrix,
m(t) is the conductivity matrix at time t, and n is addi-
tive zero-mean noise, with covariance Σn. Measurements
made at nearby points – in both space and time – will “see"
a more similar conductivity distribution than those further
apart, and this is represented by a space-time covariance
matrix, Σm.
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Figure 1: Block diagram of a geophysical EIT system with a tem-
poral effect. Top: a ROI in a horizontal plane underneath a series
of surface electrodes is imaged. Middle: a repeated set of mea-
surements is made, and the sensitivity in space and time is illus-
trated. Temporal reconstruction uses a covariance matrix in space
and time around the ROI (shown). Bottom: time interpolation re-
construction first calculates interpolated data (shown) before a tra-
ditional reconstruction.

2 Methods
Several approaches to account for temporal effects have
been proposed, but have not been systematically compared.
Our goal is to develop a framework for such comparison.

Using a Wiener filter formulation, EIT image recon-
struction seeks to estimate an image m̂ where

m̂ = ΣmTtJt(JTΣmTtJt +Σn)Fd (2)

where T and F represent the temporal and interpolation fil-
ters. Fig. 1 illustrates a simple case of EIT measurements in
one spatial dimension and time. Proposed approaches are:
• Temporal ignorance (not shown). Assuming that tempo-

ral effects are negligable. (T and F are both identity)
• Temporal reconstruction [2], in which the regularization

prior is modelled based on the temporal and spatial ef-
fects in Σm. (T represents the temporal covariance, while
F is identity)

• Temporal interpolation [3], in which measurements are
interpolated (using Fourier or linear schemes) to the re-
construction time of interest and then reconstructed using
an algorithm without temporal information. (F is the in-
terpolating filter, T is identity)

• Kalman filtering [4] (not shown).
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Figure 2: Simulation and Reconstruction images (on circular do-
main, half shown). Left: Simulation matrix, with an object moving
from top (blue) to bottom (red) during three acquisition frames; the
first acquisition of each frame is marked white; A: Reconstruction
of a frame of data with the object still at 90◦ (reference image); B:
Temporal ignorance; C: Linear temporal interpolation; D: Tempo-
ral reconstruction [2].

3 Discussion
When changes are fast, the EIT measurement frame con-
flates data from differing distributions. We seek to develop
a framework to compare approaches to compensate for this
effect. We simulate a relatively fast moving target, and, in
this test scenario, images C and D correctly position the tar-
get, while B and D have the best spatial localization.
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Abstract: Steam-assisted gravity drainage (SAGD) is a
technique that has been developed to efficiently extract bitu-
men from deep reservoirs. We propose using electrical
impedance tomography (EIT) for real-time monitoring of
SAGD wells to maintain optimal operating conditions. Sev-
eral electrode configurations along the pipelines and meas-
urement strategies are presented and compared.

1 Introduction
In Canada, about 80% of bitumen are located in deep reser-
voirs where only a small fraction has low enough viscosity
to be recovered using conventional crude oil pumping tech-
niques [1]. The steam-assisted gravity drainage (SAGD)
method has been developed to successfully recover such
bitumen [2]. The SAGD method uses continuous injection
of high-pressure steam to reduce the viscosity of the bitu-
men by increasing its temperature and water content (Fig-
ure 1). This low-viscosity bitumen drains (via gravity) to
a lower pipe where it is collected and pumped to the sur-
face. Several parameters affect SAGD production rate and
longevity: spacing between pipes, steam injection pressure,
thickness of bitumen layer, soil types above and below the
bitumen layer, physical properties of bitumen, and hetero-
geneity of all these properties. Good monitoring is essential
to maintain optimal SAGD operating conditions [3].

Bitumen

EIT

Device

Steam

Generator

Crude Oil

Extractor

Figure 1: Diagram of steam-assisted gravity drainage. Steam is
injected through top pipe while crude oil is recovered through bot-
tom pipe. Proposed EIT sensors are shown as orange rectangles.

To improve SAGD well monitoring, we propose using
electrical impedance tomography (EIT) to provide detailed
and localized information about the geometry and proper-
ties of the soil whose electrical properties are sensitive to
composition, water content, temperature, and oil content.
Such information would be available in real time as oil is
extracted from the reservoir and would be useful to optim-
ize and predict the production rate and longevity of SAGD
wells. We propose placing EIT electrodes at regular in-
tervals along both pipelines to image the bitumen reser-
voir, measure whether conditions are heterogeneous, and
how they evolve as oil is extracted and steam is injected.
We simulated several electrode configurations and measure-
ment strategies to assess how sensitivity and resolution of
EIT images are affected and propose best candidates.

2 Methods
Several 3-D finite element models representing realistic
SAGD geometries were built to assess the imaging perform-
ance of EIT using five different electrode configurations
and three possible measurement and stimulation strategies.
The following electrode configurations were considered: 1)
ring electrodes uniformly distributed along the pipelines, 2)
composite dual ring electrodes where each electrode is sub-
divided in halves either in the a) vertical or b) horizontal
orientations, and 3) composite quad ring electrodes where
each electrode is subdivided in quarters either a) orthogonal
or b) diagonal to thex, y, z axes.

For each of the above electrode configurations, three
measurement strategies were considered: exclusive use of
pairs of electrodes parallel (#1) or perpendicular (#2) to the
pipelines or a combination of both (#3). Sensitivity im-
ages were produced as well as PSF-like images of a moving
small target on a horizontal and a vertical axis. For instance,
Figure 2 shows four different views of a sensitivity image
obtained with quad ring electrodes using a combination of
both parallel and perpendicular pairs of electrodes.

Figure 2: a) 3-D, b) top, c) front, and d) side views of a 3-D im-
age representing areas of maximum sensitivity for a configuration
using quad diagonal composite ring electrodes.

3 Discussion
Simpler electrode configurations do not allow distinguish-
ing targets that are located left or right of the pipelines
because of the implicit axial symmetry of their geometry.
Quad diagonal composite ring electrodes seem to provide
the best sensitivity and image resolution among the five
tested configurations. Measurement strategies involving
pairs of electrodes that are both parallel and perpendicular
to the pipelines provide best performance. However, poor
signal to noise ratio is to be expected for measurements us-
ing pairs of electrodes spanning the gap between the pipes.
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Long term scalp EIT recordings for noise modelling to use in
intracranial bleeding monitoring

Nir Goren, James Avery and David S Holder
University College London, London, UK

Abstract: Detection of delayed intracranial haemorrhage
(ICH) following head trauma or stroke could benefit many
patients worldwide [1]. The purpose of this study was to
determine the feasibility of monitoring with time
difference EIT. This was assessed by addition of noise
from actual scalp recording to simulated data for ICH.
Reasonably faithful images were produced with realistic
recorded drifts.

1 Introduction

Noise in recorded boundary voltages over time, such as
drift caused by contact impedance changes during an EIT
measurement, can severely degrade the resultant images
[2]. As this drift is inevitable in human recordings, its
quantification would be an essential part of analysing the
data before image reconstruction.

2 Methods

Long term EIT recordings at 2 KHz were taken in one
normal human subject with two industry standard EEG
electrode types: conventional EEG Ag/AgCl cup
electrodes (the current gold standard) and an Easycap
EEG recording cap for rapid application. Changes in
signal across 3 time bands were calculated: fast (up to 10
seconds, system attributed), medium (up to 10 minutes,
subject movement attributed), and slow (over hours,
electrodes-skin contact attributed. Samples from recorded
noise were added to computer simulated boundary
voltages (BV) of intracranial bleeding with volumes of 9-
43 ml, to simulate bleeding occurring over different time
frames from 10 minutes to 3 hours [3]. Simulated BV with
realistic noise component were then used for image
reconstruction with Tikhonov regularization algorithm.
Resulting images were compared to simulations without
noise.

3 Results

3.1 Drifts quantification

Variance was 0.7±1.8, 1.6±3.6 and 15±85.7% (mean
±1SD) across channels of the initial standing BV for the
10 sec, 10 min and 3.5 hour time bands respectively.

Figure 1: Boundary voltages recorded at 2 KHz over 3.5 hours
with EasyCap applied on a healthy subject scalp.

3.2 Imaging
Images were reconstructed for a large extra-dural
haematoma (~40ml in volume) located in the right tempo-
parietal area for the cases of development over 10, 45, 75,
120 and 190 mins. Images reconstructed with noise were
very similar in size, location and shape to the simulated
perturbation and to the one reconstructed without noise.

Figure 2: Upper side of demonstrate the original perturbation
mesh. Lower part demonstrates reconstructed images of the
original perturbation without nose and with realistic noise
recorded at 10, 45, 75, 120 and 190 minutes.

4 Conclusions

These initial results suggest that EIT could indeed be used
to image intracranial bleeding in head trauma and stroke.
Image quality would benefit from more advanced data
processing and EIT protocols. This could be a first step
toward using EIT as a reliable, accessible, portable and
affordable bedside or field monitoring tool in brain trauma
and stroke. Work is in progress to collect additional data
on multiple subjects to build a more representative sample,
determine the drift threshold to enable imaging, and
improve the protocol and signal processing.
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Abstract: The construction of an EIT system using a 

commercially available current source and EEG amplifier 

is discussed. The Keithley 6221 current source offers 

functionality equivalent to that of existing bespoke 

systems, alongside the ease of use of a commercial 

system. When combined with a BioSemi EEG amplifier, a 

full EIT system is produced. Analysis of the signal quality 

of the source and imaging experiments on a saline tank 

verify the feasibility of the approach. 

1 Introduction 

The main components of an EIT system are a current 

source and a voltage measurement unit. Both are typically 

constructed from discrete components, or manufactured as 

custom PCBs/ICs [1-3]. Such approaches work well, 

especially in instances where the system requirements are 

well defined. However, such systems can be heavily 

reliant on the end user, who may not be an engineer, being 

familiar with the intricacies of the underlying electronics. 

There can also be significant lead times relating to the 

design and manufacture of such equipment.  

Advantages are available if flexible EIT systems can be 

built using commercially available equipment. To this end, 

the suitability of the Keithley 6221 current source for EIT 

imaging is investigated. 

2 Hardware & Results 

The Keithley 6221 Current Source is most commonly used 

for the test and evaluation of semiconductors and 

nanotechnology devices. However, its ability to accurately 

source small AC currents (2pA – 100mA) up to a 

frequency of 100kHz, coupled with a very large output 

impedance (10
14

Ω), excellent stability, simple interface 

and the ability to produce composite waveforms make it 

highly suited for use in an EIT system. 

Key requirements of an EIT current source are low noise 

and stability across variations in load, current magnitude 

and frequency The noise magnitude and variations across 

different current amplitudes and frequencies are shown in 

Figure 1. It can be seen that the noise level has a 

maximum of ~0.06%, which is comparable to that of 

existing EIT systems [4]. The noise is largely invariant 

with the applied current magnitude, and decreases as the 

frequency is increased. The large output impedance of the 

current source gives an extremely stable signal across 

different loads; variations of approximately one part in a 

million were seen when the load was varied between 

100Ω and 100kΩ. 

To test the ability of the current source to produce EIT 

images, the 6221 was used in conjunction with an EEG 

system [5] for measurement, to image a Perspex rod in a 

32 channel, saline filled tank. A simple switching system, 

based on the ADG714 and controlled via an Arduino was  

Figure 1: Noise levels, as a percentage of the mean voltage at 

the frequency of interest, measured across a 1kΩ resistor over 

1000 cycles. 

Figure 2: EIT image of a saline tank. The white dashed line 

indicates the position of the Perspex rod. 

used to control the injection pattern. The entire system 

was controlled serially though a MATLAB interface. 

Figure 2 shows the result of the imaging experiment. 

3 Conclusions 

An EIT system has been presented that uses an off the 

shelf current source, which offers advantages in terms of 

flexibility and ease of use when compared to existing 

systems, while maintaining comparable, or better, 

functionality. The noise in the system is comparable to 

existing EIT current sources and the load regulation is 

excellent. Having established the feasibility of the 

approach, the system can be used for a broader range of 

imaging experiments, including more challenging tank 

imaging, animal studies and human trials. 
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Abstract: BioImpedance Spectroscopy (BIS) have been 

investigated in many research areas as a method to detect 

changes in living tissues. However, BIS measurements are 

known to be hardly reproducible in clinical applications. This 

article proposes segmental spectral decomposition as a method 

of extracting reproducible parameters from raw BIS. The 

efficiency of this method is then compared to conventional 

Cole-Cole parameter extraction in a classification task.  

1 Introduction 

BioImpedance Spectroscopy (BIS) is a safe, non-invasive 

method to explore various changes of the composition or 

functionality of a living tissue. In spite of widespread range 

of methods and models introduced by researchers, BIS 

measurements don’t seem to be reproducible enough to be 

considered as a diagnosis tool [1]. Practically, researchers fit 

each measured spectrum,      to Cole-Cole model, using a 

nonlinear regression algorithm. Four fitting parameters are 

then used to represent the information content of BIS 

measurements. These parameters are informative and useful 

for explaining the physiology of tissues. However, they can 

be easily affected by experiment setup and condition, which 

is difficult to control over time, especially from one 

experiment session to another. In a set of longitudinal BIS 

data, the information contents related to tissue response at 

different frequencies are highly correlated, while noise 

information could be viewed as uncorrelated to tissue’s 

frequency response. Therefore, applying Principal 

Component Analysis (PCA) in frequency domain could be a 

promising candidate to cancel the effect of variations of 

experiment conditions and extract time persistent features 

from measured spectra. Although PCA has been employed to 

analyze BIS data in a few specific applications [2], it has 

never been considered as a general BIS feature extraction 

method to represent the information content of a set of 

longitudinal BIS measurements. In this paper, the measured 

spectra are decomposed and mapped on most significant 

eigenvectors. Moreover, this decomposition is modified to be 

delimited in specific frequency ranges to decrease the 

computational cost. A BIS classification task over different 

experiment sessions is also investigated to show the 

advantage of proposed method over Cole-Cole parameter 

extraction in representing BIS data.  

2 Method and Results 

We performed a set of measurements using a Solartron 1255 

Frequency Response Analyser and 1294 Impedance 

Interface, with tetra-polar system and frequency range of 5-

200 kHz with 5 kHz steps. Four subjects were involved in 

three different experiment sessions, and their forearm BIS 

was measured in three different positions: horizontal, vertical 

pointing downward and vertical pointing upward. Cole-Cole 

parameters were extracted based on the state-of-the-art 

method introduced in [3]. For the sake of testing the 

reproducibility of extracted features in this longitudinal data, 

each arm position is considered as a class and a classification 

task is implemented. Different classifiers were tested using 1-

leave-out validation method. Using Cole-Cole parameters, 

best classification accuracy was obtained by a KNN (n=3). 

 In order to decompose the BIS spectra, the total covariance 

of spectral data is estimated as sum of the covariance 

matrices of real and imaginary parts. Eigenvectors are then 

computed from this covariance matrix. In this experiment, 

more than 97% of the total variance lies on the first principal 

component. Therefore, each 80-dimentional vector (real and 

imaginary in 40 frequencies), is reduced to a 2-dimensional 

one by mapping real and imaginary parts onto the first 

eigenvector. In addition, by assessing the coefficients of the 

first eigenvector for each arm position, we found that 

different frequencies don’t have equal impact on this 

mapping. So, we delimited the measurements and feature 

extraction to the frequency range with highest coefficients in 

the first eigenvector. Restricting the frequency segments 

decreases the computational cost of analysis which is very 

important in clinical use. When the above mentioned 

classifier is fed with the features extracted with proposed 

method, the classification accuracy improves, which is shown 

in Table 1. Therefore, this method is extracting the 

reproducible information from raw data of different 

experiment sessions more effectively than Cole-Cole method.  

3 Conclusions 

This paper proposes that segmental spectral decomposition 

can be considered as an effective feature extractor to 

overcome the reproducibility issue of BIS measurements. 

This method is carried out by mapping the measurements 

on the eigenvectors with highest variance. This mapping is 

delimited in frequency segments corresponding to highest 

coefficients of most significant eigenvectors, resulting in a 

far lower computational cost than nonlinear curve fitting. 

The proposed method has the potential to be generalized in 

future works as a general BIS and EIT feature extraction 

method.  
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Table 1: Comparing different BIS feature extraction methods in arm position classification task  

Feature extraction method Cole-Cole parameter extraction [3] Spectral decomposition Segmental spectral decomposition 

Classification Accuracy  75% 87.5% 95.5% 
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Abstract:  A calibration approach has been developed for 
use with the EIT systems that are significantly influenced 
by parasitic impedances associated with switches, 
multiplexers and channel-to-channel coupling. Calibrated 
data acquired from saline tank experiments is compared 
with the data obtained from a forward simulation of the 
experiment. 

1. Introduction 

EIT systems often use multiplexers and switches to limit 
the number of signal sources (current or voltage) in a 
system. While this approach keeps the electronics simple, 
it introduces significant parasitic impedances to the 
system, which must be accounted for during calibration.  

Previous approaches have used an inter-channel and 
intra-channel calibration method [1],[2]. This approach 
works well for systems that either do not rely on 
multiplexed signal output or use a differential amplifier 
based approach to measure voltages. However, in single 
source, single-ended voltage measurement systems, the 
higher order effects arising out of channel coupling, and 
increased current shunting, limits the use of these 
calibration approaches, in which each channel is calibrated 
individually. Our proposed approach reduces the influence 
of these coupling effects on the impedance measurements. 
Specifically, our approach produces a set of calibration 
factors for each frequency and current pattern applied.  

2. Methods 

The EIT system [4] is first configured to use as many 
channels as are required for an experiment (i.e. N=8 
channels). A wheel-type resistor phantom [3] with N 
channel connections on the ring is used during calibration. 
Circuit simulation software (SIMetrix, UK) is used to 
obtain the voltage at each node in the calibration phantom 
for each excitation pattern, i.e., each combination of 
source and sink channels/nodes. These nodal voltages are 
stored as calibration reference data. 

The phantom is then connected to the EIT system, and 
voltages at each electrode are recorded for each excitation 
pattern and frequency. Magnitude and phase calibration 
factors (CF) for each channel, excitation pattern, and 
signal frequency are calculated as: 

𝐶𝐹.𝑀𝑎𝑔 𝑖, 𝑝𝑎𝑡, 𝑓𝑟𝑒𝑞   ∠𝐶𝐹.𝑃ℎ𝑎𝑠𝑒 𝑖, 𝑝𝑎𝑡, 𝑓𝑟𝑒𝑞  
                            =    !(!,!"#,!"#$,!"#)

!(!,!"#,!"#$,!"#)
  ………….(1) 

where the CF.Mag(i,pat,freq) is the voltmeter magnitude 
scaling factor and CF.Phase(i,pat,freq) is phase correction 
factor for channel i, excitation pattern pat, and frequency 
freq. 𝑉 𝑖, 𝑝𝑎𝑡, 𝑓𝑟𝑒𝑞, 𝑠𝑖𝑚   represents the simulated complex 
voltage at channel i for pattern pat and frequency freq and 
𝑉(𝑖, 𝑝𝑎𝑡, 𝑓𝑟𝑒𝑞, 𝑒𝑥𝑝)  represents the measured voltage at 
channel i for pattern pat and frequency freq obtained from 
a phantom experiment. Let 𝑀𝑎𝑔!(!,!"#,!"#$,!"#)    and 
𝜙!(!,!"#,!"#$,!"#)   represent the magnitude and phase 
respectively, of 𝑉(𝑖, 𝑝𝑎𝑡, 𝑓𝑟𝑒𝑞, 𝑒𝑥𝑝) . Then, the complex 

calibration factors can be used to obtain calibrated voltage 
measurements using: 

𝑉 𝑖, 𝑝𝑎𝑡, 𝑓𝑟𝑒𝑞, 𝑠𝑖𝑚 !"#$%&"'() = 𝑀𝑎𝑔! !,!"#,!"#$,!"# ×
𝐶𝐹.𝑀𝑎𝑔 𝑖, 𝑝𝑎𝑡, 𝑓𝑟𝑒𝑞   ∠   𝐶𝐹.𝑃ℎ𝑎𝑠𝑒 𝑖, 𝑝𝑎𝑡, 𝑓𝑟𝑒𝑞 +

                                                                              𝜙! !,!"#,!"#$,!"#   …………….(2) 

3. Discussion, Results and Conclusion 

Calibration data is obtained for each excitation pattern 
using a resistor phantom with all the channels connected 
to the phantom. This approach is similar to the inter and 
intra-channel calibration approach, but takes into account 
the effects of pattern-dependent channel coupling 
(increased current shunting, higher order parasitic 
impedance effects), which is often ignored. 

To quantify the accuracy of this calibration approach, 
we collected data in current drive mode using an 8.5cm 
diameter tank filled with saline solution having a 
conductivity of 0.1Sm-1. We compared impedances 
obtained using calibrated data with impedances computed 
using a forward simulation of the experimental 
configuration. Our EIT system [4] was configured to 
measure 1560 tetrapolar impedances from 16 channels. 
Scaling factors 𝑆𝐶𝐹   = ! !"#,!"!"#

! !"#,!"!"#
 were computed to 

quantify the comparison, where Z(sim) represents the 
complex impedance computed using the forward model at 
10kHz. The spread of scaling factors defines how well the 
calibrated data matches the forward simulation. A narrow 
spread signifies that all calibrated impedances are close to 
the expected values (based on a forward model). Of the 
1560 tetrapolar impedances recorded, 30 (~2%) of the 
most extreme SCF values were discarded to limit the 
range of the histogram. The majority of scaling factors are 
close to 1.1 (Fig. 1). In addition, measurement patterns 
corresponding to scaling factors distant from 1.1, had 
small voltage differences (<20 mV) where noise has a 
more significant impact. In conclusion, this approach can 
be used for calibrating EIT systems that have moderate 
parasitic impedances between channels, and potentially 
helps to account for issues arising out of channel coupling. 

  
Figure 1: Histogram of SCF with 30 extreme values discarded. 
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Abstract: Electrical impedance tomography (EIT) creates
tomographic images from surface electrical stimulation and
measurement. Many research and commercial devices have
been made, with correspondingly many data formats, which
negatively impacts the ability to share data. To address this
issue, we have developed the OEIT data format, an XML-
based flexible container format for EIT data. We describe
its features and structure.

1 Introduction
Electrical impedance tomography (EIT) is a tomographic
imaging technique that makes use of electrical currents in-
jected into a body and of the resulting potential field to cal-
culate the spatial distribution of electrical conductivity/im-
pedivity. Over the last decade, EIT has witnessed a dramatic
increase in the number of studies produced and commercial
implementations[1], leading to an increase in data formats
to store EIT, which negatively impacts the ability to share
data. We propose a common file structure and XML data
description to encapsulate EIT data in order to promote data
sharing.

2 File Structure
The OEIT file makes use of the ZIP format with the follow-
ing directory structure:

/auxiliary Data from auxiliary devices.
/eit Data related to the EIT stimulation and measurement.
/info Descriptive elements of the EIT device, stimula-

tions, and measurements.
/info/sensitive Data of a sensitive nature that may be

stripped if the file is shared.
/log Log files related to data acquisition.
/oem Any user-defined data.
/oeit.xml The XML parsing entry point.

While the directory structure is recommended, the XML
contains links to all portions of data. Therefore, the only
necessary items are the /oeit.xml file for initial parsing and
sections required to complete the XML data description.

3 XML Data Description
The oeit.xml file describes the location of all other relevant
pieces of information, making use of XInclude[2]:
<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
< o e i t x m l n s : x i =" h t t p : / /www. w3 . org / 2 0 0 1 / XInc lude "

xmlns=" h t t p : / /www. open−e i t . o rg / schema ">
< x i : i n c l u d e h r e f =" i n f o / s u b j e c t . xml " / >

. . .

The recommended location for the data description ele-
ments is /info with file names and contents as follows:
subject.xml Describes the subject under test.
devices.xml Describes the EIT and other physical devices

used during data capture.

electrode_types.xml Describes the physical electrode
types used during data capture.

electrodes.xml Describes the logical electrodes used dur-
ing data capture.

stim_types.xml Describes the types of stimulations used
during data capture.

meas_types.xml Describes the types of measurements
used during data capture.

frame_types.xml Describes the coupling and temporal ar-
rangements of stimulations and measurements.

streams.xml Describes the internal layout and locations of
the data streams in terms of repetitions of frames and
describes associated log files.

The XML data description allows a user to describe all
fields within a data stream, the stimulations (if any) that
produced each field, and the measurement associated with
each field (from an example frame_types.xml):

. . . < a c q u i s i t i o n d u r a t i o n =" 369 .82 us " s t a r t =" 0 us ">

. . . < s t i m t y p e =" C u r r e n t I n j e c t i o n ">
< e l e c r e f =" e1 " m u l t i p l i e r =" 1 " / >
< e l e c r e f =" e2 " m u l t i p l i e r ="−1" / >

< / s t i m >
. . .

<meas t y p e =" V o l t a g e ">
< e l e c r e f =" e3 " m u l t i p l i e r =" 1 " / >
< e l e c r e f =" e4 " m u l t i p l i e r ="−1" / >

< / meas>
. . . < / a c q u i s i t i o n >

This means the user is free to change the arrangements
of stimulations and measurements to best suit their purpose,
and consumers of the data can reconstruct the events of data
acquisition. Since no assumptions are made as to what is in-
cluded in the data stream, legacy streams may be described
by the XML data description. The complete schema defin-
ition can be found online at http://www.open-eit.
org/schema.

4 Conclusions
By making no assumptions about data stream contents,
providing mechanisms to describe data streams, and con-
taining one entry point, the OEIT file format provides a
flexible mechanism to describe EIT acquisitions in a fash-
ion that can be consumed by other parties without a priori
knowledge of the data acquisition process.
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Abstract: The data acquisition system (DAS) 

developed aims to get the 3D breast cancer 

tomography with 8 current injection channels and 117 

voltage measurement channels, capable of generating 

and measuring voltages and currents. By adopting 

special electrode and careful circuit layout, the initial 

bandwidth without calibration can reach 5 MHz. 

Electrical test results show that the system has a SNR 

greater than 67dB at 5MHz without digital 

enhancement method. 

1 Introduction 

Electrical impedance tomography (EIT) is a medical 

imaging technique which displays the spatial distribution 

of the complex conductivity inside a body [1]. For 

previous EIT system [2][3], the main problem is the speed 

limitation on the data transport path between the 

tomography computer and DAS, which affects image 

construction speed and later digital progress. By contrast, 

the system adopts PXI-Express protocol as the data 

transport path whose data transferred speed can reach 

400MB/s, thus the measurement rate of the systems can 

easily reach 100 frame/s. In addition, high flexibility can 

be got by applying the PXI-E structure. The system 

diagram is illustrated in Fig.1. NI signal data acquisition 

subsystem consists of a NI-PXI-E case, a versatile DAS 

card, a multi-channel DAC card and a NI computer 

controller. The system principle is as follows. First of all, 

Electrode driving circuits inject current excitation into 

human body through electrodes, and then the versatile 

DAS cards get the feedback electrical potential signals and 

transmit the signals to the NI computer controller. The 

actual system is illustrated as Fig.1 and Fig.2 respectively. 
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Fig.1 overall design diagram 

2 Methods 

Versatile DAS card contains features: 8-channel ADC, 

1-channel  DAC, 64-channel digital I/O ,as shown in Fig.3. 
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Fig.3 Versatile DAS card diagram 

Multichannel DAC card is designed for outputting 8-

channel analog signals with minimum voltage precision of 

0.12mV, as shown in Fig.5. 

 
Fig.5 multichannel DAC card diagram 

3 Conclusions 

The paper presents the design of the data acquisition 

system briefly. By adopting FPGA as data processing, the 

system can be easy to be reconfigured, so the system can 

not only satisfy the need for breast cancer detection, but 

also can be used for other EIT applications. 
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Abstract: With electrical impedance tomography (EIT) 

system’s development, more electrodes is required to 

get better detection performance. In this paper, we 

proposed a circuit design to switch channels to 

different electrodes quickly and stably. 

1 Introduction 

Various EIT systems have been developed for 3D 

imaging[1-3].Cambridge MK4 EIT is a 3D medical 

imaging system for breast cancer detection. It permits 

visualization of the inner structure of the breast by 

measuring its impedance distribution.[4] The EIT 

hardware system is consisted of planar electrode sampling 

circuit, planar electrode driving circuit, multi-functional 

sampling card, 64-channel digital IO card, National 

Instrument(NI) chassis/controller. This system uses 

current excitation (1mAp-p) and voltage measurement 

covering frequency from 10kHz to 5MHz.  

2 Methods 

1. Planar electrode sampling circuit 

The upper computer is in charge of the switching 

control. 
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Fig 1. Planar electrode sampling circuit 
As show in Fig 1, signals from 85 electrodes can be 

collected by planar electrode sampling circuit: analog 

voltage signals enters the DAQ board through a buffer 

amplifier, the buffered signals transformed into 16-lane 

voltage signals after a 85× 16 switching matrix, it 

becomes 8-lane analog voltage signals after passing by a 

differential to single amplifier. Finally, voltage signals are 

sampled by the 8-channel AD card before the sampled 

data are transferred to the upper computer to form EIT 

images. 

2. Planar electrode driving circuit 

This sub-circuit can complete the switch from a pair of 

injecting current to 85 electrodes freely. The planar 

electrodes formed 2×85 switching matrix, in this way, 

1-channel voltage signal can be produced by one DAC 

while another DAC can output a signal with same 

amplitude but reversed phase. These two signals have a 

phase difference of 180°and developed into I+,I- via 

Howland circuit. User can obtain a pair of pumping 

signals by switching matrix which illustrated as shown in 

Fig 2. 

The function of planar electrode driving circuit is to 

realize the switching process between a pair of current 

sources to 85 electrodes. Single to differential amplifier, 

Howland V/I transform circuits and switching matrix 

constitute the driving circuit. At last, the two way 

Howland circuits get two way differential current 

respectively. 

The types of chips are as follows: 

1) Switching matrix: ADG2128. Which has 

double-buffered input logic and 300 MHz bandwidth. 

It’s on resistance is 35 Ω maximum 

2) Switching matrix: AD8115, which is a 16 × 16 high 

speed non-blocking switch array with 225 MHz −3 

dB bandwidth. 

As the chips we selected, the switching channel 

method of our system has many advantages. In our 

practical use, Its bandwidth can reach 5KHz to 10MHz, 

which is good enough to meet the system’s requirement 

(10KHz to 5MHz). What’s more, the new switch matrix 

we adopted also have outstanding performance in power 

dissipation, SNR and can allow more electrodes (up to 96) 

to be employed in future systems. 
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Fig 2. Planar electrode driving circuit 

3 Conclusions 

The testing results indicate that, for the Cambridge 

MK4 EIT system, the bandwidth of the channel without 

I/V circuit is 5KHz to 10MHz. In our design, the 

switching matrix is controlled by FPGA, hence the switch 

channel is stably during data acquisition. The test results 

proves the design is an outstanding scheme for channel 

switching of EIT System. 
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Abstract: Image reconstruction in Magnetic Induction 

Tomography (MIT) depends on a sensitivity distribution 

in a conducting volume, rather than a free-space 

background. The consideration of factors affecting 

sensitivity map generation is essential to optimise image 

reconstruction. The aim of this paper is to investigate such 

factors and to simulate sensitivity maps while varying 

conductivity contrast levels and perturbation dimensions. 

1 Introduction             

In Magnetic Induction Tomography (MIT), a 

sensitivity matrix maps the changes of conductivity 

distribution on to the changes of the voltages induced in a 

receiver coil. Korjenevsky et al [1] used filtered 

backprojection to reconstruct images (of plastic bottles 

containing saline solution both in free space and placed 

inside a larger saline filled tank), arguing that the regions 

of high sensitivity corresponded to ‘flux tubes’ linking the 

excitation and detection coils. Scharfetter et al [2] 

computed the sensitivity maps for low-contrast 

perturbations in a conducting background and concluded 

that the sensitivity was not confined to flux tubes; rather, 

they found that areas of maximum sensitivity lay on the 

periphery of the object and were strongly influenced by its 

conductivity contrast and the geometry. To optimise 

image reconstruction, it is essential to systematically 

analyse key factors affecting the sensitivity map. These 

include coil metrics and object geometry, the number of 

voxels, conductivity contrast and excitation frequency. 

2 Methods 

In this study, sensitivity maps were first computed for 

the coil design and application employed in the Cardiff 

MIT system [3], termed opposed coils, for a cylindrical 

sample volume (radius 10 cm, height 20 cm) with 

homogeneous non-zero conductivity, applying varying 

conductivity contrast and perturbation dimensions. In the 

perturbation method, the conductivity of all voxels in the 

modelled volume was set to 1 Sm-1. A cubic group of 

voxels (image voxel) were then perturbed from 1 Sm-1 by a 

selected percentage in the range of 1% - 1000000%. The 

voxels were then reset to 1 Sm-1 and a new group of voxels 

were selected. This was repeated to produce N  N  N 

image voxels covering the modelled volume for each coil 

combination, with the sensitivity matrix in this case 

having the dimensions of 240 (coil combinations)  8000 

(image voxels). The perturbation method allows 

sensitivity matrices to be derived for both the low contrast 

case with low percentage perturbations, and the high 

contrast case using high percentage perturbations. The 

modelled volume was discretised into 80  80  80 cubic 

voxels, each of side 0.25 cm.  

3 Results 

Figure 1 shows the sensitivity maps of various 

conductivity and perturbation dimensions for an opposed 

coil arrangement. The columns show the sensitivity maps 

produced by applying perturbations of 1%, 10000%, 

50000%, 100000% and 1000000%, corresponding to 

conductivities of 1.01 Sm-1, 100 S m-1, 500 Sm-1, 1000 

Sm-1 and 10000 Sm-1 respectively with a  1 Sm-1 

background. The 2nd to 4th rows show sensitivity maps 

derived using perturbations of 444, 888, 161616 

voxels. The last row shows a freespace sensitivity map 

derived for a 444 perturbation of 1 Sm-1 in a 0 Sm-1 

background. In each case, the map shows the sensitivity 

distribution at a cross-section of the mid-point of the 

volume, which corresponds to layer 40. 

 
Figure 1: Sensitivity maps produced by applying perturbations 

of different percentage contrast levels and dimensions.  

4 Conclusions 

Several publications report MIT image reconstructions 

implemented when using metal objects. Such high contrast 

conductivity distributions may have localised zones of 

sensitivity, with eddy currents, and hence sensitivity 

localised within these zones. They appear to produce 

sensitivity distributions equivalent to the freespace 

condition. By comparison, lower contrast distributions 

produce a greater spatial range, appearing primarily at the 

periphery of the object. In conclusion, conductivity values 

and contrast greatly influence the sensitivity distribution 

of MIT systems, and these should be carefully selected as 

relevant to the application when developing algorithms 

and phantoms. Results obtained using metals objects, for 

instance, would not be expected to be relevant to most 

biomedical applications, and could be misleading. 
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Abstract: A finite difference scheme is introduced to solve
the D-bar equation. The D-bar equation arises in electrical
impedance tomography (EIT) when using the complex geo-
metrical optics solutions to recover the conductivity within
a body. This scheme is second-order and is first used on a
test equation for error analysis and then used to reconstruct
EIT images using the D-bar method.

1 Introduction
In 1996, A. Nachman [1] developed the D-bar method,
which proved that the inverse conductivity problem in 2-D,
described by A. Calderón [2], has a unique solution. This
method reduces to finding the solutions to the D-bar equa-
tion

∂̄kµ(z,k)− 1
4π k̄

t(k)ei(kz+k̄z̄)
µ̄(z,k) = 0 (1a)

lim
|z|,|k|→∞

µ(z,k) = 1, (1b)

where z ≡ x+ iy, k ≡ k1 + ik2, ∂̄k ≡ 1
2 (

∂

∂k1
+ i ∂

∂k2
) and t(k)

is the non-physical scattering transform, which contains all
data information. The conductivity, γ , can be recovered by
the relation γ

1
2 (x,y) = lim|k|→0 µ(z,k). Nachman suggests

solving an equivalent integral equation to find µ . Current
numerical implementations of the D-bar method solve these
integral equations as is done in [3–5]. We seek to solve the
D-bar equation (1a) as a partial differential equation using
finite differences.

2 Methods
To account for the complex conjugate operator on µ in (1a),
we solve the equivalent system of equations found by equat-
ing the real and imaginary parts of (1a). Thus, we seek to
solve

1
2
(

∂

∂k1
u− ∂

∂k2
v)− (au+bv) = 0 (2a)

1
2
(

∂

∂k2
u+

∂

∂k1
v)− (bu+av) = 0 (2b)

where µ(z,k) ≡ u(z,k) + iv(z,k) and 1
4π k̄ t(k)ei(kz+k̄z̄) ≡

a(z,k) + ib(z,k). We approximate the first derivatives in
the D-bar operator using centered finite differences. This
leads to an O(h2) truncation error for a uniform mesh spa-
cing, h. We truncate the complex domain to a finite domain
Ω = [−R,R]2 for implementation, and impose the numer-
ical boundary condition approximation µ(z,k)|∂Ω = 1. The
resulting scheme reduces to solving a 2N2x2N2 linear sys-
tem, as in [3–5], where h = 2R/(N +1). Here the system is
sparse with O(N2) non-zero entries.

3 Results
To test our solver, we use the test function µ1(z,k) =

e−|k|
2−|z|2−2i(k1k2+xy)+ 1 for fixed z and assume no scatter-

ing, resulting in the equation ∂̄kµ1 = f with boundary con-
dition µ1|∂Ω = g. Thus, we solve (2) but with the right hand
sides of (2a) and (2b) replaced by α(z,k) and β (z,k), re-
spectively, where f = α + iβ and a = b ≡ 0. A plot of the
relative errors when solving (1a) can be found in 1a. Note
the plateau in error that occurs for R = 2. This is caused by
the imposed Dirichlet boundary condition on the finite do-
main, the approach also taken by [3–5]. For small enough h,
the other error plots will also plateau, but will decrease with
order two until that point. This suggests that the scheme
converges with order two, but further analytic work is re-
quired to prove this. Figure 1b shows cross-sections of re-
constructions of a concentric circle target with radius 0.3
inside a unit circle. The error plateau is evident since the
reconstructions are almost identical for larger values of N.
Despite this plateau, the conductivity is reconstructed. Im-
provements in the reconstruction can be made by adjusting
R and a regularization parameter in the D-bar method. This
solver also works when reconstructing images using exper-
imental data.
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Abstract: A direct D-bar reconstruction algorithm is
presented for reconstructing a complex conductivity from
2-D EIT data. The method is applied to simulated data
and archival human chest data. Permittivity reconstructions
with this new method and conductivity reconstructions with
the fully nonlinear D-bar method based on [1] depicting
ventilation and perfusion in the human chest are presented.

1 Introduction
In this work a direct nonlinear reconstruction algorithm us-
ing the D-bar method is presented for the computation of
conductivity and permittivity on a chest-shaped domain.
The conductivity and permittivity are modeled as a complex
coefficient γ = σ + iωε in the generalized Laplace equation
where ω represents the angular frequency of the applied
current, σ the conductivity, and ε the permittivity.

There are two D-bar methods shown here. To obtain
reconstructions of the real part of the admittivity for the hu-
man data, the D-bar method based on the global uniqueness
proof by Nachman [2] is employed. Here, the fully nonlin-
ear scattering transform is used for the first time with human
data. To compute reconstructions of the permittivity, a dir-
ect method introduced in [3] was utilized. The method is
based on the uniqueness proof by Francini [4], but equa-
tions relating the Dirichlet-to-Neumann to the scattering
transform and the exponentially growing solutions are not
present in that work. Such equations are derived in [5], and
an alternative formulation with a different formula for the
scattering transform from [3] is used here.

2 Methods
2.1 Algorithms

The conductivity was computed using the fully nonlinear
D-bar method based on [1, 2, 6]. The permittivity was com-
puted using a new D-bar method based on the elliptic sys-
tem of complex geometrical optics (CGO) solutions intro-
duced in the global uniqueness proof of Francini [4]. As in
other D-bar methods, there is a direct relationship between
the CGO solutions, and the coefficient in the generalized
Laplace equation, which in this case is the admittivity. In
this method, the scattering transform is a 2× 2 matrix of
functions with nonzero off-diagonal entries, related to the
CGO solutions by a boundary integral equation. Here, a
linearized scattering transform is used, which partially lin-
earizes the method. The lengthy equations are omitted for
brevity.

2.2 Data Collection

We consider two sets of 100 frames of archival data col-
lected at 18 frames/s on the chest of an adult male sitting

upright, using the ACT3 system at RPI [7]. One set was
collected during breathholding to image perfusion, and the
other set consisted of a deep slow inhalation followed by
slow exhalation to image ventilation. In both cases, the
trigonometric current patterns with current amplitude 0.85
mA were applied on 32 electrodes placed around the cir-
cumference of the chest.

2.3 Results

In Figure 1 a selection of five difference images of the
conductivity and permittivity distributions in a healthy hu-
man subject during a slow ventilation maneuver. The first
frame was chosen as the reference frame. Close agree-
ment between the conductivity and permittivity images is
observed, as may be expected in a healthy subject, and
changes due the to increased resistivity during inhalation
are clearly visible.

Conductivity

Permittivity

Figure 1: Top row: Red is high conductivity and blue low con-
ductivity. Bottom row: Red is high permittivity and blue low per-
mittivity.

3 Conclusions
We have presented a direct D-bar method for computing
reconstructions of both conductivity and permittivity from
human chest data on a 2-D cross-sectional domain. This
constitutes the first fully nonlinear D-bar reconstructions
of human chest data and the first D-bar permittivity recon-
structions of experimental data. Difference images of vent-
ilation and perfusion in a healthy human subject do not ex-
hibit boundary artefacts and clearly show changes due to
blood flow between the heart and lungs and gas exchange.

References
[1] Knudsen K, Lassas M, Mueller JL, and Siltanen S, Inverse Problems

and Imaging, 3:599–624, 2009.
[2] Nachman AI, Ann. of Math., 143:71–96, 1996.
[3] Herrera CNL, PhD thesis, University of São Paulo, Brazil, 2012.
[4] Francini E, Inverse Problems 6:107–119, 2000.
[5] Hamilton SJ, Herrera CNL, Mueller JL and Von Herrmann A, Inverse

Problems, 28:095005, 2012.
[6] Siltanen S, Mueller JL, and Isaacson D, for the 2D inverse conductiv-

ity problem. Inverse Problems, 16:681–699, 2000.
[7] Edic PM, Saulnier GJ, Newell JC, and Isaacson D, IEEE Trans. Bio-

med. Eng., 42:849–859, 1995.



28 SESSION 3. RECONSTRUCTION I

Fine-tuning of the Complete Electrode Model
Robert Winkler1, Stratos Staboulis2, Andreas Rieder1, Nuutti Hyvönen2

1Karlsruhe Institute of Technology, Karlsruhe, Germany, robert.winkler@kit.edu
2Aalto University, Helsinki, Finland, stratos.staboulis@aalto.fi

The work of the authors was supported by the German Research Foundation (DFG) and the Academy of Finland.

Abstract: The Complete Electrode Model (CEM) is a real-
istic measurement model for Electrical Impedance Tomog-
raphy. We present a non-uniform discretization of the con-
ductivity space based on its sensitivity to boundary data and
an adaptive adjustment of electrode parameters leading to
improved reconstructions of Newton-type solvers. We dem-
onstrate the performance of this concept when reconstruct-
ing with incorrect geometry assumptions from noisy data.

1 Sensitivity-based conductivity discretiza-
tion

The Neumann-to-Dirichlet (ND) map Λσ of the CEM with
L electrodes is an L×L matrix that maps the applied cur-
rents to the resulting (measured) potential vectors, where σ

is the conductivity on a domain Ω⊂ R2, cf. [1]. By

λσ = ‖Λσ −Λ1‖/‖Λ1‖,

we define the sensitivity for distinguishing a conductivity
σ ∈ L∞

+(Ω) from the homogeneous case σ ≡ 1 by boundary
measurements. For Ω=B1(0), we can determine λσ analyt-
ically for conductivities of the form σ = 1+δ χD(x), where
D is a disk inside Ω. With this information, we discretize
the conductivity space such that the ND map is equally sen-
sitive to perturbations δ in each segment. This is achieved
by filling the disk with non-overlapping circles resulting in
equal sensitivity for perturbations and applying Voronoi tes-
sellation afterwards to get a partition of the entire disk. Mo-
tivated by the similarities between the CEM and the contin-
uum boundary model of EIT, we derive a simple heuristic to
generate sensitivity-based conductivity discretizations for
non-circular domain geometries. A sensitivity-based dis-
cretization for a setting with 16 electrodes and a heuristic
approximation for a non-circular domain are shown in fig. 1.

Figure 1: Left: Sizes of circular perturbations resulting in a sen-
sitivity λσ = 0.02. Center: Corresponding Voronoi tessellation.
Right: Heuristic approx. of a sensitivity-based discretization.

The advantage over generic triangulations is that each con-
ductivity coefficient is equally sensitive to measurement
noise, thus regularization during inversion can effectively
be applied by a single parameter, i.e. the estimated noise
level of the data, free of additional priors. Fig. 2 shows re-
constructions on uniform and sensitivity-based discretiza-
tions with the same number of coefficients for simulated
data Λσ with 1% artificial noise.
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Figure 2: Left: True setting. Center: Reconstruction on a uniform
mesh, convergence after 33 Newton-iterations with 23% rel. error.
Right: Reconstruction on a sensitivity mesh (13 it., 18% error).

2 Adjustment of the electrode parameters
Most EIT applications involve non-circular domain geome-
tries. Even for circular domains, the electrode parameters
(location, contact impedance) are usually not known ex-
actly which can cause severe reconstruction artifacts. To
account for these model uncertainties, we incorporate the
reconstruction of the electrode parameters into the recon-
struction process of the conductivity. This is done by adding
the Fréchet derivative of the ND map with respect to the
contact impedance, see e.g. [2], and the Fréchet derivative
with respect to the electrode location, see [3], to the inexact
Newton-type algorithm REGINN [4]. Moreover, the adap-
tive adjustment of the electrode locations can be helpful in
dealing with non-circular domain geometries. According
to the Riemann mapping theorem, any simply connected
domain in R2 can be mapped onto the unit disk confor-
mally. For the CEM, this means that the electrode parame-
ters change. When the original domain is not too far from
a circle (e.g. an ellipse), we observe that the reconstructed
image is a conformally mapped solution of the true domain
without additional artifacts. This is shown in fig. 3.
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Figure 3: Left: Measurement setting with a resistive inclusion
(left) and a conducting inclusion (right). Data kindly provided by
Aku Seppänen, University of Eastern Finland. Center: Reconstru-
ction on the estimated domain. Right: Reconstruction on a disk.

3 Conclusions
With a sensitivity-based conductivity discretization and an
adaptive adjustment of the domain geometry, we introduced
a reconstruction scheme for EIT which considers effects of
measurement noise and is robust to geometry inaccuracies,
resulting in improved reconstructions over generic solvers.
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Abstract: Implementation of efficient methods to handle 

calculations in EIT is a key issue to address 3D electrical 

property reconstructions. Following a transport back-

transport method, we develop in this work an adjoint 

approach and define explicit forward and back-projection 

operators. It allows reducing the size of matrices involved 

in reconstruction. This framework has been tested on 

experimental data acquired in vitro on a saline phantom. 

1 Introduction 

Forward problem solution and sensitivity computations 

are the fundamentals of Electrical Impedance Tomography 

(EIT) [1]. Standard approach is to use Finite Element 

Methods (FEM) to derive both admittance matrix and 

Jacobian from an elemental discretization of conductivity. 

Calculation parallelization [2] and deduction of nodal 

Jacobian [3] offer ways to enhance calculus efficiency. 

In most EIT systems, the same measurement 

configuration is used per injection configuration. Then, 

following a transport back-transport method [4], we 

explicitly define forward and back-projection operators 

from potential gradients. It allows using inversion 

algorithms without explicit Jacobian assembly. Matrix size 

involved in reconstruction is proportional to the number of 

electrodes E instead of the number of measurements. 

2 Methods 

We elaborate our framework supposing the electric 

potential       linear per element and considering a 

piecewise constant conductivity discretization      . 

2.1 Sensitivity calculations, adjoint framework 

Classical estimation of Jacobian coefficient is based on the 

perturbation approach [5]. Two configurations are 

considered: the actual measurement configuration, and a 

virtual measurement configuration in which source and 

detector have been interchanged. In this work, the 

Jacobian matrix is factorized with matrices containing 

elemental potential gradients. They can be determined by 

standard FEM formulation [6]. Using only the gradient 

matrices, a forward operator is defined and solves a direct 

transport problem. A back-projection operator is also 

defined and transports back residuals into the imaging 

domain. The profit of such a formulation relies upon the 

size of gradient matrices         used in inversion, 

versus the larger size of standard Jacobian matrix, 

typically        
 
. Inversion is then done with a 

standard preconditioned conjugate gradient (PCG). 

2.2 Experimental device 

Experimental measurements are performed on a saline 

phantom of 4cm diameter featuring 14 equally-spaced 

copper electrodes with a custom-built EIT system [7]. 

2.2.1 Reconstruction approach 

The implementation of the framework, adapted from the 

EIDORS library [8], is first validated on simple test cases 

in 2D before exploring reconstructions from noisy 

simulated measurements. Reconstructions are then 

performed against experimental data.  

3 Results 

Reconstructions from simulated data (Figure 1) exhibit a 

correct behaviour of the framework and PCG algorithm 

used for inversion. The framework performs also well in 

experimental situation (Figure 2). 

  
Figure 1: 2D difference reconstructions from simulated data 

with 5% additive Gaussian noise 

  
Figure 2: 2D difference reconstruction from experimental data, 

with estimated 5% noise 

4 Discussion 

The framework presented in this work allows inversion 

without explicit Jacobian calculations, working only with 

potential gradient matrices for injection and measurement 

configuration. It has been validated against both simulated 

and in vitro experimental measurements.  

Further investigation might consider reconstructions 

that favour sparse solutions and make use of non-linear 

inversion algorithms. 
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Abstract: To improve the practical applicability of elec-
trical impedance tomography is a great ongoing challenge.
Theoretical identifiability results exist for noiseless con-
tinuous boundary measurements. However, little is known
about what can be achieved with a finite number of realisti-
cally modelled electrodes in a setting including modelling
and measurement errors. In this paper, we sketch how to
derive rigorous resolution guarantees for such settings.

1 Introduction
Notation: χM denotes the characteristic function of a set M
and eig(A) the set of eigenvalues of a square matrix A.

We consider a conductive object Ω ⊆ Rn (n ∈ {2,3})
with a conductivity distribution

σ : Ω→ R, σ(x) = σB(x)χΩ\D(x)+σD(x)χD(x), (1)

where σB(x) is the background conductivity and σD(x) the
inclusion conductivity of an inclusion D⊆Ω. The inclusion
is characterized by a contrast to the background with

inf
x∈D

σD(x)≥ σDmin > sup
y∈Ω\D

σB(y), σDmin ∈ R. (2)

Furthermore, let (ω1,ω2, · · · ,ωN) be a resolution partition
of Ω (see Figure 1). In Section 3, we sketch how to verify if
a realistically modelled measurement setting (see Section 2)
yields enough information to design an inclusion detection
method that fulfils the following guarantee.

Resolution guarantee (RG):
(a) A resolution element ωi will be marked if ωi ⊆ D.
(b) No resolution element will be marked if D = /0.

2 The measurement setting
The setting is given by current-voltage measurements on
a finite number of (almost perfectly conductive) electrodes
E1,E2, . . . ,EL. We assume that a contact layer between each
electrode Ei and Ω leads to a contact impedance z[i].This set-
ting is mathematically modelled by the complete electrode
model (CEM), cf. [1]. For a conductivity distribution σ and
contact impedances given by the components of z ∈RL, the
measurement matrix is defined by

R(σ ,z) =
(

R[i, j](σ ,z)
)L−1

i, j=1
∈ RL−1×L−1, (3)

where the components R[i, j](σ ,z) are given by the measure-
ments as in Fig. 1. The matrix R(σ ,z) is symmetric, cf. [1].

To allow for modelling and measurement errors:
(a) The background conductivity σB(x) is given approxi-

mately by σ0(x) with ‖σB−σ0‖∞ ≤ ε ∈ R.
(b) The vector z (contact impedances) is given approxi-

mately by z0 with ‖z− z0‖∞ ≤ γ ∈ R.
(c) There are noisy measurements Rδ (σ ,z) given with

an absolute noise level δ ≥ ‖R(σ ,z)− Rδ (σ ,z)‖2,
δ ∈ R. Possibly replacing Rδ (σ ,z) by its symmet-
ric part, we can assume that Rδ (σ ,z) is symmetric.

EL

U = R[i, j]V

I = 1A

E1

E2

...

E j

Ei

ω1 ω2 ω3 ω4 ω5 · · ·

ωi

D

Ω

Figure 1: Setting with a sample resolution for Ω = [−1,1]2.

3 Verification of the resolution guarantee
Let σ0(x), z0, ε , γ , δ and σDmin be given. We define

σBmin(x) := σ0(x)− ε, σBmax(x) := σ0(x)+ ε, (4)
zmin := z0− γ(1, . . . ,1), zmax := z0 + γ(1, . . . ,1), (5)

τi(x) := σBmin(x)χΩ\ωi(x)+σDminχωi(x) (6)

for i ∈ {1,2, . . . ,N}. Then the RG is possible if
N

max
i=1

min eig(R(τi,zmax)−R(σBmax,zmin))<−2δ . (7)

The proof is based on the monotonicity relation

σ1 ≤ σ2, z1 ≥ z2 ⇒ R(σ1,z1)−R(σ2,z2)≥ 0. (8)

The main idea is to consider (7) as a worst-case scenario
test for Algorithm 1 (cf. [2] for γ = 0).

Algorithm 1: Mark element ωi if

min eig(R(τi,zmax)−Rδ (σ ,z))≥−δ . (9)

3.1 Numerical results

Let Ω be given with a resolution partition as in Fig. 1. Fur-
thermore, let σ0 ≡ 1 and z0 = (1, . . . ,1) ∈ RL be approxi-
mations of the background conductivity σB(x) and the vec-
tor z (contact impedances), respectively. Additionally, let
σDmin = 2 be a lower bound of the inclusion conductivity.

Then (7) is fulfilled for a background error of ε = 1%,
an absolute measurement noise level of δ = 0.9% and ex-
actly given contact impedances (γ = 0). Hence, the RG is
possible. In particular, Algorithm 1 fulfils the RG.

The results can be extended to the case of approximately
known contact impedances.

4 Conclusion
This paper presents the possibility of a rigorous resolution
guarantee for a realistically modelled electrode measure-
ment setting including modelling and measurement errors.
The resolution guarantee can be verified by a simple test.
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Abstract: We demonstrate the use of Spatial Filtering in
EIT (EIT-SF) to estimate the time course and position of
localized conductivity changes in the brain, when model-
ling ischemic stroke and neuronal activation. We compare
the solutions obtained for three head models. Results sup-
port the use of EIT-SF to localize and characterize dynamic
conductivity changes in the human brain.

1 Introduction
We showed in a previous study [1] that Electrical Impe-
dance Tomography Spatial Filtering (EIT-SF) is able to lo-
calize a conductivity change within the brain. In this work
we extend the results to estimate the time evolution of the
conductivity change and analyze the use of approximate
head models.

2 Methods
2.1 Simulated Signals

We simulated two different, dynamic, conductivity
changes: a linear decrease up to 30% of the baseline
conductivity (simulating ischemic stroke) [2], and a gaus-
sian shaped pulse with a maximum of 10% of the base-
line conductivity (simulating neuronal activity) [3]. Signals
were simulated on a head model built from Magnetic Reso-
nance images of a subject. The conductivity changes δσ(t)
were assigned to a 1cm radius sphere (Vol ≈ 4.22cm3) near
the motor cortex (P1), the superior temporal gyrus (P2), and
the insula (P3) (see Fig. 1a). We assumed 64 electrodes
and 63 alternating current injection pairs (the Cz electrode
fixed), resulting in a signal vector y(t) of 3906 elements
per each of the 21 simulated snapshots. The forward pro-
blems, i.e the computation of the electric potentials at the
sensor positions, were calculated using the Finite Element
Method, for a current of 100µA. White additive gaussian
noise (WGN) n(t) with different standard deviations (Std
Dev) was added to the signals to simulate noisy measure-
ments. The model for a conductivity change δσ(t) at posi-
tion x⃗i is:

y(t) = l(⃗xi)δσ(t)+n(t), (1)

where l(⃗x) is the forward problem solution for a unitary
conductivity change at position x⃗.

2.2 Linearly Constrained Minimum Variance
(LCMV) filter

From the simulated signals, we performed the localization
and time course estimation with three different head mo-
dels: individual-specific (M1), atlas-based (M2), and three-
shell concentric spherical (M3) models. The LCMV filter
multiplies the signal by a weight vector w(⃗x) such that the
output w(⃗x)T y(t) is the unbiased estimator of δσ(t) at po-
sition x⃗ with minimum variance. The LCMV filter is [1, 4]:

̂δσ(t, x⃗) = w(⃗x)T y(t) =
l(⃗x)TC−1

y y(t)

l(⃗x)TC−1
y l(⃗x)

, (2)

where Cy stands for the sample covariance matrix of y(t).
For each situation we computed the Conductivity Change
Index (CCI) (based on [4]) to study the localization, as the
norm of l(⃗x) is a function of the position x⃗:

CCI(⃗x) =
wT (⃗x)Cyw(⃗x)
wT (⃗x)w(⃗x)

. (3)

For M1 and M3, we performed a 9 parameter linear regis-
tration (translation, rotation, and scaling) to M2, adopting
the electrode positions as the registration marks.

2.3 Results

The results are shown in Fig. 1. The localization errors were
below 8.5mm for the M1 model (0.1µV noise Std Dev), and
the error when localizing with an approximate model was
below 16mm. The dispersion depends on the noise as de-
picted in Fig. 1a.
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Figure 1: (a) Localization of the linear conductivity change using
M1 for different noise levels. Two isosurfaces indicating disper-
sion are also displayed for the 0.1µV and 0.01µV noise Std Devs.
(only P3). (b) Same localization but using the three models with
registration to M2 and noiseless signals. (c) Normalized outputs
for the gaussian pulse at P2 and with M2.

3 Conclusions
EIT-SF was used to successfully locate a conductivity
change and to estimate its time course, even without using
the individual-specific geometry. This suggests that EIT-SF
is a promising technique to study ischemic stroke and neu-
ronal activity.
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Abstract: EIT has much potential in many brain imaging 

applications demonstrated through animal experiments 

with a small epicortical 30-channel array. Spatial 

resolution can be improved by using a larger array to 

cover most of brain. A 120-channel electrode system was 

fabricated and successfully implanted covering c.90% of 

brain, and EIT data was successfully recorded. 

1 Introduction 

EIT has the potential to provide a radically new portable 

inexpensive way to image brain function in conditions like 

stroke or epilepsy, blood volume changes during evoked 

responses or even millisecond neural depolarisation during 

normal activity. EIT has been successfully used in our 

group previously to image impedance changes related to 

these conditions on the rat brain using a 5 x 7 mm 30-

channel epicortical planar electrode array, custom made 

from stainless steel foil on silicone rubber [1]. This gave a 

resolution of 200µm in cerebral cortex but modelling 

indicated that more electrodes were needed to achieve 

satisfactory resolution throughout the entire brain (Fig. 1). 

The purpose of this work was to develop and test electrode 

arrays able to apply 120 electrodes to cover most of the rat 

brain. We evaluated their suitability for surgical insertion 

and impedance recording.  

 
Figure 1: Simulated images reconstructed for a 1% impedance 

decrease, in the hippocampus using a 6M element mesh for the 

forward and 500k for inverse problem. Changes throughout the 

rat brain using 120 electrodes could be reconstructed with an 

accuracy of <500µm. 

2 Methods 

2.1 Electrodes 

Electrodes were fabricated using laser-cut stainless-steel 

foil sandwiched between two silicone rubber layers, which 

was our preferred technique after a previous study 

comparing two different methods for electrode fabrication 

[2]. Electrodes were 0.6mm in diameter and 1.3mm apart. 

One array consisted of 60 channels and used for one 

hemisphere on the rat brain while its mirrored copy used 

on the opposite hemisphere.  

2.2 EIT recordings 

Impedance change recordings associated with evoked 

potentials were undertaken in an anaesthetised rat with 

forepaw and whisker stimulations. Two of the 60-channel 

arrays were implanted directly on exposed cortex. EIT was 

recorded using a Keithley 6221 current source and 

Biosemi A/D EEG system. 

 

 
Figure 2: Image of CAD drawing of the 60 channel array (left) 

and a photograph of fabricated array (right) 

3 Results 

Electrodes were suitable for surgical application and 

covered c.90% of the brain. Electrode impedances were all 

< 800Ω at 100Hz. Satisfactory impedance changes and 

evoked potentials could be recoded on all channels. 

 

 
Figure 3: Top panel: recorded evoked potentials, Bottom panel: 

the corresponding impedance change; Different channels are 

represented by the different coloured lines. 

4 Discussion 

A 120-channel electrode system was successfully 

fabricated and design was optimised for successful and 

easy surgical implantation. Impedance changes were 

successfully recorded. Work in progress is to obtain 3D 

images from recorded impedance changes. 
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Abstract: The Sussex MK4 electrical impedance 

mammography (EIM) is an EIT system dedicated to breast 

cancer detection. The novel electrode configuration with 

its data acquisition method has significantly enhances the 

system performance by improving the signal-to-noise ratio 

(SNR). 

1 Introduction 

The Sussex MK4 EIM system is a 3D imaging system for 

breast cancer detection. It permits visualization of the 

inner structure of the breast by measuring its impedance 

distribution. The Sussex MK4 is equipped with a planar 

electrode array. The appearance of the system is a bed 

with a measurement tank in an appropriate position (Fig. 

1a). The diameter of the tank is 18cm. The maximum 

depth of the tank is 5cm. The planar electrode array is 

fixed at the bottom of the tank and it is adjustable in the 

vertical direction. During examination, a patient can lie 

still in the prone position with a breast in the saline filled 

tank. This system uses current excitation (1mA peak to 

peak) and voltage measurement covering frequency from 

10kHz to 5MHz. The measurement circuits consist of a 

switching network, low noise amplifiers and 14-bit ADCs 

sampling at 100MS/s, the maximum voltage input range is 

5V peak to peak[1].  

2 Methods 

There are 85 electrodes deployed in a hexagonal pattern 

(Fig. 1b). The distance between any adjacent electrodes is 

17mm. The current excitation and voltage measurements 

are only focused and achieved in a small hexagonal area 

(Fig. 1c). In each hexagonal measurement area, there are a 

maximum of 3 excitation events at 0° , 60° and 120°, (Fig. 

2) and in each excitation, there are maximum of 12 

voltage measurements, which are collected strictly parallel 

to the driving pair. With this special type of electrode 

configuration method, there are 123 excitation events 

corresponding to 1416 measurements. In all the figures of 

this paper,the yellow dots indicate the excitation pair; the 

blue dots connected by red arrows indicate measuring 

pairs [2] in one excitation. 

             
                (a)                                  (b)                                   (c) 

Fig. 1. Sussex MK4 EIM system and planar electrodes. (a) MK4 

EIM system. (b) the planer electrodes. (c)the electrode drive and 

receive hexagon pattern.  

The advance of this data acquisition method is gaining the 

strongest measurements for each excitation to guarantee a 

much smaller dynamic range (DYR) between the maxi-

mum and the minimum measurements in each excitation. 

Compared with the traditional DAS system in EIT with 

large DYR, it has achieved a much better overall SNR . 

Here we provide an example shown in Fig. 3 based on the 

planner electrode array of the MK4. We name the 12 

measurements within the hexagonal  measurement area as 

the inner measurements (IMs) (Fig. 3 (a)) and the 14 

additional measurements outside the hexagonal  measure-

ment area as the outer measurements (OMs) (Fig. 3 (b)). 

Fig.4 displays the total 26 measurements shown in Fig. 3,  

which are simulated for a 4.5 cm height of saline with a 

conductivity of 0.5 mS/cm in the tank. We find that the 

DYR of the IMs is about 10 times smaller than that of all 

the 26 measurements including both the IMs and  the OMs. 

Therefore for a 60dB SNR DAS system, the IMs based 

MK4 data acquisition method has successfully avoided the 

additional 20dB SNR lost compared with the IMs and 

OMs based data acquisition method, for a fixed 

programmable gain amplification (PGA) system. 

 
                               (a)                          (b)                        (c) 

Fig. 2. Three current excitations in a hexagonal area.  

   
                                      (a)                        (b) 

Fig. 3. Measurement pairs.(a) shows the measurements within 

the hexagonal measurement (IMs) area (b) shows the 

measurements outside the hexagonal measurement (OMs) area. 

 
Fig. 4. The voltage measurements corresponding to Fig. 3. 

3 Conclusions 

The novel hexagonal electrode arrangement and data 

acquisition method ensures up to 1416 independent 

measurements with high SNR by effective reducing the 

DYN without losing the signal in range of interest (ROI) . 
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Abstract: By utilizing direct current (DC) iontophoretic 

treatment on electrodes with high impedance we show the 

effectiveness of iontophoresis as a driving force for 

permeation of ionic electrolyte into the skin barrier. After 

a 60 second DC treatment at 50µA or 100µA amplitudes 

on either saline, Nihon Kohden Elefix, or Agar based  

electrolytes we saw an immediate impedance drop ranging 

from 3-30%. The effects generally lasted several hours. 

1 Introduction 

In early electrophysiological recording, such as 

electroencephalography (EEG), low electrode-scalp 

impedance was necessary. In addition to using electrolyte 

to hydrate the skin, it was common to abrade the scalp to 

reduce impedance. Although with the advent of modern 

solid state amplifiers the necessity for low impedance in 

EEG has almost disappeared [1], transcranial electric 

stimulation (TES) and other applications like ECG, EMG 

and EIT  still require low impedances to guarantee stable 

contact. Direct current iontophoresis, the physical process 

of driving ions through a medium with electrical current 

[2], is a promising technique for electrical contact 

conditioning. The goal of this study was to decrease the 

contact impedance by applying iontophoretic treatment at 

several amplitudes, with multiple electrolytes and study 

the short term and long term effects of the procedure. 

2 Methods 

2.1 Experimental Setup 

We employed the multichannel NA 300 amplifier with a 

built-in Howlan-type DC/AC constant current generator, 

isolated from the amplifier circuitry,  Net Station v4.4.1a1 

software, and Ag-Cl coated electrode head EEG net 

(Electrical Geodesics, Inc) to perform DC iontophoresis.  

A scanning protocol was used to select electrode pairs 

(one source, one sink) for treatment and either 50µA or 

100µA of DC current was injected through the selected 

electrodes for a length of 60 seconds. 12-16 electrode 

pairs were selected for every subject, and were treated 

with the procedure while the rest of electrodes were left 

untreated. 2 subjects volunteered for the experiment, with 

a total of 5 sessions. All hardware complies with the 

International Electrical Safety Limits. 

2.2 Impedance Measurements. 

Impedances were measured using the standard impedance 

checking methods in EGI’s NA 300 system [1]. 

2.3 Electrolyte 

Three electrolytes were used: saline electrolyte(1.5 liters 

of saline, 5ml of shampoo and 15 grams of sodium 

chloride (NaCl)); Nihon Kohden Elefix Paste (a propylene 

glycol based paste electrolyte that is FDA cleared and 

available commercially); Agar-saline based gelatinous 

electrolyte. 

3 Results 

 

Figure 1: Impedance (kOhms) over time (minutes) of four 

treated source electrodes (in color) and the mean trend of 

untreated electrodes (black). The time segments with treatment 

are highlighted. 

We have observed an average 19% impedance drop at the 

source and 11% impedance drop at the sink electrode 

immediately after injection with saline, and even larger 

effects with other electrolytes (Elefix, Fig.1). 

Along with DC conditioning, AC treatment at 10KHz 

frequencies was shown to be effective in lowering 

impedance [3], suggesting possible future research 

direction. 

References 

[1] Ferree, Thomas C., et al. Clinical Neurophysiology 112.3 (2001): 
536-544. 

[2] Prausnitz MR.. Adv. Drug Deliv. Rev. 1996;18:395–425. 

[3] Bagniefski, T, Burnette, R. Journal of controlled release 11.1 
(1990): 113-122.

Table 1: Mean impedance drop at the source and sink electrodes immediately after the treatment for each session and electrolyte. 

Mean Untreated is the impedance change from the beginning of the session until the end of the session, hence showing the general 
impedance trend of the electrolyte. 

 Saline 1 Saline 2 Elefix  Agar 1 Agar 2 

Source, 50µA -12.63% -20.46% -33.56% -10.12% -15.38% 

Sink, 50µA -9.93% -3.41% -9.86% -9.03% -24.06% 

Source, 100µA -18.60% -23.13%    

Sink, 100µA -15.82% -8.40%    

Mean Untreated 0.48% 5.61% -2.41% -8.97% -23.21% 
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Abstract: We describe a simulation study evaluating 
different electrode configuration for a microendoscopic 
EIT probe intended to intraoperatively assess surgical 
margins during radical prostatectomy. In our simulation 
study, we analyze the performances of three probe designs 
with varying number of electrodes (8, 9, and 17) and 
configurations (dependent on number of electrodes).  

 
1. Introduction 
There is a significant clinical need to develop a technology 
to intraoperatively evaluate the pathological status of 
tissue margins during prostate surgery. Negative surgical 
margins lead to a significantly decreased rate of 
recurrence in men treated with radical prostatectomy (RP). 
We are developing endoscopically-introducible EIT 
probes to meet this need. Here we describe a 
microendoscopic EIT probe (Fig. 1) that will be paired 
with a high speed, high precision modular multi-channel 
EIT system [1].  

Surgical constraints limit the maximum probe diameter 
to 12 mm (to enable the probe to fit within a laparoscopic 
port). This defines the design space used for evaluating the 
number and orientation of probe electrodes. Specifically, 
the probe was designed to fit as many electrodes as 
possible within a circular pattern to ensure 1) maximum 
coverage of the probe tip’s active surface and 2) a uniform 
angular sensitivity. One mm diameter electrodes arranged 
in circular pattern were therefore chosen for the design. 
Based on the constraints, three cylindrical probes with 8, 
9, and 17 electrodes were considered and evaluated. 

  
Figure 1: Image of a prototype probe. 

  
2.   Methods 
Simulations were used to evaluate the 3 different probe 
geometries using a previously described 3-D EIT 
reconstruction algorithm [2]. Specifically, we were 
interested in evaluating which probe geometry identified 
the position and size of an inclusion most accurately. All 
possible tetrapolar drive patterns were used for the 
simulations.   
 
2.1 Electrode Configuration  
The 3 different electrodes geometries are shown in Fig 2. 
A 5 mm radius hemisphere represents the tissue being 
probed. A spherical inclusion of diameter 1mm and 
conductivity (σ) contrast of 10:1 (σinclusion:σbackground) was 
placed at 17 unique locations spanning the tissue volume. 
Results and analysis for one representative location are 
presented. 

 
Figure 2: FEM meshes of 8 (i), 9 (ii), and 17(iii) electrode probe 
designs. The hemisphere represent the tissue volume being probed. 
 
2.2 Simulation Results: Qualitative  
For a spherical inclusion centered at (x,y,z) = (1.5mm, 
0mm, -0.5mm), the 8 electrode configuration does not 
accurately identify the position and size, while 9 and 17 
electrode configurations provide a more accurate 
representation (Fig. 3). The 17 electrode configuration 
provides a better size estimate than the 9 electrode probe. 

 
Figure 3. Comparison of 3D absolute reconstruction algorithm in the xz 
plane for 8, 9, and 17 electrode configuration presented in Fig. 3. ii, ii, iv 
respectively. An inclusion of diameter 1mm centered at [x,y,z] = 
[1.5mm,0mm,-0.5mm] is shown in Fig. 3.i. 

2.3 Simulation Results: Quantitative 
We define the Euclidian distance between the true center 
of inclusion and the center of the reconstructed volume as 
the position error (PE). For the inclusion as shown in Fig. 
3 the PEs are listed in Table 1; the 8-electrode 
configuration performs worst while the 17-electrode 
configuration performs best.  

Other quantitative analysis looked at i) the volume 
error (VE), which is defined as the difference between the 
true and reconstructed inclusion volume and, ii) noise 
analysis, in which PE and VE were compared in the 
presence of Gaussian noise (5 noise levels were explored). 
In all cases, the 17 electrode configuration performed the 
best and 8 electrode configuration performed the worst.  

Table 1: Position Error in ‘mm’  
Configuration 8 electrode 9 electrode 17 electrode 
Position Error 3.69 mm 0.87 mm 0.49 mm 

 
3. Conclusion 
Based on these simulations, a 17 electrode probe performs 
significantly better than the 8 and 9-electrode 
configurations. Moving forward, this configuration is 
being used to design our microendoscopic EIT probe for 
real-time monitoring of surgical margins.  
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Abstract: Medical imaging devices including EIT 

systems are required to be integrated in the clinical 

information systems. Combining DICOM industrial 

standard with Open EIT file format can lead to the result, 

appropriate both to clinical requirements and research 

community. Successful implementation of the DICOM 

format for data storage in real EIT system is described 

here. 

1 Introduction 

Any medical device pretending to be used in general 

practice rather than in marginal areas of medicine must be 

capable of being integrated in the clinical information 

systems. This supposes compliance with corresponding 

standards of the data exchange and storage. For the 

imaging devices such a standard is DICOM (Digital 

Imaging and Communications in Medicine) [1]. De facto 

DICOM is the only worldwide used medical data 

framework, which is adapted even for non-imaging 

modalities such as electrocardiography. EIT, which makes 

modest steps in clinical practice and frequently, suffers 

from lack of this compliance. Customers just refuse to buy 

equipment if it does not support at least export to the 

DICOM format. On the other hand, the scientific 

community needs some common data exchange facilities 

to share and interpret experimental data. Open EIT 

initiative is primarily aimed at this task, and the first 

version of the EIT data storage format is almost ready [2]. 

Combining industrial DICOM standard with Open EIT 

internal data arrangement can lead to the result, 

appropriate both to the requirements of the clinical 

applications and research community demands. 
DICOM is a standard of processing, storage, printing 

and transmitting information in medical imaging systems. 

It includes a description of the file format and network 

protocol. Network protocol uses TCP/IP as the basis for 

communication among systems. Also systems that support 

reading and writing DICOM files can simply exchange 

files in this format. DICOM enables the integration of 

scanners, servers, workstations, printers, and network 

equipment of different manufacturers in a single system 

named PACS (picture archiving and communication 

system). 

2 Methods 

In response to many requests from medical community 

and authorities we have started development of a next 

software version for the Multifrequency Electrical 

Impedance Mammography system MEM to achieve 

DICOM compatibility. MEM is an EIT system with 3D 

visualization [3, 4]. Before this development the MEM 

data were stored in a proprietary format, which combines 

binary and xml data, readable only by the native software. 

DICOM is considered sometimes as just a particular 

image storage format equal to jpeg, png and so on. In fact, 

the DICOM file is a specialized data base, which can store 

some mandatory text fields such as patient’s social data, 

equipment and physician identifications, examination 

conditions as well as binary pixel data including series of 

images or multiple cross-sections. Every conventional 

DICOM viewer can extract and display these data. In 

addition, DICOM standard makes provision storing an 

arbitrary text or binary data in so-called raw data modules 

in the same file. Format of such raw data entries is wholly 

specified by the vendor. For example, they are used for 

storing MRI or CT raw measurements to make possible 

further image reconstructions with different parameters. 

EIT can use this possibility in the same way: we can store 

results of electrical measurements and other specific data 

in the raw data module inside a DICOM file. Certainly, 

this part of DICOM data is readable only by specialized 

software. 

At the first stage we have implemented the DICOM 

export and import facilities inside existing MEM software. 

Corresponding procedures are coded as a dynamically 

loaded library using resources of DCMTK open source 

project [5]. The raw data storage part of the library is not 

device specific, so it can be used with other EIT systems. 

The next step is transition to using DICOM files instead of 

our native data storage format. This will make it possible 

to view and store EIT data in the clinical information 

system without export/import steps. The further 

development would be implementation of the DICOM 

network protocol for direct communication with the data 

storage servers. 

3 Conclusions 

DICOM data format has been successfully used in the 

commercial EIT application as for storage of the general 

patient data and reconstructed images as well as for EIT 

specific data storage, including raw measurement results. 

Because of flexibility of the raw data file module in 

DICOM format, it is possible to combine it with the Open 

EIT format suggested by the community. This supposes 

storing the reconstructed images and general information 

in the corresponding DICOM modules while 

encapsulating the rest of Open EIT data in the raw data 

module instead of zipping them in archive. 
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Abstract: Image reconstruction in electrical impedance 

tomography is sensitive to errors in the (forward) model of 

the measurement system. We propose a new approach, 

based on the GREIT algorithm, where the reconstruction 

matrix is trained on real rather than simulated data, obviat-

ing the need for an accurate numerical forward model. We 

observe a substantial improvement in image quality, par-

ticularly for changes close to the boundary. 

1 Introduction 

Traditional approaches to image reconstruction in electri-

cal impedance tomography (EIT) require knowledge of the 

geometry of the studied domain and characteristics of the 

measurement system. However, accurate hardware model-

ling, including all of its imperfections and the interface 

between the electrodes and the studied domain, is a very 

difficult task. We present an approach that bypasses the 

need for an accurate model of the hardware by using real 

measurement data to calculate a reconstruction matrix 

based on the GREIT approach [1]. The motivation of the 

present work is to customize the reconstruction method for 

a particular configuration of a particular EIT system to 

improve the accuracy of the reconstructed images. 

2 Methods 

GREIT is a linear reconstruction algorithm for difference 

EIT, where the reconstruction matrix is calculated based 

on a data set of sample measurements from small single-

target perturbations and the corresponding desired images 

[1]. To date, this training data set was generated using 

numerical simulations. Here, we use a recently developed 

robotic testing platform for EIT systems [3] to create the 

training perturbations and record the corresponding meas-

urements in a saline tank. We compare reconstructions of 

a testing data set (recorded by the same system) obtained 

with GREIT trained on real data with that trained on 

equivalent simulated data. 

Measurements were acquired on a saline tank 

( 290mm, σ=1.6 S/m) with the Pioneer Set (Swisstom, 

Landquart, Switzerland) with its 32 active electrodes [2] in 

a single ring around the tank and default settings. Training 

data were acquired by placing a non-conductive POM ball 

( 25 mm) in 770 different positions in the plane of the 

electrodes. Equivalent simulated data were obtained with 

the mk_GREIT_model function in EIDORS using a 

best-effort FEM model of the tank. Testing data were 

acquired in 250 positions with a   45 mm ball.  

To compare the reconstructions obtained with GREIT 

trained on measurements (GREITm) and simulations 

(GREITs), we used figures of merit adopted from [1]: 

position error (PE), deformation (DEF), amplitude re-

sponse (AR) and ringing (RNG). 

 

 

 
Figure 1: Sample reconstructions with GREIT trained on meas-

urements (top) and simulations (bottom). 

 
Figure 2: Figure of merit maps. The color scale for both images 

in a single column is fixed; very high values (red) are cropped.  

3 Results 

Sample reconstructions of the test data with GREITm and 

GREITs are presented in Fig. 1. Neither algorithm recon-

structs the correct value of the conductivity contrast (about 

-1.6 S/m). For most target positions, the algorithms show 

comparable performance. However, for targets in the re-

gion delimited by electrodes 5 and 25 (top part of the 

image), GREITs shows much worse performance. This is 

reflected in the figure of merit maps (Fig. 2), where 

GREITs shows deterioration in that region. GREITm is 

characterised by a more uniform amplitude response and 

less ringing. 

4 Conclusions 

Our results support the notion that real measurement data 

can successfully replace the forward used to calculate the 

GREIT reconstruction matrix. We interpret the non-

uniform performance of GREITs as resulting from hard-

ware setup imperfections, since greatest deterioration was 

observed for target locations near the end of the electrode 

belt (electrodes 25 to 32) or where measurement and cur-

rent stimulation are performed across the belt’s ends (elec-

trodes 5 to 25). Future work will address the extent to 

which tank measurements are helpful in training a GREIT 

reconstruction matrix for human thorax imaging. 
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Abstract: A technique for monitoring slope stability in
a geological setting through impedance tomography is
demonstrated. An iterative absolute Gauss-Newton solver
simultaneously constructs estimates of the underground re-
sistivity distribution and movement of the stimulation and
measurement electrodes. The results are a step toward
demonstrating that a cost effective and potentially predic-
tive monitoring technology could be practical.

1 Introduction
Slope stability is a key issue for land uses where slope
morphology and annual changes in soil and rock water sat-
uration lead to movement. Monitoring of these slip prone
regions in the railway, mining, oil and gas, and construction
industries is currently available through laser range finding
and similar surface observation technologies which can not
provide remote, unmanned and cost effective monitoring
over time. Slope Stability is important for long term railway
embankment safety and for determining mine tailings pile
slope angles. To corporations involved in these industries,
slope stability translates into a significant risk/cost balance.
The challenging task of managing landslide risk may be
mitigated to some degree through insight gained from mon-
itoring and understanding the geophysical process.

In sedimentary rock, resistivity is related to water satu-
ration through Archie’s Law [1]. A common adaptation of
Archie’s Law, the Waxman-Smits equation [2], accounts for
the effects of clay, common in top soil and non-sedimentary
rock, by adding variables that support variation in ion mo-
bility and ion concentration. The geology of a region is
relatively fixed on a human time scale, such that complet-
ing a lab correlation provides accurate estimates of water
saturation and hence, can provide a prediction of slope sta-
bility through static slope stability analysis techniques. An
accurate and ongoing estimate of electrode movement pro-
vides immediate warning of slope movement at a reduced
cost compared to the previously mentioned technologies.

2 Reconstruction
Measurements have been taken since 2008 on a slow mov-
ing land slide located in the British countryside [3]. An
absolute Gauss-Newton iterative solver that simultaneously
solves for the combined log conductivity and electrode
movement using this data was developed in the EIDORS
environment (Figure 1).

An initial background estimate was constructed by find-
ing the best-fit average resistivity of the apparent resistivity
measurements. Initial electrode positions were determined
via GPS measurements.

The conductivity Jacobian was calculated using the ad-
joint method for conductivity and scaled for log conductiv-
ity using the chain rule.
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Figure 1: Simultaneous reconstruction of resistivity and electrode
movement after 4 Gauss-Newton iterations; green arrows are re-
constructed down-slope movement, blue line is measured move-
ment (GPS)

The movement Jacobian [4] was estimated by construct-
ing a down-slope and cross-slope movement perturbation
using alternate electrode sites. Alternate electrode sites
were preferred over rank-1 updates [5] because rank-1 up-
dates restrict the magnitude of the electrode movements to
within a single surface mesh element in the forward model
where high mesh density is critical to accurate measurement
estimates. Performing movement Jacobian perturbations in
this fashion increased the original dipole-dipole stimulation
and measurement pairs Porig such that

PM = Ne`DDoF Porig (2)

where the total stimulation/measurement pairs for move-
ment estimates PM increased by the number of electrodes
Ne` and movement degrees of freedom MDoF . Many of the
calculated measurements required for this approach are re-
dundant across each electrode movement. A generic stim-
ulation and measurement pattern improvement routine was
developed to minimize computation time for the forward
solutions by rearranging the forward solution results and
removing duplicate measurements. This routine improved
run times by two-orders of magnitude (Ne` = 32, DDoF = 2,
PM ' 37000) from 45 minutes to 3.75 minutes for the rear-
rangement and approximately 15 seconds for each new for-
ward solution (Intel Xeon 2.6GHz, 8 cores, 64GB mem.) of
which there was one per Gauss-Newton iteration.

3 Discussion
Simultaneous reconstruction of absolute impedance and
electrode movement is a practical and promising method
for monitoring slope stability. While prior work has recon-
structed electrode movement and absolute impedance sepa-
rately [6], to our knowledge, this is the first time they have
been reconstructed simultaneously.
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Abstract: The electrical resistivity distribution at the base
of La Soufrière of Guadeloupe lava dome is reconstructed
by using transmission electrical resistivity data obtained by
injecting an electric current between pairs of electrodes on
opposing sides of the volcano. The data are inverted to per-
form a slice electrical resistivity tomography (SERT). The
resulting image shows the presence of highly conductive re-
gions separated by resistive ridges.

1 Introduction
The La Soufrière volcano has an active eruptive history. Fu-
ture eruptions are possible, and could have large impacts
on surrounding communities. Various scenarios are possi-
ble: collapse, phreatic eruption, magma ascent [1]. To give
early warning, multi-parameter monitoring is conducted by
the local volcano observatory (IPGP/OVSG). Complemen-
tary geophysical studies are then necessary to obtain a view
of the inner structure of the volcano in order to better un-
derstand the monitoring data. The present study aims at
contributing to the knowledge of the lava dome interior by
performing a slice electrical resistivity tomography (SERT)
obtained by inverting an electrical resistivity data set. The
data set considered here was acquired with a transmission
tomography configuration in order to probe the innermost
regions of the lava dome [2].

2 Methods
Data were acquired at 62 electrodes attached to a 945 m
long main cable. One of the cable extremities was con-
nected to an auxiliary long wire in order to place an elec-
trode on the opposite side of the lava dome. Both the re-
mote electrode and one electrode plugged onto the main ca-
ble were used to inject an electric current forced to cross
the innermost parts of the volcano. The main cable was
moved to successively occupy three circular segments sur-
rounding La Soufrière lava dome to form an almost closed
loop. The elevations of the electrode loop vary between
1146 and 1337 m with an average of 1270 m, i.e. about
200 m bellow the summit.

We performed a SERT to reconstruct the conductivity
distribution in a cross-section limited by the ring of elec-
trodes. The SERT was implemented by defining the un-
known conductivity distribution σ2d on a coarsely meshed
2D cross-section. σ2d was subsequently used to construct
the full 3D conductivity distribution σ3d necessary to solve
the forward 3D finite element model. This was achieved
by using a coarse-to-fine matrix that maps the conductivity
σ2d of each element of the cross-section onto each of the
elements of the 3D model.
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Figure 1: Reconstruction of the electrical resistivity at the dome
base. Stars represent the electrodes location. Main geological
structures are reported such as fractures (black lines), peaks (trian-
gles) and acid ponds (green circles). The summit of La Soufrière
is in red.

3 Discussion
The reconstructed resistivity cross-section shows that the
interior of the lava dome contains three main conductive
domains and one resistive structure (Fig. 1). Considering
the resistivity values of these structures together with the
densities obtained by cosmic muon radiography [3] we in-
terpret the conductive regions as reservoirs filled with un-
consolidated material and conductive hydrothermal fluids.
This description is coherent with the activity observed dur-
ing the successive phreatic eruptions that occurred since the
creation of the lava dome 500 years ago.

Similarly, the resistive region is interpreted as a massive
lava body that vertically extends through the whole height
of the lava dome and which seems to constitute a barrier
that, up to now, blocked eruptive activity on the south-west
flank of the volcano.
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Abstract: The objective of impedance-cystovolumetry is
the continuous, non-invasive monitoring of bladder volume.
By using electrical impedance tomography, a correlation
between the change of impedance in the image and bladder
volume can be found. However, the typically used time-
differential approach has the problem of both requiring a
calibration measurement with an empty bladder and being
dependent on the urine conductivity. This paper presents an
improvement to the time-differential approach using multi-
frequency electrical impedance tomography.

1 Introduction
The continuous monitoring of the bladder volume is of great
interest to patients with paraplegia as they have to empty the
bladder manually using catheterization. Currently, this is
done using a fixed-time scheme. To allow a demand driven
catheterization, a continuous monitoring is necessary.

2 Methods
One possibility for the estimation of the bladder volume
from electrical impedance tomography is the global im-
pedance method. After reconstructing an image using the
GREIT-algorithm [1], all pixel values are summed up. To
retain phase information, both data acquisition and image
reconstruction are performed in the complex domain. Pre-
viously it was shown, that this sum over all pixel values and
the bladder volume correlate with each other [2]. However,
the time-differential approach that has been used has the
two problems of requiring a reference measurement with
an empty bladder as well as being dependent on the ur-
ine conductivity. Thus, a frequency-differential approach
is examined, where the measurements are performed nearly
simultaneously using frequencies of 51.8 kHz and 100 kHz.
Since the urine conductivity is not frequency dependent in
our frequency range, the reconstructed impedance change
in this area is zero. In contrast, the impedance of muscle or
fat is frequency dependent. As a full bladder displaces more
tissue than an empty one, the global change of impedance
in the tomogram correlates with the bladder volume while
being independent of urine conductivity.

2.1 Simulation

The simulation was performed in Matlab using the
EIDORS-framework [3]. The finite element model con-

sists of a cylinder inside of a tank with 8 electrodes. The
conductivity of the environment was simulated as complex,
frequency dependent muscle tissue according to the tissue
database from Gabriel & Gabriel [4]. In contrast, the ur-
ine conductivity was simulated using frequency independ-
ent values in the physiological range of 12–28 mS/cm.

2.2 Measurement

The real measurement was performed using an agar-agar
model inside a tank similar to the simulation. To simulate
the bladder, holes were cut into the model and filled with
distilled water (0 mS/cm), 0.9 % saline (approx. 16 mS/cm),
and 1.8 % saline (approx. 30 mS/cm).

3 Results
To analyze the influence of urine conductivity, a calibra-
tion curve was calculated based on the data at a reference
conductivity of 20 mS/cm in the simulation and 0.9 % sa-
line in the measurement. Then, the mean of the relative
error ε̄r and the standard deviation σεr between the data at
other conductivities and the calibration curve were calcu-
lated. A comparison between the time-differential and the
multifrequency approach is shown in Table 1. The simula-
tion results show an improvement regarding the impact of
urine conductivity on volume estimation as the average er-
ror decreases significantly compared to the time-differential
approach. Furthermore, the standard deviation improves as
well. This simulation results were verified in the agar-agar
measurement.

4 Conclusion
Multifrequency impedance tomography for impedance-
cystovolumetry is a very promising approach as it provides
urine conductivity independent results. In addition, no
empty bladder reference measurement is required taking the
concept one step further towards clinical use.
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Table 1: Mean relative error ε̄r and its standard deviation σεr in simulation and measurement with different urine conductivities. Both
in simulation and measurement the time-differential (TD) and multifrequency (MF) results are compared.

simulation measurement

σ (mS/cm) TD MF saline conc. TD MF
ε̄r (%) σεr (%) ε̄r (%) σεr (%) ε̄r (%) σεr (%) ε̄r (%) σεr (%)

12 -27.46 1.50 -6.26 0.73 0.0 % -18.24 15.76 2.87 8.54
28 13.92 1.07 2.15 0.40 1.8 % 13.45 10.39 9.45 10.07
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Abstract: A continuous non-destructive monitoring 

method is required to apply proper feedback controls 

during chondrogenesis. We measured the apparent 

conductivity and the amount of anisotropy on the top and 

bottom surfaces of samples in the chondrogenesis process 

to evaluate the ECM structure and composition changes. 

We compared them with histological trait to analyse the 

results. 

1 Introduction 

There are many reports to demonstrate that nerve or tissue 

regeneration is a successful treatment modality in skin, 

muscle, nerve and periodontal reconstruction. 

Implantation of tissue engineered cartilage replacing 

degenerated cartilage tissue is expected to show the 

normal cartilage function shortly with reference to other 

methods [1]. In order to control the quality of productions, 

non-destructive, continuous monitoring and proper 

feedback control based on monitoring results are required 

during chondrogenesis. We considered that the 

conductivity of cartilage after formation was quite 

different from the conductivities of chondrocytes and stem 

cell growth medium. Additionally, the cellularity and 

contents in the extracellular matrix (ECM) structure are 

different depending on the zonal organization as shown in 

Figure 1 [2]. In this study, we observed the apparent 

conductivity and anisotropic conductivity on the top and 

bottom surfaces related with different ECM compositions 

and structures in the chondrogenesis process. 

 
 

(a) (b) 

Figure 1: (a) Structure of depth-dependent ECM components in 

articular cartilage and in-vitro constructed cartilage. 

2 Methods 

Fragments of costal cartilages were obtained from lower 

false rib of 3-4 month old New Zealand White rabbits [3]. 

Perichondrium was extracted from cartilage tissue and 

minced. We filtered the digested cartilage in 0.5% 

collagenase type I with Mesenchymal stem cell growth 

medium. In-vitro expanded chondrocytes were seeded in a 

Millicell cell culture inserts in order to construct disc-type 

cartilage. 

We used the bioimpedance tensor probe employing a 

conductivity estimation algorithm with 16 electrodes to 

eliminate the geometrical effects and accurately measure 

the tissue conductivity and its degree of anisotropy [4]. 

For 6 weeks, we measured conductivity and the ratio of 

eigenvalue to estimate the degree of anisotropy. We could 

not measure conductivity on the bottom surface before 

two weeks because chondrocyte was not formed as the gel 

type. 

3 Results 

Conductivities on the top and bottom surfaces were 

decreased by the time continuously. Even though the 

thickness of the sample was not increased much after 4 

weeks, the conductivity was changed. Also, we can clearly 

discriminate the top and bottom after 2 weeks. This 

difference may be caused by the ECM compositions. The 

ratio of eigenvalue also differed between them after 3 

weeks. It revealed that the ECM had different shape in the 

depth-dependent stratified structure.  
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Figure 2: Variation of conductivity and the ratio of eigenvalue 

during chondrogenesis (6 weeks). 

4 Conclusions 

Tissue or nerve regeneration is the most promising 

treatment to replace and heal the functionality inside the 

body. However, it requires a continuous, non-destructive, 

and label-free monitoring method for proper feedback 

controls to improve the productivity and the quality of the 

final implant. Impedance characterisation will be a 

feasible technique for tissue regeneration monitoring. 

References 

[1] Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson 
L. New Eng J Med 331: 889-895, 1994 

[2] Kock L, van Donkelaar CC, Ito K. Cell Tissue Res 347: 613-627, 

2012 
[3] Lee J, Lee E, Kim H, Son Y. Biotechnol Appl Biochem 48: 149-158, 

2007 
[4] Kwon H, Wi H, Karki B, Lee EJ, McEwan A, Woo EJ, Harrach B, 

Seo JK and Oh TI. Electron Lett 48: 1253-1255, 2012 

Cellularity Collagen

GAGs



46 SESSION 5. APPLICATIONS II

High-resolution imaging of fast neural activity in the brain with 

Electrical Impedance Tomography 

K. Aristovich*
1
, B. Packham*

1
, G. Santos

1
, H. Koo

1
 and D. Holder

1
 

1University College London, London, UK  (* equal contributors) 

k.aristovich@ucl.ac.uk, brett.packham.09@ucl.ac.uk  

 

Abstract: We present the first EIT images of evoked 

physiological activity in the primary somatosensory cortex 

(S1) obtained with intracranial planar electrode array.  

Images were validated using intrinsic signal optical 

imaging (ISOI) and current source-sink density analysis 

(CSDA). Detailed high-resolution spatiotemporal 

connectivity of the brain cortex was reconstructed with 

≤200µm and ≤2ms. 

1 Introduction 

There is great interest in imaging functional 

connectivity in the brain using methods such as functional 

MRI and optical imaging, but no technique currently 

exists that could image neural activity over milliseconds 

throughout the whole brain. Electrical impedance 

tomography has the potential to image neural activity 

throughout the brain by recording impedance decreases 

due to the opening of ion channels during neuronal 

depolarization [2] 

2 Methods 

EIT images of evoked physiological activity in the 

cerebral cortex were reconstructed using the data collected 

with a 30-electrode epicortical planar array, 7x5mm, 

placed over primary somatosensory cortex (S1); activity 

was elicited by mechanical whisker stimulation in the 

anaesthetised rat.  

ISOI was recorded together with simultaneous local 

field potentials, and further CSDA analysis were 

undertaken and directly compared with EIT images. 

Functional connectivity was then extracted from 

impedance images using dynamic analysis, and 

connectivity maps in the whisker barrel cortex were 

computed for two separate whisker groups. 

3 Results 

Impedance images showed somatotopically separate 

activity, which was validated with intrinsic optical 

imaging. Simultaneous electrophysiological recordings 

revealed correlation between EIT and current source-sink 

density analysis for activity onset time (r=0.6, P<0.001), 

peak amplitude (r=0.9, P<0.001), and depth of activity 

onset (815±80 um deep for both methods). Functional 

connectivity was extracted from impedance images using 

dynamic analysis, revealing the depth of largest lateral 

spread at 450±40 um. 

The trajectory of neural activity, imaged throughout S1 

with a resolution of ≤200µm and ≤2ms, entered at layer IV 

and passed to extragranular layers over ~3 ms; the greatest 

lateral spread, up to 1.5 mm, occurred in supragranular 

layers, predominantly along barrel rows (figure 1). 

 

 
Figure 1: Functional connectivity in the somatosensory cortex of 

the rat in response to mechanical stimulation of a group of four 

whiskers (             ). Activity is shown in two isometric 

views. The top view, superimposed with the map of whisker 

barrel cortex (top figure), shows lateral propagation of activity to 

adjacent whisker barrels along the rows. The side view (bottom 

figure) displays the interlaminar propagation across layers: 

activity comes in the middle of layer IV, propagates into supra- 

and infra-granular layers within the stimulated barrels, and then 

spreads to adjacent whisker barrels predominantly through layers 

II/III. Timing of activation over milliseconds is colour-coded. 

4 Conclusions 

Our results demonstrate that EIT can image neural 

activity throughout the mammalian cerebral cortex with 

reduced invasiveness, greater resolution and imaging 

volume (70 mm
3
) than other methods. Modelling indicates 

similar resolutions are feasible throughout the entire brain 

so that this technique, uniquely, has the potential to image 

functional connectivity of cortical and subcortical 

structures. 
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Abstract: Accurate monitoring of hydration level in
patients remains a major challenge for hemodialysis
therapy. Using a prototype EIT system with simultaneous
multi-channel current excitation, we demonstrated the
capability to detect a difference of 35ml daily fluid change
in human subjects who wear compression sock only on
one leg. The prototype system has the potential to be used
in clinical settings with hydration monitoring needs.

1 Introduction

Fluid balance is of great importance for hemodialysis
therapy. Poor assessment of hydration status during
hemodialysis can lead to under- or over- hydration in
patients with consequences of increased morbidity and
mortality. In current practice, fluid management is largely
based on clinical assessments to estimate dry weight.
Since hemodialysis patients usually have co-morbidities
that can make the signs of fluidic status ambiguous, dry
weight estimation remains a major challenge for
hemodialysis therapy1.
EIT has emerged as a non-invasive method for hydration
monitoring. Conventional EIT hydration monitoring
systems employ single-channel current excitation to
extract hydration information from bulk tissue. In the
present study, a prototype GE GENESIS EIT system with
multi-channel current excitation was used to enable layer-
based hydration monitoring in human legs with minimal
interference from skin artifacts.

2 Methods

2.1 Experiment protocols

Proof-of-concept experiment in chicken breast
We injected conductive saline mixed with food dye into
different depths of a chicken breast positioned on top of a
linear eight-electrode array, impedance change was
recorded during the injection process.
Healthy human subject experiment protocol
Healthy subjects reported to the lab at the beginning of
their workday. We placed 8-electrode linear arrays on the
outside calf of each leg. Multiple current patterns were ap-
plied to each leg and impedance measurements were
recorded. Volume of each leg was recorded by weighing
the amount of water displaced from an edema gauge. The
subjects were asked to wear one compression sock on one
leg and return to their normal daily work. At the end of the
workday, the subjects returned to the lab where the
compression sock was removed and measurements of
impedance and volume on both calves were repeated.

2.2 Reconstruction algorithms

A linear reconstruction algorithm is used to extract
impedance differences due to fluid changes as previously
described.2,3

3 Results and conclusions

3.1 Detection of layer-based hydration change in
chicken breasts

Figure 1: The GE GENESIS EIT system can detect hydration
change at different tissue layers in a chicken breast. (a) Surface
tissue layer injection; (b) deeper tissue layer injection.

3.2 Detection of layer-based hydration change in
human subjects

Figure 2: Multi-channel EIT can detect layer-based hydration
difference between two legs induced by compression sock

3.3 Conclusion

The multi-channel EIT prototype system offers layer-
based hydration monitoring in human subjects.
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Abstract: Thoracic imaging by electrical impedance 

tomography (EIT) is one of the most promising research 

fields dedicated to this non-invasive imaging technology. 

Important advances have been achieved mainly in the EIT 

use for monitoring regional lung ventilation and aeration 

in critically ill patients. In these patients, the bedside EIT 

use is expected to improve the ventilator therapy and 

reduce the ventilator-associated lung injury. 

1 Introduction 

Thoracic imaging has been identified as one of the most 

relevant medical applications of EIT already in the early 

phases of its development [1]. Since then, important 

experimental and clinical validation studies have been 

performed showing that EIT is capable of correctly 

detecting regional changes in lung volumes in both 

healthy and injured lungs under a variety of ventilation 

conditions. Various established imaging modalities like 

computed tomography (CT) [2], electron beam CT [3], 

xenon multidetector-row CT [4], positron emission tomo-

graphy [5] or hyperpolarised helium magnetic resonance 

imaging [6] were used as reference techniques in these 

studies.  

In the future, EIT-derived information on regional lung 

function might be routinely utilized in a clinical setting 

mainly in mechanically ventilated patients and in patients 

suffering from both restrictive and obstructive lung 

diseases. Recent studies EIT studies confirm this 

development. 

2 Recent advances 

Significant progress has been achieved with respect to the 

use of EIT for monitoring regional lung ventilation and 

aeration during mechanical ventilation. Findings from 

experimental studies [7,8] as well as clinical data obtained 

in patients of all age groups (neonatal, paediatric and adult 

patients) [9,10] imply that EIT might potentially be used 

as a bedside tool for individualized guidance of ventilator 

therapy. 

Recent studies revealed that the use of specific 

ventilation manoeuvres like quasistatic low-flow inflation 

and deflation [11, 12], stepwise increase and decrease of 

airway pressure [13], positive end-expiratory pressure 

(PEEP) trial [14] performed during thoracic EIT 

examination may increase the information content of the 

acquired EIT data. Simultaneous sampling of EIT data 

with other relevant signals (e.g. airway pressure, air flow 

and volume) enables the assessment of regional 

respiratory system mechanics [3,13-16]. The choice of 

PEEP, tidal volume and other ventilator settings using the 

EIT-derived measures of respiratory system mechanics 

could result in the selection of the least aggressive 

ventilation mode and at the same time secure adequate gas 

exchange. Patients with infant or adult respiratory distress 

syndrome with already injured lung tissue might 

particularly benefit from this type of EIT monitoring. 

The advantages of regional lung function assessment using 

EIT have recently also been documented in another group 

of patients suffering from obstructive lung diseases like 

chronic obstructive lung disease [17], cystic fibrosis [18] 

or asthma. EIT examinations accompanying conventional 

pulmonary function testing by spirometry and whole body 

plethysmography may provide additional information on 

the heterogeneity of regional lung function and its changes 

during disease progression or in response to therapy. 

3 Conclusions 

The cited but also many other recent studies document the 

achieved progress in EIT use for thoracic imaging. The 

present time in EIT research can be characterized as the 

transition time between experimental and established, 

clinically used technology. However, this time bears not 

only possibilities for EIT but also risks, as identified in a 

recent review summarizing the current state of EIT 

development and its future challenges [19].  

The prerequisites for the clinical acceptance of EIT are 

the definition of standardized examination procedures, the 

use of unified nomenclature and interpretation schemes. 

The EIT measures most relevant for clinical decision-

making need to be agreed on. The EIT findings have to be 

combined with the findings generated by other medical 

examination tools to render diagnoses on which later 

therapy can be based on. Further future challenges for EIT 

are the currently lacking large clinical trials and limited 

experience with long-term EIT use. To increase the 

robustness and applicability of EIT further technological 

development and reduction of interference through other 

medical devices [20] are mandatory. The success of EIT in 

a clinical setting will rely on an interdisciplinary approach 

in EIT research.  
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Abstract: There is significant interest in the use of EIT to
detect and monitor the changes induced by perfusion, how-
ever, such measurement presents various technical difficul-
ties. This talk focuses on recent progress in perfusion imag-
ing with EIT.

Perfusion Imaging with EIT
Electrical Impedance Tomography (EIT) shows clinical
promise for its ability to image air and fluid flows in the
thorax. Perfusion-related changes reflect the behaviour of
the cardiovascular system, and thus can convey many clini-
cally important variables for patient management.

Since perfusion-related changes in thoracic impedance
are much smaller than the impedance changes induced
by ventilation, it is much more difficult to use electrical
impedance tomography to extract information on stroke
volume (SV), cardiac output (CO), or lung perfusion. In
order to use the cardiac-related impedance information pro-
vided by EIT to quantify cardiac output and lung perfusion,
several approaches have been presented in the literature, in-
cluding a.) Separation of cardiac- and ventilation-related
EIT signals based of frequency-domain filtering, b.) ECG
gating, c.) Apnea methods, d.) Use of contrast agents and
e.) Separation based on principal component analysis. Af-
ter the overview, the talk will focus on recent results ob-
tained from pig trials by using our PCA-based separation
method, as soon available in [1]. One aspect here will be
mixed-models analysis versus trend-monitoring.

In order to provide a background for the reader inter-
ested in further exploring the literature on perfusion imag-
ing with EIT, we provide a selection of relevant references
[2]–[17].

Figure 1: Overall mixed-models-correlation ( r = 0.85, r2 =
0.736) for SV estimation using PCA-separated EIT information
and transthoracic thermodilution as a reference. To avchieve this
result, SV_EIT data had to be calibrated against SV_TTD in each
single maneuver. From [1].
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Abstract: Theoretically, EIT holds immense potential in 

the neonatal lung, where traditional ‘gold-standard’ 

techniques in adults are either impractical or harmful. This 

presentation will critically appraise the potential uses of 

EIT in the neonatal population, the current state of the 

literature and detail new advances in EIT that highlight the 

potential of EIT to guide therapy in this vulnerable 

population, especially at birth. 

1 Discussion 

Compared to the adults, monitoring lung function in the 

infant and neonatal lung is problematic due to smaller and 

variable patient size, patient compliance, rapidly changing 

lung mechanics, small absolute values in recorded data, 

especially tidal volume, faster breathing and cardiac rates
1
 

and a move towards non-invasive respiratory support. 

Despite this, there is a great need for accurate lung 

function monitoring. Optimising respiratory support in a 

critically ill neonate is more likely to result in better long 

term outcomes than in diseased adults
2
. EIT has been long 

proposed as an attractive solution to lung function 

monitoring in children and babies but has failed to move 

beyond a research tool, and its role remains unclear. This 

presentation will describe the current state of literature in 

this population and highlight novel and exciting new 

concepts. Particular focus will be on the use of EIT to 

better understand, and direct care during, the transition 

from fetal (liquid-filled lung) to ex utero (aerated) life. 

 

To date, EIT has been predominantly used to understand 

the behaviour of the diseased and healthy neonatal lung 

during mechanical ventilation and spontaneous breathing
3-

5
. This work has highlighted the gravity dependent pattern 

of preterm lung disease, and the described the regional 

changes that occur within the developing but diseased 

preterm lung with increasing age
4
. EIT has been used to 

challenge the traditional teaching that there are 

gravitational differences in regional ventilation between 

adults and infants
3
. 

 

In the short term, the clinical use of EIT in the neonatal 

population is likely to be related to simply identifying 

adverse events, such as pneumothroaces
6
, or monitoring 

interventions, such as intubation
7
 and ETT suction

8,9
. 

 

EIT has been shown have potential in optimising the 

application of HFOV using open lung strategies
5,10,11

.  

Although how these controlled research observations can 

be translated to a clinical tool remains uncertain. More 

recently, we have shown that EIT can be used to define 

the behaviour of the preterm lung at birth, allowing the 

process of aeration from a fluid filled fetal lung to an air 

filled one. There are important advantages in using EIT in 

this environment. Firstly, the process starts with a constant 

lung state that has never been aerated. Secondly, existing 

research tools to investigate this critical point in human 

physiology are either inaccurate, limited to a few research 

groups or hold no clinical translation. Finally, clinicians 

lack existing tools to guide resuscitation at birth. 

Increasingly, neonatologists are becoming aware of the 

need to optimise this process as irreversible lung injury 

pathways can be initiated from even one or two injurious 

inflations
12

. EIT imaging of regional aeration and tidal 

ventilation has shown that some accepted resuscitation 

strategies may not be lung protective or produce the 

benefits hypothesised (Fig 1)
13,14

. Last year we 

demonstrated that EIT could be used to guide lung 

aeration during the first inflations at birth. 

 
 
Figure 1: Changing pattern of fractional distribution of tidal 

ventilation at 1-min and 70-min after birth in a group of preterm 

lambs managed with a resuscitation strategy from the first 

inflation of life that was found to be injurious. Data derived from 

fEIT scans (from Tingay et al J Appl Physio 2013). 

2 Conclusions 

EIT has a long history as a research tool in infants, and has 

been used to explore a diverse range of issues. More 

recently, a number of research groups have been using 

EIT to guide respiratory therapies with promise. 

Translation into clinical practice will require commitment 

and cooperation from clinicians, engineers and 

mathematicians and industry. 
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Abstract: We compared a standard fixed duration 

Sustained Inflation (SI) during resuscitation at birth in 

preterm lambs with two SI guided by real-time volumetric 

EIT imaging, lasting respectively until volume plateau and 

until 30s beyond plateau. Global and local end expiratory 

volume (EEV), lung mechanics and gas exchange were 

measured. Both the volumetric EIT guided approaches 

were feasible and resulted in better relative lung aeration. 

1 Introduction 

Sustained Inflation (SI) is gaining increasing interest as a 

method of lung recruitment at birth [1]. A SI consists of 

applying a continuous elevated airway pressure to enhance 

lung liquid clearance and achieve functional residual 

capacity [2].  However the best way to deliver SI still 

remains to be elucidated [3]. Current SI strategies use a 

fixed duration and pressure, irrespective of the individual 

mechanical properties of the lung. The time constant of 

the lung is highly variable and unpredictable at birth. We 

aimed to investigate a new SI strategy tailored to the 

recipient’s individual needs, in which duration was 

determined by the volumetric response at birth. Secondly, 

we wished to determine if a long SI would be harmful for 

the preterm lung. 

2 Methods 

127±1 day preterm lambs were instrumented, intubated 

and EIT electrodes applied before birth. Lambs were 

randomly assigned to one of following strategies at birth 

(n=11-13/group): 

1. Control (PEEP group): positive pressure ventilation 

(PEEP 8 cmH2O, PIPmax 40 cmH2O) 

2. Fixed duration SI (SI30): 40 cmH2O for 30s 

3. EIT guided SI (SIEIT): SI at 40 cmH2O continued until 

no further visible gain in global lung volume (VL) on 

EIT monitor (Thorascan, Carefusion, Germany). 

4. SIlong: as for SIEIT but continued for 30s after VL 

stability was achieved in the global EIT-signal.  

Thereafter, lambs were ventilated in a volume guarantee 

modality with 7 ml/kg tidal volume for 60 min.  

Pressure, SpO2, lung mechanics (including Forced 

Oscillation Technique; FOT), global and regional EEV 

and ventilation changes by EIT were recorded from birth, 

along with arterial blood gases. At 60 min lambs were 

euthanized and tissue taken for injury analysis. 

Differences between groups were tested by two-way 

ANOVA and Bonferroni post hoc test. 

 
Figure 1: A. Global EEV, B. Anterior hemithorax EEV, C. 

Oxygen saturation (SpO2) and D. Alveolar-arterial oxygen 

difference (AaDO2). All data mean±SD. *PEEP vs SIlong & SIEIT 

p<0.05; †PEEP vs SIlong p<0.05; ‡SI30 vs SIlong & SIEIT p<0.05; 

§SI30 vs SIlong p<0.05. 

3 Results 

Both SIEIT and SIlong resulted in higher EEV in the first 15-

min of life (Fig 1A), with better recruitment in the non-

gravity dependent (anterior) hemithorax (Fig. 1B), 

although the geometric centre of aeration was not 

different. The early improvements in EEV recruitment 

resulted in quicker attainment of target SpO2 range and a 

sustained benefit in oxygenation (Fig 1C-D). Lung 

reactance was significantly higher reactance in SIEIT and 

SIlong groups in the first three minutes of life, supporting 

better recruitment. No significant differences were found 

in broncho-alveolar lavage. 

4 Conclusions 

In our model, an individualised approach to resuscitation 

at birth, tailored to patients’ lung mechanical properties, 

was feasible and may be beneficial for preterm neonates. 
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Abstract: Real-time monitoring of lung function is one
of the most promising applications of electrical impedance
tomography (EIT). There are however some technical chal-
lenges that require validating diagnostic information extrac-
ted from EIT images. Two new data quality metrics are pro-
posed and are applied on EIT and ventilator data acquired
in an intensive care unit (ICU) setting. Their interpretation
and usefulness in a clinical context is discussed.

1 Introduction
Real-time monitoring of mechanically-ventilated lung func-
tion at the bedside of intensive care unit (ICU) patients rep-
resents one of the most promising applications for electrical
impedance tomography (EIT). Some technical challenges
remain however before EIT could become a routinely used
clinical tool in the ICU [1]. Most of these challenges are re-
lated to the long-term monitoring of patients for durations
of hours or days. Maintaining high-quality EIT data then
becomes difficult due to variations in quality of electrode
contacts with the patient, instrumentation drift as well as pa-
tient’s movement and manipulation by clinical staff. Some
data quality metrics (DQM) have been proposed in the lit-
erature [2] to assess EIT data quality and therefore ensure
the quality of any diagnostic or therapeutic information ex-
tracted from EIT images.

From reviewing and validating previous DQM defini-
tions from the literature, two new simple and efficient DQM
are presented. They are applied and validated on EIT and
ventilator data previously acquired on ICU patients [3]. A
discussion follows on how clinical staff should interpret and
manage the information provided by these two new DQM.

2 Methods
Most EIT systems used for monitoring lung function recon-
struct time difference images representing a change of con-
ductivity relative to a reference state: m = (σσσ − σσσ r)/σσσ r,
where m is a vector, whose elements correspond to the ele-
ment of a mesh or the pixels of an image, that represents
the change of conductivity between the latest conductivity
distribution σσσ and a reference conductivity distribution σσσ r.
Such images are typically reconstructed from normalized
voltage difference data d = (v−vr)/vr, where v is the latest
voltage measurement vector and vr is the voltage measure-
ment vector corresponding to a reference state.

The relationship between d and m is typically obtained
from the linearization of a physics model:

d = Jm (1)

where J represents the Jacobian or sensitivity matrix. Since,
EIT is an ill-posed problem, some optimization algorithms
combined with regularization techniques are used to obtain
the following linear relationship:

m = Rd (2)

where R is called the reconstruction matrix which can be

derived from different optimization methods such as, for
instance, the maximum a posteriori (MAP) estimate.

From (1) and (2), reconstruction error εεε reconst can be
defined as:

εεε reconst =
1
Pd

(I−JR)d (3)

where Pd is the average signal d obtained for a spherical
conductivity located in the medium center with 2:1 contrast
and 20% medium radius.

Reciprocity error εεε recip can be defined as:

εεε recip =
1
Pv

(I−K(KtK)−1Kt)v (4)

where Pv is the average of signal v and K is a matrix rep-
resenting the relationship v = Kvind between voltage meas-
urement vector v and a reduced-size version vind containing
only a set of independent voltage measurements mainly due
to the reciprocity principle. Using (4) implies that the EIT
acquisition system performs some reciprocal measurements
or else K would be equal to the identity matrix I and εεε recip
would be equal to the zero vector 0 and become useless. In
practice, most systems perform reciprocal measurements.

Finally, DQM qreconst and qrecip are defined by respect-
ively substituting εεε reconst and εεε recip from (3) and (4) into

q =
1
M

M

∑
i=1

(
1
2

)|εi|
(5)

where M represents the length of εεε reconst or εεε recip depending
on which DQM is being computed. Following this defini-
tion, any computed q value will be constrained between 0
and 1 to respectively indicate poor or good data quality.

3 Discussion
DQM were computed on data acquired on ICU patients
from a previous study [3] and validated with the corres-
ponding ventilator data. It was found that 1) DQM show
abrupt changes, which often correspond to known events,
and 2) DQM behave differently and are sensitive to differ-
ent effects. qrecip indicates the quality of a particular voltage
measurement vector v while qreconst is useful to assess the
quality of reconstructed images. qreconst is affected by sev-
eral parameters: mainly, reference voltage measurement
vector vr, physics model geometry and reference conduct-
ivity distribution σσσ r used to compute Jacobian J. qreconst
can be used to assist clinicians in selecting the best model
geometry and reference conductivity distribution for a given
patient and in assessing how long a reference state (σσσ r, vr)
is valid before a new one should be selected or acquired.
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Abstract: An adaptive Kaczmarz method to reconstruct   

conductivity changes from 2D EIT data is described. The 

framework to combine the adaptive Kaczmarz method and 

the adaptive mesh refinement is also outlined in the paper.   

Reconstructions from data collected on a human chest 

torso are shown. The results accurately recover the 

conductivity changes during a cardiac cycle and 

demonstrate the reconstruction performance of the 

adaptive Kaczmarz method. 

1 Introduction 

In this paper, we will outline a framework to combine the 

adaptive Kaczmarz method and the adaptive mesh 

refinement techniques. The adaptive algorithm can locally 

refine the mesh and generate optimal current patterns to 

improve the accuracy of the reconstructed images with the 

help of the prior information obtained from the previous 

iterations.  

2 Methods 

The adaptive Kaczmarz method was introduced and 

described in more detail in [1]. It combines the block 

Kaczmarz method and optimal current pattern generation. 

The algorithm avoids the inversion of large matrices at 

each iteration and adaptively generates optimal current 

patterns to improve the distinguishability of the system. It 

can solve the reconstruction problem cost-efficiently 

without degrading the quality of the reconstructed images. 

2.1 Adaptive Kaczmarz with Adaptive Mesh 

Refinement 

The proposed algorithm balances the trade-off between the 

accuracy and the efficiency of the EIT reconstruction 

process. With the help of adaptive mesh refinement, it is 

possible to avoid unnecessary mesh elements and improve 

the efficiency and the conditioning of the reconstruction. 

The flowchart of the adaptive algorithm is shown in 

Figure 1.   

2.2 Results of the adaptive Kaczmarz 

The images were reconstructed from archival data 

measured by the ACT3 system at Rensselaer Polytechnic 

Institute. In Figure 2, a sequence of 8 images in one 

cardiac cycle is displayed.  

3 Conclusions 

In this paper, reconstructions of cardiac activity using the 

adaptive Kaczmarz are shown and a new adaptive 

algorithm is outlined. 
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                         Figure 2: A sequence of 8 different images in one cardiac cycle is shown.  

               Figure 1: Flowchart of the adaptive algorithm 
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Abstract: The EIT-based Centre of Ventilation (CoV) 
within the lungs was evaluated at baseline and 10 minutes 
after applying three ventilation conditions: (1) zero end-
expiratory pressure (ZEEP), (2) 5 cmH2O of PEEP 
without a recruitment maneuvre (RM) and (3) after a RM. 
A significant dorsal shift of the CoV was seen for the RM, 
but not for the other two conditions.  

1 Introduction 

During anaesthesia, functional residual capacity decreases 
resulting in atelectasis formation in the dependent parts of 
the lungs. Several ventilation modes have been used to 
avoid or counteract this lung collapse. However, 
monitoring the effectiveness of different ventilation modes 
and settings is still challenging. The CoV has been used to 
evaluate the distribution of ventilation within the lungs of 
anaesthetised subjects [1]. 
The aim of this study was to investigate in healthy dogs 
the shift in the CoV under changing ventilation conditions. 

2 Methods 

The lungs of nine healthy Beagle dogs positioned in dorsal 
recumbency were ventilated during three subsequent 
anaesthesias (sevoflurane in oxygen 100%) using volume-
controlled ventilation at 10 ml kg-1, zero end-expiratory 
pressure (ZEEP) and a respiratory rate adjusted to 
maintain PE’CO2 between 4.7 and 5.3 kPa. After 35 
minutes, baseline EIT images were recorded using a belt 
around the thorax caudal to the apex of the heart (T1). 
Dogs then underwent in randomised order either continued 
ventilation at ZEEP (control group), ventilation with 
positive end-expiratory pressure of 5cmH20 (PEEP) alone 
or after a recruitment manoeuvre (RM) performed by  

 
Figure 2: EIT ventilation image of a dog with CoV (red circle). Bright 
colours mark areas with high and dark colours areas with low impedance 
changes, which relate directly to the amount of regional ventilation. The 
CoV is calculated from the tidal image (end minus start of inspiration). 

increasing PEEP stepwise to 15 cmH2O and peak 
inspiratory pressure to 40 cmH2O and by maintaining 
them there for 10 breaths [2]. Measurements were 
repeated after 10 minutes (T2). The ventilation-related 
relative impedance changes (ΔZ) from the start to the end 
of inspiration were calculated, see Figure 1. Then the 
geometric CoV was determined. T1 was compared to T2 
using Student´s paired t-test. 

3 Results 

Only after the RM a significant dorsal shift of the CoV 
was found (P = 0.0118), while such a redistribution of 
ventilation was observed neither during ZEEP nor PEEP 
(Figure 2). 

 
Figure 2: CoV before (T1) and after (T2) applying three different 
ventilation modes to the lungs of healthy dogs. ZEEP = zero end-
expiratory pressure, PEEP = positive end-expiratory pressure, RM = 
recruitment manoeuvre combined with PEEP. 

 

4 Conclusions 

While the combination of RM and PEEP caused a 
significant dorsal shift of the CoV from baseline 
ventilation at ZEEP even in healthy lungs and during short 
term ventilation, PEEP did not show the same effect. 
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Abstract: This paper presents a new image reconstruction
technique for 3D EIT based on the extension of the 2D
GREIT method. Key aspects include the expansion of op-
timization targets and set of desired images to cover mul-
tiple planes. Results show the reduction off-plane inter-
ference seen in 2D reconstruction. The selection of target
planes is also found to be highly significant to the image.

1 Introduction
There is strong potential in the use of 3D imaging in Elec-
trical Impedance Tomography (EIT) applications, [1,2] des-
pite challenges with accuracy, evaluation, and processing
requirements. This paper presents a new method for 3D
EIT image reconstruction. The method is compared with
the 2D GREIT method to analyze the influence of off-plane
targets.

2 Methodology
2.1 GREIT Method

The 3D reconstruction approach is an extension of the 2D
GREIT method, which is described in [3]. The 2D method
consists of a forward model, a noise model, and a set of de-
sired performance metrics. A training set of conductivity
target images is created based on the performance metrics.
The reconstruction matrix R is then calculated as follows:

R = DY−1(YY−1 +Σn)
−1 (1)

where D is a point spread function based on the desired tar-
get features, Y is the set of simulated target measurements,
and Σn is the noise covariance term.

In order to extend this algorithm to 3D, a three dimen-
sional set of targets is created. A set of target planes must
be selected according to the region of interest, as well as
speed and memory concerns.

The calculation of matrix D is expanded to cover the n
target planes, giving diagonal matrix Dn,n. A matrix Di,i is
solved for each target plane i based on the desired perform-
ance metrics. This approach assumes that the target radius
is smaller than the target plane separation.

2.2 Simulation

The proposed 3D GREIT method is compared to the 2D
GREIT method to examine the effects of off-plane targets
on image quality. The forward model is built using a cyl-
indrical finite element model (FEM) using 35 089 elements.
The 2D model includes one ring of 16 circular electrodes
and the 3D model uses 2 rings of 16 electrodes. Meas-
urements are simulated using the adjacent pattern. The 2D
method solves each plane individually while the 3D method
uses a single reconstruction matrix.

3 Results and Discussion
The reconstructed images, overlaid onto the FEM model,
are shown in Fig. 1. The 2D GREIT image shows strong

off-plane influence. For each slice, the image extends to-
wards the off-plane sphere, resulting in a wide column. The
3D GREIT image is better constrained to the object regions
for both the on- and off-plane objects.

Figure 1: Reconstructed images using 2D GREIT method left
and 3D GREIT method right for one on-plane sphere and one
off-plane sphere. Images generated using EIDORS.

The 3D GREIT method provides better resolution and
lower position error, as illustrated in Fig. 2. This suggests
that the 3D method has improved immunity to off-plane ef-
fects while also providing useful information concerning re-
gions outside the electrode planes.

Figure 2: Centre image slice from 2D GREIT method left and
3D GREIT method right. Images generated using EIDORS.

Although 2D GREIT allows the specification of the po-
sition of the desired image plane, since a single image must
explain all the data, it necessarily conflates the two tar-
gets. By simultaneously reconstructing images at multiple
planes, 3D GREIT allows to distinguish changes occurring
at different levels, resulting in reduced off-plane influence.
Consequently, the selection of the target planes has high sig-
nificance in the 3D GREIT method.

4 Conclusions
The 3D GREIT method proposed in this paper has been
demonstrated against the 2D GREIT method. Results indic-
ate that the 3D GREIT method reduces off-plane effects and
allows for the imaging of off-plane objects, while improv-
ing resolution and position error. In addition, the selection
of target planes will have a significant impact on the image.
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Abstract: It has been observed that the distribution of the 
training targets used to calculate the GREIT reconstruction 
matrix has a strong impact on its chief figure of merit, the 
amplitude response (AR). We found that uniform AR 
requires a minimum target distance to the domain bound-
ary, and target density gradient toward the centre has less 
impact on uniform AR. 

1 Introduction 

In the GREIT framework [1], the reconstruction matrix for 
linear difference EIT is calculated based on a training set 
of simulated measurements of small single-target conduc-
tivity perturbations and the corresponding desired images, 
constructed based on specified consensus figures of merit. 
Chief among the requirements is that equal conductivity 
changes have equal effects on the image regardless of their 
position, i.e. uniform amplitude response (AR). 

Originally, GREIT was proposed for cylindrical do-
mains and used a centre-heavy spiral distribution of train-
ing targets in the plane of electrodes. After extruded 
shapes of arbitrary contour were introduced to GREIT [2], 
the default distribution of training targets was changed to a 
uniform grid pattern, since the original spiral was not 
generalizable and random distributions were deemed not 
suitable. It was later observed that this distribution pro-
duces a less uniform amplitude response (AR) than the 
original formulation.  

Since the fluctuation of AR becomes stronger close to 
the domain boundary, we investigated 2 properties in the 
present study: i) target density gradient toward the centre, 
and ii) minimum target distance to the boundary. 

2 Methods 

The plane of electrodes is divided into concentric ring-
shaped layers by binary image erosion. Within each layer, 
training targets are distributed in a uniform gird. The tar-
get density in each layer is defined by the ratio between 
two consecutive layers (denoted as R2L). We analyse 
three distributions for 5 layers with i) equal density in 
each layer (R2L=1), ii) moderate density gradient towards 
the centre (R2L=1.2), and iii) strong density gradient 
(R2L=3). At the same time, we varied the target distance 
to the boundary (D2B) from 0 to 2 times of target radius in 
steps of 0.5. For each distribution, we calculate a GREIT 
matrix for EIDORS’s adult thorax model such that noise 
figure in the centre equals 0.5. Results are compared by 
calculating the figures of merit defined in [1] for a set of 
uniformly distributed targets in the electrode plane. 

3 Discussion 

Figure 1 shows part of the results due to limited space. AR 
was more homogeneous when R2L=3 (Fig. 1, middle) 
compared to R2L=1 (Fig. 1, left) due to the fact that the 
density of targets near the boundary was strongly reduced. 
AR became even more uniform by simply adding target 
distance to the boundary (Fig. 1, right). We found that 
uniform AR requires a minimum target distance to the 
domain boundary, and target density gradient toward the 
centre has less impact on uniform AR. 
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Figure 1. Top: distributions of training targets (red *) test. Left, R2L=1, D2B=0; middle, R2L=3, D2B=0; right, R2L=1, D2B=1.5; 
Bottom: corresponding AR maps normalized to the value in the centre. 
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Abstract: An ℓ1 norm reconstruction algorithm which has 

the merits of reducing the sensitivity to data outliers and 

avoiding edge blurring is applied in this paper to solve a 3-

D EIT problem. The iterative imaging method allows 

flexible choice of norms by simply choosing different 

norm value. A cluster analysis is implemented for 

labelling targets using the morphology technique.  

1 Introduction 

Electrical Impedance Tomography (EIT) is a soft field 

imaging modality due to the diffusive propagation of 

electrical current. Reconstruction of the internal 

conductivity distribution from boundary measurements is 

severely ill-conditioned. Most reconstruction algorithms 

are based on ℓ2 norm regularization (e.g. one-step GN 

method) which is believed to blur image outlines and be 

sensitive to measurement noises. These difficulties can be 

greatly alleviated if ℓ1 norm reconstruction technique is 

involved [1-5]. An ℓ1 norm applied on the measurements 

residue term reduces the sensitivity to data outliers, while 

an ℓ1 norm on the image prior term avoids edge blurring. 

An ℓ1 norm iterative method is applied in this paper to 

solve a 3-D EIT problem, which is designed to detect 

breast cancer from women patients. In the post-processing 

stage, a cluster analysis is applied for labelling 

reconstructed targets using the morphology technique. 

Simulative and phantom experiments showed the 

advantages of ℓ1 norm reconstruction and the validity of 

the clustering method.  

2 Methods 

A weighted and regularized inverse seeks an estimate 

solution  ̂ by minimizing 

 ̂        
 

‖    ‖
  
  
   ‖    ‖

  
  
            (1) 

Where    and   are the data and image norms 

respectively. With     ,      it models the ℓ2 norm 

regularization; while with     ,     , ℓ1 norm 

reconstruction can be achieved. In this paper, a general 

iterative method for solving (1) is applied, which allows 

flexible choice of norms by simply choosing different    

and    value. Details can be found in [5], and will not be 

elaborated here. 

When EIT reconstruction is completed, image filtering 

technique is implemented to remove noises, and then a 

cluster analysis based on the morphology is involved for 

labelling targets. 

3 Results 

3.1 Numerical simulation 

The forward model was a funnel-shaped applicator. 64 

electrodes were located surrounding the outside surface. 

Inside, there were two targets with conductivity       , 

while the background had conductivity     . In order to 

accurately simulate forward model and make inverse 

solution less ill-conditioned, dual model was applied, 

which means a fine mesh for the forward and coarse mesh 

for the inverse. Gaussian white noise was added to the 

simulation data with noise level SNR=20dB. When 

reconstruction was completed, cluster analysis was 

implemented. The two targets were marked by different 

colours (red and yellow) as shown in Fig. 1. 

 
Figure 1: Image reconstructed using ℓ1 norm and labelled by 

cluster analysis. 

3.2 Phantom experiment 

The saline phantom was fabricated the same as described 

in the previous section. Small biological tissues such as 

potato, apple and porcine liver were statically suspended 

in the saline solution. Similar results were obtained. 

4 Conclusions 

EIT images reconstructed using ℓ1 norm regularization 

give two distinct advantages: edge preservation and noise 

robustness. However, the disadvantage is that the ℓ1 norm 

formulation cannot be realized as a linear one-step 

algorithm due to non-differentiability. In this paper, we 

extended Dai’s previous work [5] from 2-D to 3-D 

problem, and proved that the iterative process for solving 

(1) is effective in 3-D scenario as well. Moreover, the 

cluster analysis based on the morphology technique was 

involved and successfully separated targets from the 

background, which is important in clinical applications. 
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Abstract:	
   Magnetic induction tomography is a 
tomographic technique with potential medical 
applications. However, the realization of this technique 
remains a challenging topic both in hardware and in image 
reconstruction. This paper presents a hybrid image 
reconstruction algorithm for the image reconstruction 
using experimental data. 

1 Introduction 

Magnetic induction tomography (MIT) is capable of 
imaging electrical properties of the materials under testing 
[1]. Due to its contactless and non-invasive nature, it has 
great potential to be employed in medical applications, 
such as brain imaging. As MIT is a low-resolution 
technique, one of the major issues lies in the image 
reconstruction. The main objective of this study is to 
improve the quality of reconstructed images by using a 
hybrid regularization algorithm resulting in some 
enhancements in reconstructed images. 

2 Methods 

In the forward problem of MIT, a reduced magnetic vector 
potential is used [2]. The general equation in quasi-static 
electromagnetic field can be written as.  

∇×
1
𝜇
∇×𝐴! + 𝑗𝜔𝜎𝐴! = 

∇×𝐻! − 𝑗𝜔𝜎𝐴! − ∇×
!
!
𝜇!𝐻! (1) 

where 𝐴! is the reduced magnetic vector potential in the 
eddy current region, 𝜔 is the angular frequency,  𝜎 is the 
electrical conductivity, 𝐻! is the magnetic field due to the 
the excitation coil, which can be directly computed 
according to the Biot-savart law. 𝐴!  is the impressed 
magnetic vector potential as a result of source current 
density 𝐽!,   𝜇! is the permeability of the free space, and  𝜇 
is the permeability of the medium. In equation 1), the only 
unknown is 𝐴!, which can be computed by soving the 
system linear equation [3]. 

𝑆𝐴! = 𝑏  (2) 
where 𝑆 is a system matrix, and 𝑏 is the right hand side 
current density. The inverse problem of MIT can be 
solved by using a hybrid image reconstruction algorithm 
[4].    
 ∆𝜎 = 𝐽!𝐽 + 𝛼𝑅! + 𝛽𝑅! !!𝐽!(∆𝑣) (3) 
where ∆𝑣  is the changes in the induced voltage 
measurements, 𝐽 is the sensitivity map computed from the 
forward model, 𝑅! , 𝑅!   are the regularization matrices, 
and 𝛼 and 𝛽 are the regularisation factors for 𝑅! and 𝑅! 
respectively. A combination of NOSER and identity 
matrix was used as hybrid regularization scheme. 

Combined regularization produces images with more 
accurate location and shape of the inclusion(s). 

3 Imaging system 

The Bath medical MIT system is shown in Figure 1. It is a 
16 channel National Instrument based system working at 
13 MHz excitation modes. The detailed system design has 
been reported in [5]. Imaging different level of salinity 
solutions inside various salinity solutions background 
carries out the experiments. Both individual and multiple 
bottles are used. A large number of experimental data are 
collected to verify the proposed method. Figure 1 gives an 
example of reconstructed images using non- conductive 
bottles inside 0.9% saline solution in different locations. 

 

 
Figure 1: Bath 16-channel medical MIT system, reconstruction 
of 1, 2 and 3 bottles in saline background with 0.9% saline. 

4 Conclusions  

A hybrid image reconstruction algorithm is presented in 
this study in an attempt to improve the quality of 
reconstructed images. Both forward and inverse problems 
are studies, and the results are validated using large 
number of experimental data. The proposed hybrid 
regularization provides better quality reconstruction 
compared to each of these regularization methods. 
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Abstract: According CT images, a 3D abdominal 

bleeding simulation model with real shape was set up 

using COMOSOL Multi-physics. By parameter sweeping, 

the surface measurement data for EIT were obtained while 

bleeding from 0~800ml. Total relative changes (TRC) of 

the data were calculated, shown a linear correlation 

(R>0.99) with bleeding volume (BV), which implies TRC 

be a good quantitative index to indicate BV. 

1 Introduction 

Electrical impedance tomography (EIT) is noninvasive 

and sensitive to abdominal bleeding. Bleeding model in 

pig shown that 30ml of blood could be detected by EIT [1], 

also EIT is sensitive to detect 20ml of conductive fluid in 

the peritoneum of patient [2].So abdominal bleeding can 

be dynamically and sensitively detected by EIT in vivo [1-

3]. How to quantitatively monitor bleeding volume is the 

key problem which should be solved by abdominal EIT. 

Several quantitative indexes (QI), such as resistivity index 

(RI) [2,4,5], total relative changes (TRC) [6] and singular 

value decomposition (SVD) [7] have been reported to 

quantitatively estimate the volumes of lung air or liquid in 

dogs, abdominal liquids in phantom or patients, and balder 

volume in simulation, respectively. In order to 

systematically testify the relation of QI and BV, a 3D real 

shape abdominal bleeding simulation model was built. 

2 Methods 

The simulation model has been built from abdominal CT 

images. According the grey values of CT image, 3D 

shapes of liver, spleen, stomach, kidney and backbone, 

etc., were segmented and saved as CAD files. Then the 

data of different organs were input into COMSOL to form 

a 3D real shape model of abdomen. To solve the forward 

problem of EIT, 16 copper electrodes placed on the the 

model for polar driving and adjacent measuring.  

2.1 To simulate different bleeding volumes 

A sphere with different volumes to simulate different BV 

was put into the abdominal model at the electrodes plane, 

as shown in Fig.1. The volumes of sphere was set to 

0,5,10,20,30,40,50,60,70,80,90,100,150,200,250, 

300,350,400,450,500,550,600,650,700,750,800ml, 

in total 26 volumes. 0ml was treated as reference without 

bleeding. Using parameter sweeping function of 

COMSOL the radius of sphere was swept from 0 to 

5.78cm, and 26 EIT data for the above BV were obtained. 

2.2 To set parameters of the 3D model 

In the 3D model, there are 243120 volume elements. For 

different organs and tissues, such as liver, spleen, stomach, 

kidney, backbone and blood, their conductivity and 

permittivity were set accordingly.  

The bleeding simulation was done in COMSOL using 

the AC/DC module. Automatic changing of the current 

injection electrodes (polar driving) was accomplished by 

COMSOL LiveLink for Matlab interface [7]. For each BV, 

a frame data with 16X16 was obtained by rotating 16 

times of driving electrodes. 

 
Figure 1: 3 D abdominal bleeding model with 16 electrodes 

2.3 To calculate quantitative index 

TRC was used as QI. The frame data without bleeding  

was set as reference data, and the other 25 frame data with 

different BV were used to calculate TRC [6], then the 25 

TRC data and 25 BV data were analysed by linear fitting. 

3 Conclusions 

The TRC has a significant linearity with the BV (R=-

0.999). Equation (1) gives the linear relationship between 

TRC and BV. 

TRC = -0.0067*BV-0.0484   (1) 

The results shows that in 3D abdominal simulation 

model, TRC is a good QI to estimate BV in the range of 0-

800ml, the results is also same as in phantom experiments 

[6], in which TRC has a good linear relation with the 

volumes of saline solution (150ml in total) perfused into 

physical phantom. 

In practice, abdominal motion arising in breath and 

organ movements would cause impedance changes [2]. 

How to filter such kind of interfere and how to evaluate 

different QI, more trials in vivo should be studied further. 
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Abstract: We present an application of a newly developed
fast parallel EIT forward solver (PEITS) implemented in
C++. Its features are summarised and the installation, con-
figuration and interface to Matlab are demonstrated. An ap-
plication of the solver to a feasibility study of stroke type
differentiation is illustrated. We found that precise position-
ing of the electrodes is critical for obtaining good images of
stroke.

1 Introduction
Most research groups in EIT currently use the Electrical Im-
pedance Tomography and Diffuse Optical Tomography Re-
construction Software EIDORS [1], which is programmed
in Matlab. EIDORS provides many useful features, such
as 2D and 3D forward simulations and an extensive col-
lection of reconstruction algorithms, visualisation functions
and more. Horesh et al. [2] adapted EIDORS with differ-
ent preconditioners and more efficient routines, resulting in
a version called SuperSolver. For large meshes, however,
Matlab suffers from a lack of efficient parallel programming
possibilities, which makes the computation of forward solu-
tions a lengthy task. Last year we presented the implement-
ation of a fast parallel forward solver using the complete
electrode model, which is now available for free download
[3].

2 Methods
2.1 Running PEITS

Used on a workstation or computer cluster, the Parallel
EIT Solver (PEITS) reduces the computation times for the
forward solutions and the Jacobian matrix significantly on
large finite element meshes. A typical EIT application with
60 forward solutions and around 1000 protocol steps (i.e.
1000 lines in the Jacobian matrix) can be solved on 40 pro-
cessors in 78 seconds on a 2 million element mesh, and in
less than 18 minutes on a 15 million element mesh. Even
on one processor we found PEITS to be twice as fast as an
optimised version of EIDORS for an application on 2 mil-
lion elements. This comes at the expense of less flexibility
with regards to different applications, e.g. parallel current
injection is not yet supported. PEITS is currently only sup-
ported on UNIX systems, where it can be easily installed
following the guidelines on the website [3].

2.2 Feasibility Study

We are presenting the application of PEITS in a simula-
tion study determining the main error sources in frequency-
difference EIT imaging of stroke [4]. This study required 31
forward solutions on a 5 million element mesh for 12 differ-
ent frequencies for each studied situation. In total this added
up to more than 5000 forward solutions. On all 16 cores of
a workstation with two 2.4GHz Intel Xeon CPUs with eight
cores and 20MB cache each, the computation time for all
forward solutions was around 300 minutes. The results of
the study show that the precise positioning of electrodes is
critical for good image quality. Even electrode misplace-
ments as small as 1.3mm can lead to an image deterioration
that makes the detection of a stroke impossible.

For the study, forward solutions were simulated on a
fine 5 million element mesh with various errors on elec-
trode position, electrode contact impedance and tissue con-
ductivity at different frequencies. For the reconstruction the
we used the frequency-difference fraction reconstruction
method presented in [5] on a coarse 180k element mesh.
The mesh we used included a scalp layer, a skull layer and
a brain layer. We chose this simplified head geometry be-
cause we intend to reproduce the study in a tank and confirm
our simulation results with experimental data.

3 Conclusions
We illustrate an application of a new fast parallel solver
for the forward problem in EIT. It significantly reduces
the time needed for simulation studies and EIT reconstruc-
tions on large finite element meshes. A feasibility study
of frequency-difference EIT on a realistic head mesh has
shown that it is very important to measure the electrodes
positions with an accuracy of less than 1mm.
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Abstract: Our parallel current drive EIT architecture can 
simultaneously drive 32 independent high impedance 

current sources and measure 32 independent precision 

voltage channels. Coherent modulation and demodulation 

is digitally implemented using field programmable gate 

arrays. High accuracy and precision is achieved using 

custom analog circuits containing modified Howland 

current sources coupled to negative impedance converters. 

1 Introduction 

Parallel drive EIT systems afford the ability to optimize 

excitation patterns for maximum distinguishability vs. 

conventional systems employing pairwise excitations [1]. 

To realize the benefits of parallel drive, it is important for 

the design of each channel to remain stable while 

achieving high output impedance. The Howland current 
source topology, by itself, can produce either high output 

resistance or low output capacitance but is incapable of 

producing both simultaneously. Generalized impedance 

converters have been used for compensating the output 

capacitance [2]. A negative impedance converter (NIC) 

circuit can generate a broad range of negative 

compensation capacitances but is often unstable when 

producing a high resistance. The Howland-NIC 

combination can produce low output capacitance (< 1 pF) 

while achieving high output resistance (>40 Mohms) by 

adaptively tuning the circuits to a resistance cancelling 
operating point using the droop circuit method [3]. A 

drawback of the Howland-NIC topology is a relatively 

narrow fractional bandwidth (slightly in excess of 30%) 

which creates a need for switched elements for octaves or 

decades of bandwidth. 

 

Our GENESIS parallel current drive EIT system 

(Figure 1) employs 32 Howland-NIC current sources 

connected to a FPGA-based acquisition system (PXI-

7853R, National Instruments, 16 bits). The system 

supports excitations in excess of 20 frames per second 

wherein each frame can contain up to 64 orthogonal 
patterns. One-step reconstruction is performed in real-time 

on a frame by frame basis and the raw data is stored for 

offline analysis. 

2 Methods 

The GENESIS system was characterized using parallel 

resistor-capacitor networks approximating the measured 

impedance of large Ag/AgCl electrodes placed on skin 

(nominal 1 kohm and 20 nF). After offline tuning of the 

Howland-NIC circuits at 10 kHz, the amplitude of each 

current channel was linearly increased from 0 to 

approximately 120 uA in 64 steps. The real and imaginary 

voltages on each channel were measured after digital 
demodulation and matched filtering. The applied current 

for each channel was independently measured by returning 

the current through the virtual ground connection of an 

additional current to voltage converter. Voltage and 

current measurements were collected for 10,000 frames.  

 

For analysis, the gain and phase drift of each frame 

was removed using a first order least squares fit vs. the 

measured current from the virtual ground. The residual 

error was computed using ohms law assuming the resistor-

capacitor networks were constant and known. The 

maximum average residual error was determined to be less 
than 20 parts per million (slightly less than 16 bits 

accuracy) and the maximum signal to noise ratio was 

greater than 110 dB (slightly more than 18 bits precision). 

 

 
Figure 1: Parallel Current Drive GENESIS EIT System. The 
32 channel experimental system employs a Howland-NIC analog 
circuit topology with a National Instruments FPGA digital 
backend for modulation and demodulation. 

3 Conclusions 

The GENESIS parallel current drive experimental EIT 

system simultaneously provides high performance to 

explore optimization of simultaneous current patterns for 

maximum distinguishability. The Howland-NIC analog 
circuit designs and tuning methodologies provide 

performance that is consistent with the accuracy and 

precision of the FPGA digital modulation/demodulation 

implementation. 
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Abstract: Several studies [1,2] have shown the potential 
of EIT to estimate cardiovascular parameters. To achieve 
this goal, EIT devices have to deal with small impedance 
variations. As a consequence, the high value of the direct 
component (DC) of the bio-impedance signal becomes an 
issue in terms of analog to digital converter resolution. 
With this research, we aim at demonstrating that the DC of 
the signal can be discarded before digitalization. 

1 Introduction 
The present research aims at studying the impact of DC 
signal in EIT difference image reconstruction algorithms, 
via simulations and actual measurements. An example of a 
thoracic bio-impedance measurement performed in a 
human subject is shown and illustrates the high dynamic 
range required to measure both DC amplitude and 
cardiogenic impedance variations. The feasibility of DC-
free approach has been proven by means of simulated data 
based on a body-inspired model. These simulations 
underline the importance of filtering out low frequencies 
to highlight the cardiogenic signal. The results obtained 
via simulation have been validated with results obtained 
on real experimental data. Finally, a discussion describes 
the encouraging results found during this research. 

2 Materials and method 
2.1 Actual bio-impedance measurement 

In vivo measurement performed in a male subject’s thorax 
shown the very small cardiogenic impedance variation 
(0.5Ω) compared to the high DC value (155Ω). Such a 
large dynamic range requires demanding ADC resolution. 

2.2 Simulations based on a body-inspired model 

EIT simulations with EIDORS software [3] were 
performed to ensure that DC is not essential for the 
difference image reconstruction process. For the standard 
reconstruction process (Figure 1), the homogeneous set of 
voltages is computed once during the baseline and kept 
constant throughout the whole recording time. This is the 
main difference with the novel approach shown in Figure 
2. Namely, a high-pass filter is applied in the time 
dimension to each voltage channel before digitalization 
and image reconstruction. Consequently, the 
homogeneous set of voltages becomes the null vector. 

Raw simulation data in Figure 3 (left image) shows the 
result of the standard image reconstruction method. In this 
example, one can see the high amplitude of the breathing 
signal compared to cardiogenic signal. High-passed data 
(right image) shows that it is possible to filter out low 
frequencies, including DC, before image reconstruction 
without altering image quality of higher-frequency regions 
(i.e. cardiogenic signal region). The cutoff frequency of 
the high-pass filter has been chosen at 0.8Hz. This way, 

the breathing signal (0.2Hz) and the DC component of 
each of the voltage channels were filtered out, whereas the 
cardiogenic signal (1Hz) remained close to its raw value. 

 
Figure 1: Standard approach for image reconstruction process. 

 
Figure 2: Novel image reconstruction process. 

 
Figure 3: AC Energy of each pixel in the reconstructed image 
sequence without (left) and with (right) the high-pass filter. 

2.3 Actual measurement 

Measurements on real data have been performed, 
concluding that the DC of bio-impedance is not required 
for EIT difference image reconstruction. 

3 Conclusions 
In this research, we hypothesized that the zero-frequency 
component of the EIT voltage signal was not required to 
reconstruct differential images. Both simulations and 
actual measurements have corroborated this hypothesis by 
showing that the amplitude of high frequency signal was 
not altered whether the DC component was kept or filtered 
out. 
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Abstract: The paper describes possibility of EIT 
diagnostics of precancerous diseases and cancer of the 
cervix. The data were obtained through EIT system GIT 
(gynaecological impedance tomograph) [1]. 

1 Introduction 

Cervical cancer is one of the most frequent types of 
cancer. The disease is increasingly recorded in young 
women and is characterized by high mortality. Cervical 
cancer kills 290 000 women per year, which equals to 789 
women per day or a woman per 2 minutes, all over the 
world. 

There is a generally accepted classification of 
precursors of cervical cancer, which is based on the depth 
of lesions stratified squamous epithelium: 
-cervical intraepithelial neoplasia grade 1 (CIN1) defeats a 
third of the thickness of stratified squamous epithelium; 
-cervical intraepithelial neoplasia grade 2 (CIN2) captures 
2/3 of the thickness of stratified squamous epithelium; 
-cervical intraepithelial neoplasia grade 3 (CIN3) corrupts 
the whole layer of stratified squamous epithelium. 

Intraepithelial lesions usually are associated with 
human papillomavirus (HPV) and it is considered as 
forerunner of cancer.  

The purpose of the study is to identify opportunities of 
electrical impedance tomography in the diagnosis of 
precursors and cervical cancer. 

 

2 Methods 

The data were obtained through EIT system GIT [1] with 
48 electrodes organized in non-orthogonal matrix. The 
external diameter of a vaginal probe is 33 mm. Images 
were reconstructed by a weighted 3D back-projection 
along equipotential sphere algorithm [2] extended by 
Delaine interpolation [1]. The result of GIT visualization 
is three slices at a depth of 2, 5 and 8 mm for 10 kHz and 
50 kHz simultaneously in a real time mode (a shot per 
seconds). On a slice the conductivity value is presented in 

relative units (relative to average conductivity), that helps 
to calculate average value over a region and get numerical 
criteria of diagnostics, not only visual estimation of 
pictures. 

The report presents main results (see table 1) of a 
comprehensive examination of the neck of the womb of 
186 women from 19 to 70 years: 63 - without cervical 
pathology, 50 - with low-grade squamouse intraepithelial 
lesion (LSIL) CIN1, 46 – with high-grade squamouse 
intraepithelial lesion (HSIL) CIN2 and CIN3, 11 - cervical 
cancer stage 1, 16 - cervical cancer stages 2-3.  

We used the following methods of diagnosis: history 
taking, a visual examination on the uterine speculum, 
liquid oncocitology, extended colposcopy, target biopsy of 
cervix, electrical impedance tomography of the neck of the 
womb. 

3 Conclusions 

According the preliminary results, the conductivity of 
cervical tissue is almost the same for intact and LSIL 
cases while it is slightly different from the HSIL case and 
is significantly different from cancer cases (see table 1). 
That allows us to hope that electrical impedance 
tomography will help: to detect precursors of cervical 
cancer before visual changes of cervical surface; to 
distinguish diseases (CIN1, CIN2, CIN3, cancer, 
inflammation); to control effectiveness of treatment and to 
detect changes associated with HPV. 
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Table 1: Conductivity is given in arbitrary units at frequency 50 kHz. MC is menstrual cycle; n is quantity of patients in a group. 
Transformation area is the border between two types of epitheliums (squamous and columnar) on cervix. 

Cervix pathology, MC phase and patient quantity 
Age before 30 Age after 30 

2mm Transformation area 2mm 
 

Transformation area 

Norm 
1 phase of MC n = 63 0.92±0.06 1.08±0.1 0.95±0.06 1.02±0.06 
2 phase of MC n = 63 0.95±0.06 1.02±0.06 0.99±0.07 1.06±0.08 

LSIL 
1 phase of MC n = 50 0.91±0.04 1.0±0.04 0.96±0.02 1.07±0.04 
2 phase of MC n = 50 0.94±0.03 1.07±0.06 0.98±0.01 1.1±0.03 

HSIL 
1 phase of MC n = 46 0.96±0.02 1.07±0.01 1.01±0.07 1.1±0.09 
2 phase of MC n = 46 0.99±0.1 1.13±0.09 1.09±0.08 1.14±0.01 

Cancer stage 1 
1 phase of MC n = 11 No data No data 1.03±0.03 1.18±0.04 
2 phase of MC n = 11 No data No data 1.03±0.03 1.18±0.04 

Cancer stage 2-3 
1 phase of MC n = 16 0.65±0.01 Not applicable 0.79±0.1 Not applicable 
2 phase of MC n = 16 0.65±0.01 Not applicable 0.79±0.1 Not applicable 
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Abstract: A comparison of two regularization methods: 

the general regularization method and the Sheffield 

method using the voltage ratio rather than the difference. 

1 Introduction 

The Sussex MK4 is a 3D EIT system for breast cancer 

detection, using current excitation and voltage measure-

ments. The data acquisition is completed by a planar 

electrode array at the bottom of the tank in the MK4. In 

experiments, two groups of measurements are collected: 

the reference measurements which are from a tank of 

saline and the actual measurements which are from a 

patient with a breast placed in the tank. For detailed 

information of the MK4, please refer to [1] (page 44-49). 

The aim of this paper is to compare the two regularization 

methods shown in Section 2. 

2 Methods 

The vector    denotes the initial conductivity, which is the 

saline in the tank; the vector    denotes the measurements 

of the saline; the vector      denotes the reference 

conductivity, which could be    or the conductivity with 

some known anatomical features; the vector   denotes the 

actual conductivity, with a breast in the tank; the vector    

denotes the actual patient measurements. Defining 

         ,           , the general 

regularization method for the EIT inverse problem is:  

 {
   (       )  (        (       ))   

         
 (1) 

where S is the Jacobin matrix,   is the regularization 

parameter, I is the identity matrix. For the details, please 

refer to [1] page 62-65 and [2] page 21. The Sheffield 

group uses the logarithm of the voltage ratios rather than 

the difference to do image reconstruction.  
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          , M and E indicate 

the number of measurements and the number of the mesh 

elements ( refer to [1] page 65-67 and [2] page 370).  

To compare the two algorithms, a cylindrical model is 

employed in Figure 3. The conductivity of the object is 0.8 

mS/cm and the conductivity of the surrounding saline is 

0.5 mS/cm. The SNR of the simulated measurements is 

60dB. The L-curve is employed to decide  .   at the 

global corner is the optimized trade-off between the noise 

and image quality (Figure 1, 3), thus the optimized   for 

(1) and (2) are      and        . The results 

corresponding to the optimized   are shown in Figure 2, 4. 

The images from left to right indicates the bottom, middle 

and top reconstructed conductivity. 

        
Figure 3: Model: 3D view, XY view and XZ view 

 
Figure 4: L-curve of the general regularization method 

 
Figure 5: L-curve of the Sheffield method  

 
Figure 6: Result from Equation (1),     . 

  
Figure 7: Result from Equation (2),        . 

3 Conclusions 

For the Sussex MK4 system, at an optimised   , the 

general regularization method gives a better performance 

in distinguishing the object from the background but has 

less noise tolerance. The Sheffield algorithm is more 

robust to noise. 
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Abstract: This paper introduces the image reconstruction 

algorithm from Sheffield group and the validity of this 

algorithm to the Sussex MK4. 

1 Introduction 

The Sussex MK4 electrical impedance mammography 

(EIM) is developed for breast cancer detection[1][2]. This 

paper is focusing on the validity analysis of using the 

Sheffield algorithm for the MK4. 

2 Methods 

The widely used equation to explain the relationship 

between the change of the conductivity and the change of 

the boundary voltage measurements is:  

             (      )       (1) 

where S is the Jacobin matrix.       ⁄     . Vector    

denotes the real voltage measurement corresponding to the 

real conductivity  . Vector      denotes the reference 

voltage measurements corresponding to the reference 

conductivity     .   is a function of C. As   changes,   

changes. Eq. (1) is based on the assumption that the 

changes of   are small, so that the changes of   can be 

ignored. However Eq. (1) was proven by us to have a poor 

noise tolerance for the MK4, thus the Sheffield method 

using the voltage ratio rather than the difference is 

employed [3]: (For details, please read [3], Page 368-371) 

             (2) 

where         (        ⁄ ),         (       ⁄ ). 
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The image reconstruction algorithm is:  

{
                    (         (    ))

  (    )              
  (4) 

where   is the regularization parameter, I is the identity 

matrix. Let’s see Eq. (3). As V and S are both determined 

by C, basically   is determined by C. As C changes, F 

changes. So this algorithm is based on the assumption that  

the changes of   are ignored when the changes of the 

conductivity are sufficiently small. However how much 

changes of the conductivity will make the assumption 

invalid? According to Eq. (3), if    is equal or close to 0, 

    will go to infinity, which will make the algorithm 

unavailable. In practice, the measurements from the 0.5 

mS/cm saline are used as the reference measurements and 

in each excitation, we only use at most 12 strongest 

measurements which are collected parallel to the electric 

field [1][2], therefore    won’t be close to 0. However if 

there are big changes of conductivity,    may be close to 0, 

then Eq. (2)-(4) becomes invalid. 

This section discuss how much changes of the conduc-

tivity will make Eq. (2)-(4) invalid. See Figure 1. The 

positive pole of the current source is at the yellow dot S+ 

and the negative pole of the current is at the yellow dot S-. 

The electric potential at P1, P2, P3, P4 is denoted by: 

  ,   ,   ,    and the voltage measurements between P2 

and P1, P4 and P3 are denoted by    ,    . For an uniform 

field (0.5 mS/cm Saline), according to our study,    ,     

are approximately 300mv when the tank height is 4.5cm. 

For a significant changes of the field,    and    may get 

close to    and   , which means    ,     may become 0 

even negative. then Eq. (2)-(4) will be invalid. Thus, we 

conclude that the changes of the conductivity which cause 

      or        will make Eq. (2)-(4) invalid. If 

     , there must be a high conductivity path between 

S+ and P1, so that most of the current flows through this 

path and brings up   . See Figure 1. The most likely 

condition to make       or        is that the high 

conductivity path needs 1) the shortest distance between 

S+ and P1 without covering P2; 2) a big volume of the 

path to reduce the resistance between P1 and S+; 3) a 

much higher conductivity than the surrounding 

background. We made such a path shown in Figure 1. 

W=5.5cm, L=5.2cm, H=0.9cm. The straight-line distance 

between P1 and S+ is 4.5 cm.    and    indicate the 

conductivity of the background and the path. According 

the our studies, only if     ⁄     is      ,       

Therefore in a real case, if the tumour size is smaller than 

4.5cm, which means the high conductive path can’t form 

and the conductivity contrast of the whole tank is smaller 

than 40, Eq. (2)-(4) will be valid. Practically, a 4.5cm 

tumour can be found easily, and it is not usual that the 

conductivity contrast of a breast is bigger than 40.   

 
Figure 1: Voltage measurements reverse analysis 

3 Conclusions 

The Sheffield algorithm is not valid for every condition. 

For the MK4 system, it is available, for a real breast is too 

far from the conditions which make the boundary voltage 

measurements close to 0, hence invalidating Eq. (2)-(4). 
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Abstract: In this paper we report the results of our study 

in which we compared lung density values obtained from 

EIT and CT values (HU) within a region of interest. The 

purpose was to verify clinical use of lung density 

estimation using EIT data. Image resolution of CT images, 

which was originally 512*512 pixels, was changed to 

16*16 pixels, to match that of the EIT images. The CT and 

EIT images were recorded from eight patients in an 

intensive care unit and the results showed a correlation 

coefficient of 0.66 (p<0.05) between the CT values (HU) 

and the lung density values (kg/m
3
) obtained from EIT. 

1 Introduction 

Electrical Impedance Tomography (EIT) has become a 

feasible technique to evaluate lung function [1].  However, 

it is yet to be considered as a clinically acceptable method 

for evaluation of lung density. We had proposed the use of 

‘lung density’ as an absolute measure of lung function 

using EIT data sets, but had not compared it with clinical 

results from patients with lung disease.  In this study, CT 

values (HU) and lung density (kg/m
3
), though representing 

different physical properties of lung tissue, were compared 

to verify the feasibility of using lung density values for 

clinical monitoring of lung disease. 

2 Methods 

Eight patents, connected to a ventilator, were studied by 

recording CT and EIT images within 24 hours of each 

other. Shefield Mk3.5 [3] EIT system with 8 electrodes 

and 16*16 image resolution was used in this study. To 

achieve pixel by pixel comparison between CT values and 

lung densities, the thorax shape of the CT image was 

deformed to be circular and its spatial resolution, which 

was originally 512*512 pixels, was changed into 16*16, 

similar to that of EIT. EIT was reconstructed with the 

Sheffield back projection method using a sensitivity 

matrix [4]. The lung density at each pixel was estimated 

using 1 minute data set, measured at four frequencies 

between 2 kHz and 768 kHz. A region of interest (ROI) 

over the lungs was chosen manually. We calculated the 

correlation coefficient between the CT values (HU) and 

lung densities (kg/m
3
) in all of subjects. 

3 Results and discussions 

Figure 1 shows a result of comparison between CT value 

and lung density in one patient. They are in reasonable 

agreement around both lung collapsed and consolidated 

regions. All the data from eight patients is plotted in 

Figure 2. The correlation coefficient was 0.66  (p<0.05) 

between CT value and lung density and can be considered 

acceptably high. However, deformation of the thorax 

shape into a circular shape and manual determination of 

the ROI are likely to have introduced errors. Furthermore, 

we could not make both CT and EIT measurements on the 

same day because of the limited availability of ICU 

clinical staff required to be present. The extent of the lung 

disease is likely to have changed between the 

measurements and so would have reduced the correlation 

between the CT and EIT measurements related to lung 

density. 

Although the CT values and lung density are not 

directly comparable, the results of this study suggest that 

lung density could be a feasible index to evaluate lung 

disease. Further experiments need to be carried out to 

verify this finding by increasing the number of patients.  

 

 
Figure 1: An example of comparison between CT values (HU) 

and Lung density (kg/m3) in a patient. 

 
Figure 2: Relationship between CT values (HU) and Lung 

density (kg/m3) in eight patients. 
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Abstract: In this pilot clinical study, we assessed the 

effects of positive end-expiratory pressure (PEEP) on tidal 

recruitment and overdistension in mechanically ventilated 

patients. Changes in EIT-derived regional respiratory 

system compliance (Crs) induced by variation of tidal 

volume (VT) were analysed in the chest cross-section and 

identified the simultaneous occurrence of tidal recruitment 

and overdistension in the examined patients. 

1 Introduction 

Tidal recruitment associated with cyclic opening and 

closing of alveoli and alveolar overdistension are 

important mechanisms in the genesis of ventilator-induced 

lung injury [1]. One promising method for detection of 

these phenomena is the calculation of regional Crs in 

individual image pixels [2] or as profiles in 32 horizontal 

chest layers [3].  

When a patient is ventilated with two different values of 

VT and regional Crs is calculated in each setting, the 

differences in regional Crs induced by the VT variation can 

be determined. In the present paper, we used this approach 

to quantify the amount of tidal recruitment and 

overdistension by calculating the VT-dependent changes in 

Crs at two PEEP values on a pixel-by-pixel basis. 

2 Methods 

We performed a retrospective analysis of data from five 

critically ill patients (4 male, 1 female, 74±6 years (mean 

age±SD)) with acute respiratory distress syndrome 

(ARDS). The patients were ventilated in a volume-

controlled mode at two different PEEP values (PEEPhigh, 

PEEPlow). As described in [2], PEEPhigh and PEEPlow were 

set individually in each patient based on the analysis of a 

quasi-static pressure-volume manoeuvre. For the diagnosis 

of tidal recruitment and overdistension, a variation of VT 

between a high value of 10 ml/kg ideal body weight 

(IBW) and low value of 6 ml/kg IBW was performed at 

both PEEP values. 

EIT measurements were carried out with the Goe-MF 

II device (CareFusion, Höchberg, Germany) using a set of 

16 electrodes (L-00-S, Ambu, Ballerup, Denmark). EIT 

images were generated using the back-projection 

algorithm. 

Regional Crs was calculated by dividing the individual 

pixel values of tidal amplitude of relative impedance 

change (rel.∆Z) by the sum of all these values and by 

multiplying them with the global Crs. The regional Crs 

values at low VT were subtracted from the respective 

values with high VT to generate difference images, 

visualising ∆Crs between high and low VT in every pixel 

(Fig.1). For quantitative estimation of tidal recruitment 

and overdistension, we calculated the sum of pixels with 

positive values of ∆Crs and divided the resulting value by 

the global Crs at high VT. This analysis rendered a 

dimensionless index value of the amount of tidal 

recruitment that was finally multiplied by 100 to yield a 

value in %. This was performed similarly for all pixels 

with negative values of ∆Crs to create an index value of 

alveolar overdistension. 

 

 
Figure 1: Map of regional differences in respiratory system 

compliance (∆Crs) between high and low VT at the high positive 

end-expiratory pressure (PEEPhigh) in one of the examined 

patients. Positive values imply tidal recruitment, whereas 

negative values show overdistension. At this PEEP level, 10% 

overdistension and 6% tidal recruitment were identified in this 

patient. 

3 Results 

Tidal recruitment and alveolar overdistension occurred 

simultaneously at both PEEP levels in all studied patients. 

At PEEPhigh, we found a non-significant reduction in tidal 

recruitment (11% vs 14%; p=n.s.) and a non-significant 

increase in overdistension (18% vs 11%; p=n.s.) in 

comparison with PEEPlow. 

4 Conclusions 

Analysis of changes in EIT-derived regional Crs between 

high and low VT is feasible in mechanically ventilated 

patients and may be used to quantify the overall amount of 

tidal recruitment and overdistension at a given PEEP. This 

might be used for an individualized optimization of PEEP 

and VT setting adapted to the regional respiratory system 

mechanics. 
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Abstract: In the injured lung, local negative pleural 

pressure generated by diaphragmatic contraction is not 

uniformly transmitted, but is concentrated in dependent 

lung. This causes Pendelluft (using EIT), with shift of air 

from non-dependent to dependent lung regions. Thus, 

during lung-protective ventilation with strictly limited 

tidal volume, the presence of strong inspiratory effort can 

result in a hidden, local over-stretch of the dependent lung.  

1 Introduction 

In normal lungs, local changes in pleural pressure (Ppl) are 

generalized over the whole pleural surface. However, in a 

patient with injured lungs, we observed (using EIT) a 

Pendelluft phenomenon, i.e. movement of air within the 

lung from non-dependent to dependent regions without 

change in tidal volume that was caused by spontaneous 

breathing during mechanical ventilation. We hypothesized 

that in injured lungs: negative Ppl generated by diaphragm 

contraction has localized effects (in dependent regions) 

that are not uniformly transmitted; and such localized 

changes in Ppl cause Pendelluft. 

2 Methods 

In seven lavages-injured pigs, EIT data were recorded 

during spontaneous breathing and muscle paralysis, 

comparing the temporal pattern and distribution of 

regional ventilation with the sub-division of the thorax 

into four zones (ventro-dorsal). For the validation of 

regional distribution of ventilation, dynamic CT scans 

were performed to evaluate the absolute movement of air 

within thick slice. We also measured negative Ppl in 

dependent lung directly using intra-pleural catheters. 

Further, we estimated the additional airway pressure 

required to achieve comparable dependent lung inflation 

in the presence of muscular paralysis by titrating 

inspiratory airway pressures during paralysis till observing 

the same delta-Z observed during spontaneous breathing 

in dependent zones.  

3 Results 

In all lung-injured animals, spontaneous breathing caused 

Pendelluft, which was associated with more negative local 

Ppl in dependent regions vs. esophageal pressure 

(-14.3±3.3 vs. –7.1±2.1 cmH2O, P<0.01). During paralysis, 

there was heterogeneous —but simultaneous— inflation in 

the dependent as well as in the non-dependent lung 

regions (Figure 1). Dynamic CT analysis also confirmed 

the Pendelluft. Continuous recording of EIT was made 

during the transition from spontaneous effort to complete 

muscle paralysis (following a bolus of succinylcholine 

chloride; Figure 2); this demonstrated that the extent of the 

Pendelluft was proportional to the intensity of the 

respiratory effort. Comparable over-inflation of dependent 

lung during paralysis required almost 3-fold greater 

driving pressure (and tidal volume) vs. spontaneous 

breathing (28.0±0.5 vs. 10.3±0.6 cmH2O, P<0.01; 

14.8±4.6 vs. 5.8±1.6 mL/kg, P<0.05). 

 
Figure 1: EIT Waveforms in Experimental Lung Injury - 

Spontaneous vs. Ventilator Breaths  

 
Figure 2: EIT Waveforms in transition from spontaneous 

breathing to muscle paralysis 

4 Conclusions 

Pendelluft may constitute a novel mechanism of 

ventilator–induced lung injury. The observed overstretch 

of the dependent lung could cause occult local injury, 

which cannot be detected (and therefore avoided) using 

conventional monitoring. 
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Abstract: Obstructive sleep apnea (OSA) is caused by the 

occlusion of the upper airway. No real-time imaging 

technique, which can detect such occlusion during natural 

sleep, exists at the moment. The surface electrodes were 

attached on the face and neck, and then changes in the 

conductivity image of the upper airway were successfully 

detected. 

1 Introduction 

Apnea means the cessation of respiration lasting longer 

than 10 seconds during sleep. Obstructive sleep apnea is 

caused by repetitive occlusion of the upper airway, and it 

is diagnosed when apnea occurs ≥5 times/h. It has 

numerous complications such as hypertension, cardiac 

arrhythmia, ischemic heart disease, strokes and even 

mortality [1]. Despite several treatment modalities 

including the surgery, oral appliance, and continuous 

positive airway pressure device are used, overall control 

rate of OSA is not satisfactory. One of the main reasons is 

the absence of a real-time monitoring technique which can 

detect the upper airway obstruction during natural sleep. 

In the preliminary study, we ascertained the feasibility of 

the electrical impedance tomography (EIT) as a real-time 

monitoring tool for the upper airway obstruction [2]. 

 

2 Methods 

2.1 Simulation study 

In order to assess the potential of detection or feature 

extraction from the reconstructed impedance images or 

measurement data set, we generated the patient-specific 

FEM model based on the MR images. We segmented skin, 

muscle, spinal code, tongue, upper airway and teeth in the 

lower head. The conductivity in the literature was assigned 

into the each part of model. External boundary surface 

electrodes were placed in a ring.  

 

We assumed that the radius of upper airway was 0.4 cm, 

and computed the forward solution from the model. 

Concurrently, we calculated the norm of error function 

between the patient-specific forward data and pseudo data 

generated from the simple circular model when changing 

the radius of testing object. As shown in Figure 1, we can 

estimate the size of upper airway in the complicated 

anatomical model. 

 

2.2 Pilot human experiment 

We attached small Ag-AgCl electrodes around the upper 

neck of healthy male subject (28 yr). The upper airway is 

kept open during normal respiration. Transient airway 

occlusion was induced by the swallowing maneuver, and 

then we obtained the reference data. We produced the 

impedance images when the upper airway was open or 

closed using the KHU Mark2.5 EIT system [3]. Figure 2 

shows the electrode position on the subject and the 

reconstructed impedance images overlapped on the MR 

images obtained from the same subject. 

 

3 Conclusions 

Based on our simulation and experimental studies, we can 

detect the status of airway and estimate its size when 

comparing the simulated model. Although further human 

studies are needed in natural sleep status, the EIT is 

presumed to be a useful tool to detect the upper airway 

occlusion which occurs during natural sleep in patients 

with OSA. 
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Figure 2. Patient-specific FEM model and size estimation of 

the upper airway 

 

Figure 1. Pilot human experimental results 
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Abstract: Although EIT is a promising technique 

optimizing ventilator settings, the best approach that leads 

to an improved clinical outcome is still unknown. Against 

the background that diverse EIT derived parameters have 

been published in the last years, clinical studies focusing 

on defined outcome parameters have to clarify pros and 

cons of these measures. The aim of this study was to 

compare several EIT parameters in an animal trial of 

ARDS. 

1 Introduction 

Regarding intensive care medicine, EIT is a promising 

technique optimizing ventilator settings particularly in 

severely diseased patients suffering from Acute 

Respiratory Distress Syndrome (ARDS). To ensure a so-

called protective ventilation, optimal PEEP settings are 

crucial. Although EIT enables to visualize ventilation and 

manoeuvre-dependent changes in air distribution such as 

stepwise PEEP variation, the optimal target parameter or 

clinical proceeding are unknown. This study aims to 

compare already published and new parameters in an 

animal model of ARDS and to correlate them with 

common clinical outcome parameters. 

2 Methods 

The study was approved by the German governmental 

institution (84-02.04.2012.A173). It was carried out 

considering the declaration of Helsinki in the care and use 

of animals. In this trial 6 pigs weighting 33.7 kg (30-36.1 

kg) were used. After an initial measurement, experimental 

ARDS was induced in a double-hit approach. First, 

surfactant has been washout by repeated lavages. Second, 

tidal volume was increased to 20 ml/kg body weight 

leading to a ventilator induced lung injury. Periodic 

measurements of hemodynamics, blood gas analysis and 

EIT recording were performed at fixed points in time over 

24 hours after established ARDS (“ALI1” to “ALI25”). 

After ALI1, randomization to either EIT or control group 

was carried out. At each point in time, FiO2 setting was 

adapted to the current pO2 measure obtained from blood 

gas analysis (target: 55-80 mmHg). In the control group, 

PEEP was set according to ARDS network table (table 1).  

In EIT group, a PEEP trial was performed: PEEP was 

changed as follows: +4, +2, 0, -2, -4 cmH2O. After a two 

minutes equilibration period, an EIT sequence of 1 min 

was recorded and diverse parameters were calculated 

using MATLAB for each step: (1) center of gravidy [1], 

(2) Impedance Ratio [2], (3) Global inhomogeneity index 

[3], (4) Regional Ventilation Delay Index [4], (5) 

Difference in end-expiratory lung impedance [5], (6) 

Hyperdistension and collaps index [6]. EIT was defined to 

be best when Global Inhomogeneity Index was lowest that 

means when regional ventilation was as homogenous as 

possible. 

Post mortem, (1) wet-to-dry ratios were assessed using 

lung tissue samples and (2) histopathologic measurements 

were performed. 

3 Results 

The described double hit approach led to a severe ARDS 

in all animals. All control pigs survived the entire study 

whereas two animals from the EIT group died 8 hours 

after presence of ARDS. PEEP was significantly higher in 

the EIT group (21.7 vs. 8.5 mbar, p<0.0001) leading to a 

higher peak inspiratory pressure (PIP) as well (47.0 vs. 

34.4 mbar, p<0.0001). Although the EIT-guided PEEP 

setting obviously led to a more individual setting, it seems 

to be insufficient to solely focus on homogenous 

distribution of ventilation by using the GI index. In most 

cases high PEEPs led to high homogeneity but also to 

overdistension. It should be wise to limit PEEP e.g. by 

considering overdistension index. In histophathologic 

analysis it could clearly be seen that all lung tissue 

samples showed oedema, atelectasis and haemorrhage. A 

tendency towards less alveolar oedema and pronounced 

barotrauma was determined in EIT group as compared to 

the control group. 

4 Conclusions 

A combination of overdistension and homogeneity-related 

indexes should be used for optimizing PEEP settings. 
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PEEP 5 6 [5-8] 9 [8-10] 10 12 [10-14] 14 17[16-18] 21[18-24] 
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Abstract: In electrical impedance tomography, the 
impedance changes stemming from the descending aorta 
contain valuable information for haemodynamic 
monitoring. However, the low signal strength necessitates 
an optimal measurement setup. Among different belt 
positions investigated in this work, a transversal and low 
placement is the best choice for detecting signals of the 
descending aorta.  

1 Introduction 

The intra-thoracic impedance changes measured by 
Electrical Impedance Tomography (EIT) are primarily 
used to monitor ventilation. In contrast, cardiovascular 
monitoring by EIT is still in its infancy [1]. Nonetheless, 
recent studies provide experimental evidence that blood 
pressure [2] and stroke volume variations [3] can be 
estimated non-invasively and continuously with this low-
cost technique. Both of the aforementioned approaches 
exploit impedance changes originating from the 
descending aorta. 

To the best of our knowledge, little is known about the 
most appropriate configuration for reliable detection of the 
low amplitude aortic signals. Therefore, this work aims to 
answer these questions by evaluating impedance changes 
of the descending aorta at a variety of belt positions and 
under different heart and lung conditions. 

2 Methods 

Based on MR images of a human volunteer [4] a 3D 
thoracic bio-impedance model was created. While the 
lungs and the heart were modelled as static structures, the 
aorta was modelled as a dynamic structure with constant 
conductivity, composed of thirty cylindrical segments. 
The radii of these segments were extended individually, 
thus simulating the aortic distension caused by the 
propagation of an aortic pressure pulse.  

To investigate the influence of belt position, four cases 
were distinguished by placing the belt (i) in a transversal 
plane between vertebra Th8 and Th9 (TM), (ii) 5cm below 
TM (TL), (iii) 5 cm above TM (TH). Lastly (iv), the TM 
belt was tilted by 15° from transverse to coronal to obtain 
an oblique placement (OM) as recommended for cardiac 
EIT imaging [5].  

One full cardiac cycle was then simulated by 
modulating conductivities and structures as follows: 

 The aortic radii were extended up to 15% 
according to real aortic blood pressure readings.  

 The conductivity of the lungs remained unchanged. 
 The heart conductivity was modulated according to 

real blood volume readings. The maximal change 

was varied to achieve different signal-to-noise 
ratios (SNR): e.g. an SNR of 0.1 represents a ten-
fold higher overall image amplitude originating 
from the heart compared to the one from the aorta. 

All simulations were performed using Netgen and the 
EIDORS toolbox with GREIT for reconstruction [6]. 

2.1 Performance Evaluation 

Each pixel of the simulated EIT images was correlated 
with the known modulation signals from the aortic radii 
and heart conductivity. A figure of merit (FOM) was then 
calculated as the sum of root mean square amplitude 
(ARMS) of the descending aorta pixels normalized by the 
total sum of ARMS within the whole image. In other words, 
this FOM shows how much (in percent) of the overall 
signal originates from the descending aorta. 

3 Results 

Figure 1 shows the best performance over the entire SNR 
range for the TL position, followed by TM performing 
half as well as TL on average. Similar simulations were 
performed with varying conductivities for the lungs 
instead of the heart, which lead to comparable results. 

 
Figure 1: Double logarithmic plot showing the performance 
(FOM) of four belt positions (OM, TH, TM and TL) to detect the 
descending aorta with decreasing influence of the heart (SNR). 

4 Conclusions and Outlook 

These results suggest that a transversal low placement 
(TL) of the EIT belt is best to detect pulsatility signals 
from the descending aorta. However, the model is limited 
by the static nature of the lung and heart structures.  

Future simulations with the lungs and heart as dynamic 
structures and comparisons with real measurements are 
suggested to validate the current results. 
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Abstract: Cardiac electrical impedance tomography (EIT) 
signals are affected by myocardial motion. The feasibility 
of stroke volume estimation using such signals is thus 
questionable. Results based on a dynamic model show that 
myocardial motion indeed affects but does not 
compromise stroke volume estimation. 

1 Introduction 

In EIT, cardio-synchronous impedance changes in the 
heart region are assumed to reflect variations of blood 
volume originating mainly from the ventricles [1]. EIT 
appears therefore as an interesting continuous and non-
invasive modality for monitoring total ventricular volume 
(TVV), and thus estimating total stroke volume (TSV), 
defined as the maximal change in TVV over a full cardiac 
cycle. However, there is increasing evidence that other 
factors – unrelated to blood volume changes – are 
contributing to these variations of cardiac-related 
impedance [2]. In that context, simulations we performed 
on a finite element 2D extruded dynamic bio-impedance 
model showed that EIT signals in the heart region might 
be dominated by myocardial motion-induced changes [3].  

These findings raised the question whether heart 
signals – affected by myocardial motion – remain valid for 
estimating changes in TVV and thus TSV. The hypothesis 
that the total impedance change in the heart area remains a 
true indicator for TVV and TSV is thus investigated here. 

2 Methods 

To test this hypothesis, we exploited the above 2D 
dynamic bio-impedance model – created from segmented 
magnetic resonance (MR) data imaged in the heart 
horizontal long axis plane – and considered three 
scenarios: In Scenario A, we reproduced cardiac blood 
volume-related impedance changes by simulating the 
filling and emptying of the cardiac cavities. In Scenario B, 
myocardial motion-induced changes were reproduced by 
simulating the dynamics of the heart muscle. Finally, 
Scenario C is the real-case scenario and simulates both 
blood volume-related and motion-induced changes [3].  

These simulations were performed on our finite 
element model over a full cardiac cycle (corresponding to 
20 simulated EIT frames) using the open source EIDORS 
toolbox, with image reconstruction carried out by the 
GREIT approach [4]. For each scenario, the impedance 
change ∆ܼ – with respect to end-diastole in the heart area 
– was computed for all frames, thus providing an EIT-
based indicator for TVV, according to our hypothesis. 
Hereafter referred to as TVVEIT, it was expected to 

perform best with Scenario A (no heart motion) and worse 
with Scenario B (heart motion only).  

The reference TVVREF was obtained by summing the 
volumes VLV and VRV of the left and right ventricles. VLV 
and VRV were computed via the area-length method [5] – 
with the areas (ΣLV and ΣRV) and lengths (LLV and LRV) 
coming from the MR data used to create our model: 
 TVVREF ൌ cLV ∙ ΣLV

ଶ /LLV ൅	cRV ∙ ΣRV
ଶ /LRV	ሺmlሻ, (1) 

where cLV ൌ 8/ሺ3ߨሻ [5] and cRV ൌ 2/3 [6]. LRV was 
measured in the vertical long axis plane [6]. The total end-
diastolic volume TEDVREF and the total stroke volume 
TSVREF inferred from TVVREF (see Figure 1) were used to 
compute TVVEIT by translating ∆ܼ – normalized by its 
maximal (systolic) value – into millilitres: 
 TVVEIT ൌ TEDVREF െ TSVREF ∙ ∆ܼNORM  (ml). (2) 

3 Results 

The estimation error (mean±SD) between TVVREF and 
TVVEIT  was of 1.9±13.3, –14.1±19.5 and –10.1±15.7 ml 
for Scenario A, B and C, respectively.  

 
Figure 1: Total ventricular volume estimation using simulated 
EIT cardiac signals originating from blood volume-related impe-
dance changes (A), motion-induced changes (B), or both (C). 

4 Conclusions 

In agreement with our expectations, simulations showed 
that myocardial motion increased the error on TVVEIT and 
thus EIT-based TSV estimation, without however 
compromising the approach. When both blood volume 
changes and myocardial motion are in action (Scenario C, 
real-case scenario) an EIT-based TVV estimation error of 
–10.1±15.7 ml was obtained, which is sufficiently low to 
be clinically useful in normal subjects [5].  
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Lung tissue measured in EIT may change depending on the 
positioning of electrode plane 
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Abstract: EIT measurements were performed in 3 
different transverse thoracic planes during pulmonary 
function test. Ratios between relative impedance changes 
and volume changes were different depending on the 
positioning of electrode planes. Since atelectasis should be 
minima in the healthy volunteers, the change of ratios may 
be explained by activity of respiratory muscles, which lead 
to changes in amount of lung tissue captured by EIT. 

1 Introduction 

Multiple EIT measurements in different transverse 
thoracic planes indicate that relative impedance change 
(ΔI) to volume change (ΔV) ratio may differ at different 
ventilation levels [1-2]. Since these studies were 
performed in animals or patients under mechanical 
ventilation, researchers suspected that the differences of 
the ratio in various electrode planes were due to different 
recruitment rates in these thoracic planes or capturing 
other organs. We conducted a prospective study in healthy 
volunteers with spontaneous breathing. We hypothesized 
that due to the movement of respiratory muscles (mainly 
diaphragm), the amount of lung tissue captured in certain 
EIT electrode planes may change, causing the change of 
ratio between ΔI and ΔV at different ventilation levels. 

2 Methods 

Pulmonary function test was performed in 3 healthy males 
with body plethysmography (Ganshorn, Germany). Each 
of the volunteers was asked to perform normal tidal 
breathing for about 2 minutes before deep exhalation 
aiming the residual volume and then deep inhalation to 
total lung capacity. This procedure was repeated 3 times, 
during which EIT measurements were performed at 3 
different transverse thoracic levels (Pulmovista 500, 
Dräger, Germany). The EIT electrode belt was placed at (1) 
about 3rd or 4th intercostal space, (2) at about 5th or 6th 
intercostals space, (3) at about 7th intercostals space. The 
instruments were special manufactured so that body 
plethysmography and EIT can be applied at the same time. 
Functional residual capacity (FRC) was measured to 
confirm that the volunteers had similar ventilation level in 
each measurement prior to the vital capacity manoeuvre. 
Tidal volume (VT), ins- and expiratory reserve volume 
(IRV, ERV) were measured. Corresponding relative 
impedance change ΔIVT, ΔIIRV, and ΔIERV were calculated, 
as well as the ratio between those ΔI and volumes. 

3 Results 

Figure 1 exemplarily shows 3 relative impedance curves 
of 1 volunteer in 3 transverse thoracic planes. Although 
the end-expiratory lung impedance values were different 
because of individual reference baselines, in fact, in all 3 
measurements of each volunteer, FRC levels were similar 
(mean coefficient of variation 0.04). ΔIERV/ERV at cranial 

level were slightly higher than ΔIIRV/IRV, while that were 
totally the opposite at caudal level (Fig. 2). 

 

Figure 1: Relative impedance curves of 1 volunteer at 3 different 
thoracic levels.  

 

Figure 2: Ratios between various ΔI and volumes in three 
volunteers. Circle, diamond, and x-mark represented EIT 
measurements at cranial, middle and caudal thoracic levels, 
respectively. Within one measurement, three ratios from left to 
right were ΔIIRV/IRV, ΔIVT/VT and ΔIERV/ERV, respectively.  

4 Discussion and conclusions 

We found in the present study that ratios between ΔI and 
ΔV were different during total lung capacity maneuver 
depending on the positioning of electrode planes. Since 
atelectasis should be negligible in the healthy volunteers, 
the change of ratios may be explained by the activity of 
respiratory muscles, influencing the amount of lung tissue 
captured in certain EIT planes. In extreme case, totally 
different lung tissue is captured in EIT at different 
ventilation levels, if the electrode positioning is not ideal, 
so that the EIT images may be misinterpreted. 
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Regional lung compliance: Coupling ventilation and electrical data
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Abstract: Before it is possible to use EIT for respiratory
monitoring of critical care patients, regional conductivity
must be converted to useful diagnostic parameters. This
work proposes a road map for dynamically retrieving quant-
ities, such as lung compliance, from data available at the
bedside. Combining electrical and ventilator data with other
imaging modalities such as MRI or CT where available.

1 Introduction
In a clinical setting it is difficult to interpret the physical
meaning of conductivity reconstructions. For EIT to be-
come a useful diagnostic tool we need to have a model in
place for converting a conductivity image into more clinic-
ally relevant parameters.

Models of the lungs generally focus on a static relation-
ship between air volume and pressure, leading to paramet-
ers such as compliance. Hence an obvious approach would
be to estimate the air volume fraction from local conduct-
ivity. Due to the high temporal resolution EIT provides, an
ODE model could allow calculation of the other dynamic
parameters such as airflow resistance, and even model the
effects of high frequency oscillatory ventilation.

This work sets some research directions for improved
retrieval of useful clinical parameters and anticipated chal-
lenges in their completion.

2 Research Directions
We believe that the essential steps required to retrieve useful
information from EIT must include:

1. Segmenting regions in the chest cavity and assigning
specific micro-structures to these sections of the re-
construction,

2. Determining the air volume fraction change from the
change in conductivity,

3. Calculating regional air volume from air volume frac-
tions,

4. Using an ODE model to calculate the required dia-
gnostic parameters.

2.1 Chest Segmentation

Defining likely contents of specific anatomic regions in ad-
vance has several uses. These include refining models for
retrieving air volume fractions as well as labelling func-
tional units of the lung for which diagnostic parameters will
be required.

MRI and CT data can be used to segment specific re-
gions of the chest cavity and assign properties to them based
on anticipated microstructure. It would then be necessary
to model how this structure changes during the breathing

cycle. This modelling will require coupling of neighbour-
ing regions through mass and volume conservation, as well
as comparisons with typical deformations of the lung, chest
cavity and abdomen under forced ventilation.

2.2 Air Volume Fractions

We would like to create a homogenisation scheme, mapping
an underlying microstructure to bulk conductivity. We will
then need to invert this to find the air volume fraction of a re-
gion from reconstructed conductivity values. The assumed
microstructure can be as simple as spherical inclusions dis-
persed in a homogeneous substrate [1], or can further re-
flect the anisotropic structures identified while segmenting
the lung image [2].

However, air content is not the only quantity which will
affect the bulk conductivity. In addition other features such
as blood flow or lung fluid content may need to be in-
corporated. This could be done by combining heart rate
and blood pressure measurements with dispersion relations
from multi-frequency EIT to discern blood content.

2.3 Regional Air Volume

As previously noted, at different times throughout the
breathing cycle the domain will have deformed, changing
the physical volume occupied by the lung. The volume
change is non-uniform, complicating the conversion of air
volume fractions to regional volumes. Models created for
chest segmentation could help with this problem while the
ventilator itself provides information on the amount of air
passed into the lung, which can be used to constrain the
total air volume within the lung.

2.4 ODE Coupling

We can model each functional unit of the lung as a simple
physical system with parameters such as compliance and
resistance. Different functional units of the lung can be
coupled through their physical locations. We can use the
calculated air volume fractions as states of a time series dif-
ferential equation, and set up a series of coupled second or-
der ODEs relating the air volume, flow and pressure states
of the system [3]. Using the airway opening measurements
as constraints, we can use techniques from inverse problems
for ODEs to estimate the clinically meaningful parameters.
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Influence of different thorax models on anatomical precision of EIT
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Abstract: To study the anatomical precision of EIT images,
we compared 2D, 2.5D and 3D thorax models of varying
complexity for EIT data of a healthy and an injured lung.
We determined the lung shape as the averaged tidal image
for several breaths. The overlap was computed for a ref-
erence CT shape. A 3D subvolume of the lung with large
anatomical complexity achieves the best overlap scores for
most cases.

1 Introduction
It is a general understanding in the EIT community that
patient-specific models are necessary to reduce artifacts,
noise and anatomical uncertainty in EIT images, especially
concerning the lung and heart shape. With this study we aim
to quantitatively compare a large variety of body models in
terms of overlap of lung and heart shapes in EIT images
with the respective shapes in reference CT data. We formu-
lated several research questions. What is a better reference:
a CT slice, as used by Ferrario et al. [1], or a projection of
the 3D lung shape into the electrode plane? How do models
of different dimensionalities and anatomical complexities
compare? Is there a difference in heart overlap precision
for mechanical ventilation, apnoe, and saline bolus injec-
tion? We used CT and EIT data from one pig. CT data
were recorded before and after the lung injury. EIT datasets
include mechanical ventilation before and after the lung in-
jury, a lowflow maneuver, and a phase of apnoe, followed
by a saline bolus injection.

2 Methods
Each set of models was generated with different anatomical
complexities, starting with the thorax shape, adding lung
and heart shape, known pathological lung regions, and fi-
nally major blood vessels. 2D models were computed using
distmesh, while EIDORS was used for the 2.5D models. 3D
models were computed as described in [2]. Also, 3D mod-
els from only ten CT slices of the whole lung were gener-
ated, as well as a subset of the lung extending to 3 cm above
and below the electrode plane.

After image reconstruction with GREIT, we separated
the ventilation and perfusion signals using the method by
Deibele et al. [3]. As anatomical reference both the CT
slice closest to the electrode plane and a weighted projec-
tion of the whole thorax into this plane were used. Thorax
shapes of EIT and CT images were registered to properly
compare the overlap. To extract the shape of the lung func-
tion from the EIT images, we averaged the tidal images for
each breath during a period of 40 seconds during each EIT
recording. The fraction of EIT pixels overlapping with the
CT shape was computed with the formula used by Ferrario
et al. [1]. Similar to their approach, we thresholded and
thereby reduced the size of the tidal image until an overlap
of 50%, 75%, and 90% was achieved (compare Figure 1).

We assume that the lower the threshold necessary to achieve
a large overlap, the better the image quality and the anatom-
ical precision of the body model. The heart shape was de-
termined as the largest ventral cluster of pixels with strong
signal changes over time in the perfusion signal.

Figure 1: The tidal image thresholds to achieve 75%, 90%, and
100% lung overlap for the 3D subvolume model.

3 Results
The reference slice achieves much better lung overlap
scores than the projection, but performs very poorly for the
heart overlap due to the small heart shape in the slice (see
Conclusion). Compared to the reference slice, 2.5D models
achieve the best overlap, very closely followed by the 6 cm
subvolume. For the reference projection, 2D models and the
6 cm subvolume perform best. Models of high complexity
(using thorax, lung, heart and pathological lung shape) per-
form better than simple models. The heart overlap during
apnoe is almost identical to the saline bolus dataset. Dur-
ing ventilation, the heart overlap is even slightly better than
during bolus injection.

4 Conclusion
Our results indicate that the overlap formula is not very
well-suited since only the fraction of EIT pixels inside the
reference shape is considered. Thus, a small EIT shape that
lies completely within the reference shape, but only covers
a small part of this shape, achieves very high overlap scores.
Vice versa, a large EIT shape gets very low overlap scores
if the reference shape is very small (as is the heart shape in
our CT reference slice). We will investigate a formula that
also incorporates the fraction of the reference shape that is
covered by the EIT shape.
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Abstract: A fast implementation of the D-bar method for
reconstructing conductivity changes on a 2-D chest-shaped
domain is described. Cross-sectional difference images of
ventilation and perfusion in a healthy human subject are
presented. The images constitute the first D-bar images
from EIT data on a human subject collected on a pairwise
current injection system.

1 Introduction
D-bar methods are a class of direct (noniterative) recon-
struction algorithms that make use of complex geomet-
rical optics (CGO) solutions to PDEs known as D-bar, or
∂̄ , equations. D-bar equations are of the form ∂̄u = f ,
where f may depend on u, and the ∂̄ operator is defined
by ∂̄ = 0.5(∂x + i∂y). The common threads in these meth-
ods are (1) a direct relationship between the CGO solutions
and the unknown conductivity, (2) a nonlinear Fourier trans-
form, also known as the scattering transform, providing a
link between the data and the CGO solution, and (3) a D-
bar equation to be solved for the CGO solutions with respect
to a complex-frequency variable.

These steps have been generally regarded as computa-
tionally intensive, but through parallelization and careful
optimization of the computational routines, we present a
fast implementation capable of providing real-time images
from the pairwise current injection system at CSU.

2 Methods
The D-bar method used here is based on the uniqueness
proof [1] and subsequent results and implementations [2, 3].

2.1 Fast implementation

The first step of the method is to compute a matrix approx-
imation to the current-to-voltage map. This can be accom-
plished efficiently with inner products, as explained in [4].

The fast algorithm uses the approximation to the scat-
tering transform known as texp, which linearizes the scatter-
ing transform, but not the entire method, by replacing the
CGO solution ψ that depends on the unknown conductivity
σ by another CGO solution independent of σ representing
the asymptotic behaviour of ψ . Introducing the function
µ(z,k) = e−ikzψ(z,k), the conductivity can be determined
directly from µ by solving

∂ µ(z,k)
∂ k̄

=
texp(k)

4πk
e−i(zk+z̄k̄)

µ(z,k),

and computing, for each z in the domain, σ(z) = µ2(z,0).
The computational solution of this equation comprises by
far the bulk of the run time. The equation is formulated
as an integral equation and solved using a fast implement-
ation of the method in [5]. This equation was solved in a
truncated region of the k-plane in parallel using optimized
Matlab code and multiple processors.

2.2 Results

To demonstrate the D-bar method on data from this EIT sys-
tem and to time the algorithm, we consider data sets col-
lected using pairwise current excitation on 32 electrodes
evenly spaced around the chest of a healthy male subject
sitting upright and holding his breath. 360 frames of data
were collected at 16 frames/s at 125 kHz and current amp-
litude 0.823 mA. Runtimes on a 12 core Mac Pro with two
2.66 GHz 6 core Intel Xeon processors and Matlab’s paral-
lel computing toolbox are listed in Table 1. Utilizing 7 cores
in parallel results in a runtime of 0.0621 s/frame, which is
less than the data acquisition time of 0.0625 s/frame.

Two difference images in the sequence of 360 frames
are presented in Figure 1.

Figure 1: Changes due to perfusion in the chest of a healthy hu-
man subject. The heart is at the top, and red represents high con-
ductivity and blue low conductivity. The images are displayed on
the same scale.

Table 1: Runtimes on a 562 element grid with n cores in parallel
Number of cores Total runtime (s) s/frame

1 71.74 0.1998
2 49.02 0.1365
4 26.23 0.0731
7 19.27 0.0621
8 20.25 0.0647

3 Conclusions
The results presented here show for the first time the D-bar
method applied to human chest data collected on a pair-
wise current injection system. Conductivity changes due to
perfusion are clearly visible in the images. The fast imple-
mentation demonstrates the clinical potential of the D-bar
algorithm as a reconstruction algorithm for real-time bed-
side imaging.
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Abstract: In this paper the inverse problem for the electric 

field is investigated. In order to solve the forward part of 

such problem we use the boundary element method 

coupled with infinite elements. The inverse problem is 

based on the gradient technique and the level set method. 

Such task can be considered as application of the electrical 

impedance tomography. Investigated structure is given in 

Fig. 1. We want to detect the closed curve localised on 

upper part of this plot. 

1 Introduction 

Boundary element method (BEM) is well known and 

effective numerical technique used to solve partial 

differential equations [3]. In literature we have a lot of 

extensions of BEM. For example a lot of effort has been 

put into combining BEM and finite element method. 

Another example is coupling BEM with infinite elements 

[1,2]. It gives us possibility to solve equations with 

boundaries described by open curves. 

2 Theoretical Model 

In the forward problem we start our considerations from 

following formula (proper for all boundary points) [3]: 
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Symbols u represents electrical potential, whereas q 

defines his normal derivative. The Green function and its 

normal derivative are denoted by u* and q* respectively. 

In equation (1) we have N finite boundary elements. 

Next, we have introduced infinite boundary elements and 

the governing equation (2) has been derived. The 

derivation is quite long, and will be present in the full 

version of article. The governing integral equation is given 

by: 
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Symbol S denotes the sum of the interpolation functions 

with exponential decay along infinite elements. One 

should notice that in our model there is only one open 

boundary curve. However generalisations of formula (2) 

can be easy done. In mathematical model we assume that 

in N – 2 nodes the normal derivatives q equal zero. Only 

in two nodes we set the electrical potential (see Fig. 1). 

 

Figure 1: Geometrical model used in our calculations. Nodes, 

normal vectors and positions of infinite elements are indicated. 

The boundary of the domain is indicated by green dots. 

Very important part of our research is the level set 

method. The equation of motion takes the form: 

,0



V

t

     (3) 

where ϕ is the level set function. Function ϕ is transformed 

under influence of the velocity field V . This field is given 

by the gradient technique [4]. 

3 Conclusions 

Altogether during our studies three different geometrical 

models have been verified. It turns out that solving the 

forward problem through external approach is the best 

way in numerical analysis. Solutions of the inverse 

problem give us good results in all three cases. 
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Abstract: The objective of this study is to find an effect-
ive stimulation and measurement strategy to improve dis-
tinguishability for head EIT. To better understand the re-
lationship between distinguishability and various strategies
(stimulation/measurement patterns) for a set of electrodes,
we evaluated a realistic head model and a range of common
strategies.

1 Introduction
Electrical Impedance Tomography (EIT) of the head has the
potential to image cerebral edema and stroke, and to assist
the EEG inverse problem. To effectively utilize an EIT sys-
tem for human head, there is a need for maximizing sens-
itivity and increasing detectability by choosing an appro-
priate stimulation pattern and electrode placement strategy.
Fabrizi et al [1] conducted simulation study for brain ima-
ging using a realistic finite element (FE) model of the head,
but only a limited evaluation was carried out due to high
computational cost, where only 14 protocols were tested for
both homogeneous model and a realistic head model. The
objective of this study is to find an effective strategy to use a
given EIT system for head EIT by systematically assessing
possible stimulation and measurement patterns.

2 Methods
This paper (i) implements a realistic head model with 73
electrodes in standard EEG positions, (ii) provides quan-
tified values and demonstrates the specific relationship
between distinguishability and target position for differ-
ent stimulation / measurement strategies, and (iii) makes
recommendations for 16, 32, 64 electrode systems using
standard EEG caps. The results are analyzed using the dis-
tinguishability formulation proposed by [3].

A realistic FE mesh of an adult head with 73 electrodes
in standard EEG positions was built based on the mesh
SAH262 contributed to EIDORS by [2]. Using EIDORS’s
interfaces to Netgen and Gmsh, the scalp was re-meshed to
include 73 circular electrodes with local mesh refinement
[4]. After defining Nasion and Inion landmarks, the posi-
tions of the remaining 71 electrodes were calculated as an
extension of the 10-20 standard.

We choose N = 16, 32 and 64 electrodes for simulations,
numbering them front-to-back in a zig-zag fashion starting
from the left-most electrode (Fp1). We denote the meas-
urement strategy by ∆s-m where the distance between the
two stimulating electrodes is s = 1, . . . ,N and that between
measuring electrodes is m = 1, . . . ,N. Thus, the typical ad-
jacent measurement and stimulation pattern is denoted by
∆1-1. For each total number of electrodes, we evaluate all
strategies where s = m for only 64 electrodes due to high
computation time.

Distinguishability is defined as the ability to distinguish
between a hypothesis H1 (conductivity change) and the null
hypothesis H0 (no conductivity change) within a region

of interest (ROI) according to measure m [3]. The max-
imum likelihood estimate [3] of the conductivity change
argmin ||∆d−R∆σ ||+P(·) for the hypothesis m within an
ROI of area AR is m = AR∆σ̂R. The probability that the null
hypothesis is rejected is determined by the z-score [3]:

z̄ =
m̂−m0

std(m)
=

AR∆σ̂R

(RRΣnRR
T)

1
2
= AR∆σ̂R

√
JR

T
Σn
−1JR (1)

where m̂ is the maximum likelihood estimate for m, the null
hypothesis is m0 and std(m) is the standard deviation of m.

2.1 Results

Fig. 1 shows z̄ distinguishability values for 16, 32 and 64
electrode systems and 8 different object positions from Na-
sion to Inion for the best and worst measurement strategies.
∆25-25 with 64 electrode model produced highest z̄ values
for different object positions, while the adjacent patterns
∆1-1 produced lowest z̄ values for all 3 electrode configur-
ations. For ∆1-1, 32 electrodes performed better than both
16 and even 64 electrodes.

Figure 1: Distinguishability values for 16, 32 and 64 electrodes
with 8 object positions for the stimulation and measurement pat-
terns of ∆1-1 (adjacent) and ∆s-m with maximum average z̄ values.

3 Conclusions
Our results indicate that distinguishability increases
throughout the model with average distance between the
two stimulating/measuring electrodes. Future work will ad-
dress the impact of changing electrode numbering and ways
of finding optimum electrode positioning and measurement
strategy to maximise distinguishability in a particular re-
gion of interest.
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Abstract: Element displacement and contact impedance 

changes are compensated in the reconstruction approach. 

Images have been reconstructed using the proposed 

method with the data from numerical simulation, saline 

phantom and in vivo human measurement. 

1 Introduction 

One of the key difficulties of Electrical impedance 

tomography (EIT) imaging is the modelling error, such as 

shape deformation and contact impedance changes. When 

a deformable medium is investigated, not only boundary 

elements (including electrodes) but also internal elements 

displace. Moreover, when the voltages are measured on 

the electrodes, the contact impedance that exists in the 

interface causes a voltage drop. If difference imaging 

techniques are involved, these difficulties can be partly 

solved [1-3], but in order to obtain a better imaging 

quality, element displacement and contact impedance 

changes have to be taken into account. 

2 Methods 

An augmented Jacobian                is obtained by 

concatenating conductivity change Jacobian    , element 

displacement Jacobian    and contact impedance changes 

Jacobian   . A modified NOSER prior        [      ]
   

 
 is 

established, where          
      

    , we define   and   

as the model hyperparameters to represent the different 

weights. The one-step linear Gauss-Newton (GN) method 

is implemented to solve the inverse problem. 

2.1 Numerical Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Image reconstructions. (a) Standard GN method; (b) 

Electrode movement model; (c) Proposed method with     

and     ; (d) Proposed method with   √     and      . 

From left to right, distortion amplitude increases from 0%, 1% to 

3% of model diameter respectively. 

2.2 Saline Phantom Measurement 

The saline phantom is a plastic cylindrical tank with 14cm 

diameter and 12cm height, being filled with 0.9% saline 

solution. A small non-conductive spherical object of 1cm 

diameter was statically suspended. The proposed method 

successfully obtained the inhomogeneous target without 

introducing any artefacts. 

2.3 In vivo Human Measurement 

 
Figure 2: Images of lung ventilation. The breathing cycle from 

end inspiration to end expiration was approximately 5 seconds. 

Each second was shown in the same row. 

3 Conclusions 

An advanced compensation method which is more robust 

to shape distortion is proposed in this paper by an 

improved version of the electrode movement model [1]. 

The algorithm performed well and showed significant 

improvements of artefact resistance. One key advantage is 

that, once pre-calculations are completed, images can be 

reconstructed by a single regularized inverse, and it 

requires little additional time over traditional methods. 

Considering the reconstructed images from in vivo human 

measurement, this method shows potential to be applied in 

real time monitoring of lung ventilation and may be useful 

to increase the accuracy and reliability of EIT technique in 

routine clinical applications. 
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Advances in EIT reconstruction through Simulated Annealing
Thiago C. Martins1 and Marcos Sales Guerra Tsuzuki1

1Escola Politécnica, University of São Paulo, São Paulo, Brazil

Abstract: EIT reconstruction can be solved as an opti-
mization problem through Simulated Annealing (SA), but
often at a high computational cost. This paper presents
new techniques of EIT reconstruction through SA, includ-
ing partial evaluation of the objective function, alternate ob-
jective functions and multi-objective optimization. Recon-
structions of experimental impedance data using the tech-
niques exposed were successfully performed.

1 Introduction
EIT is a imaging technique for determining the electrical
conductivity distribution inside an object from boundary
measurements. A set of electrodes is attached to the ob-
ject surface, electrical current is injected through these elec-
trodes and electrical potentials are measured. This work is
focused on the reconstruction of static conductivity images.

EIT image reconstruction can be performed by a Finite
Element Model (FEM) parameter estimation and a maxi-
mum likelihood formulation. The resulting optimization
problem may be solved using SA. It is a probabilistic op-
timization meta-heuristic of local exploration that requires
only the variation of the objective function between two
consecutive solutions [1]. As a drawback, it requires the
evaluation of many solutions, thus making it problematic
for objective problems with computationally expansive ob-
jective functions such as EIT.

2 SA Applied to EIT
This work presents some advances when SA is used to re-
construct conductivity distribution in EIT.

2.1 Partial Evaluation of the Objective Function

One objective function is the Euclidean distance between
the measured electric potentials and the calculated poten-
tials for all the applied current patterns for a given conduc-
tivity distribution. To reduce the reconstruction computa-
tional cost a partial evaluations of the objective function
can be performed that is, at each SA iteration, an estimate
Ẽ and upper and lower boundaries Emax and Emin are ob-
tained [2]. It can be shown that whenever the variation of
those estimates ∆Ẽ, ∆Emax, ∆Emin. satisfy

Perr ≥ min(e
−∆Ẽ/kt ,1)−min(e

−∆Emax/kt ,1) (1)

Perr ≥ min(e
−∆Emin/kt ,1)−min(e

−∆Ẽ/kt ,1) (2)
then the probability of SA at that iteration deviating of an
SA with full objective function evaluation is less than Perr.

Those estimates may be determined by iteratively solv-
ing the FEM linear systems while obtaining an upper limit
on the norm of the error at each iteration using a technique
described in [3]. This error norm is pertinent to all equa-
tions of the FEM linear systems, while only the uncertainty
on the electrode nodes really contribute to the uncertainty
of the objective function. This leads to an overestimation of
the required CG iterations to satisfy (1,2). This overestima-
tion gets worse for denser FEM meshes.

2.2 Least squares error as an objective function

By taking the FEM linear systems of the simulated domain
and imposing that the measured potentials are identical to
the simulated ones, one obtains an overdetermined linear
system whose total least squares error can be used as an
objective function in EIT image reconstruction. This new
objective function is quite suitable for the partial evaluation
described in sec. 2.1, as a variation of the Lanczos Algo-
rithm can be used to obtain increasingly better boundaries
for its upper and lower values[4].

2.3 Multi-Objective

Regularization of inverse problems posed as optimization
processes often appears as new terms in the objective func-
tion. The determination of the appropriate weight for those
terms is difficult problem on itself.

An alternate approach is to consider both the original
objective function and the regularization terms as concur-
rent objective functions to be minimized. This optimization
category is called “multi-objective optimization”. Multi-
objective optimization problems do not admit a single so-
lution, having instead a set of mutually non-dominating so-
lutions.

3 Experimental Results
Experimental phantoms (Fig. 1a) were constructed with
cucumeber slices. Impedance images were reconstructed
using the methods proposed in sections 2.1 (Fig. 1b) 2.2
(Fig. 1c) and 2.3.

(a) (b) (c)

Figure 1: Experimental phantom and its reconstructions.

4 Conclusion
EIT images can be reconstructed using SA. The high com-
putational cost of Simulated Annealing can be mitigated
by the adoption of partial evaluation of the objective func-
tion. An alternative objective function, based on total least
squares errors of overdetermined FEM linear systems, pro-
vide superior scalabiltiy with mesh density. Regularization
with a posteriori weights can be obtained through multi-
objective SA.
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Figure 1: Phantom geometry 

(MR magnitude). 
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Abstract: The electrical conductivity of soft tissues 

can be reconstructed from imaging with MR Electrical 

Properties Tomography (MR-EPT). The reconstruction 

method used here is based on an inverse problem 

formulation, with two advantages over a direct 

inversion approach: a) no spatial differentiation is 

needed and b) the regularization term determines the 

resolution of the reconstructed data. The process is 

exemplified using phantom (gelatine and saline) data. 

1 Introduction 

Magnetic Resonance Electrical Property Tomography 

(MR-EPT) is a relatively new strategy for estimating a 

tissue’s electrical conductivty and permittivity 

distribution. It offers the potential of high resolution 

admittance mapping as compared to electrical 

impedance tomography (EIT) without the need for 

electrodes as are needed for magnetic resonance EIT 

(MR-EIT). The general approach for conductivty 

imaging with MR-EPT is to obtain a phase image 

and/or B1 map image of the RF field produced using 

specific pulse sequences. This image can be 

manipulated to estimate the conductivity distribution. 

Typically, this manipulation requires second 

derivatives be computed from the phase data. This is an 

undesirable process that is prone to amplify noise.  

Other approaches have included algorithms that lower 

this requirement to first derivatives, reducing 

sensitivity to noise. Here we describe an alternative 

method that solves the MR-EPT problem using an 

inverse problem formulation that does not require 

differentiating the input image. 

2 Methods 

2.1 Inverse approach formulation 

In MR-EPT, the electrical conductivity σ can be shown 

to be proportional to the Laplacian of the phase of the 

transmit B1 field: 

     
 

  
  (     ).              (1) 

The inverse is true as well: if σ(r) is known, the phase 

can be obtained by solving          . Using an 

iterative inverse formulation approach, the updated 

value of σ is given by           where  

               (  ( (     )         ))     (2) 

Here J is the Jacobian of the conductivity to phase 

mapping, L is a regularization matrix, and  is a 

regularization parameter used to stabilize the inversion. 

We have implemented this inversion using two 

different regularization terms: a) a quadratic/Laplacian 

approach and b) a Total Variation functional approach 

[1,2]. A Primal Dual Interior Point Method 

optimization scheme is used for the Total Variation 

approach, which produces images with sharper 

contrasts at boundaries.  

2.2 Data acquisition 

A custom gelatin phantom 

(10% gelatin, 1% NaCl) 

was constructed with three 

rows of circular wells with 

increasing diameters (5, 10, 

15mm). Each series of 

wells was filled with saline 

solutions with increasing 

conductivities (~3, 5, 8 

S/m). Cupric sulphate was 

added for MR contrast 

(Figure 1). Data was 

acquired on a Philips 

Achieva 3T platform, with a 

standard 3D SE sequence; phase images were used for 

reconstructing the conductivity. Two-dimensional 

reconstructions of the electric conductivity based on 

our inverse approach are presented in Figure 2.  

 

Figure 2: MR-EPT reconstruction with the inverse formulation 
approach: a) with quadratic regularization; b) with Total Variation 

regularization. 

Conclusions 

Reconstruction of MR-EPT conductivity data based on 

an inverse formulation approach is demonstrated here. 

The primary advantage of this approach is that is does 

not require differentiation of the phase data. An 

additional advantage is that custom regularization 

approaches can be considered for enahncing image 

quality. For instance, a priori anatomical information 

obtained from other MR variants (i.e. T2-weigted 

imaging) might be used as spatial priors. 
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Inequality Constrained EIT Modelling and Inversion
Nick Polydorides1, Taweechai Ouypornkochagorn1, Hugh McCann1

1University of Edinburgh, Edinburgh, UK. N.Polydorides@ed.ac.uk

Abstract: We consider modelling and imaging in EIT un-
der some a priori inequality constraints on conductivity. In-
stead of constrained optimisation, we reformulate the model
equations with respect to some monotone functions that en-
compass these constraints. We address the cases of posit-
ivity and boundness, posing the inverse problem using reg-
ularised nonlinear least squares. The results demonstrate
significant spatial resolution improvements.

1 Introduction
The motivation for this work is to introduce a robust and
simple to implement computational scheme appropriate for
the cases where inequality constraints on the electrical con-
ductivity are available a priori. Although several con-
strained optimisation algorithms are readily available [1]
the methods presented here are appealing for their imple-
mentation simplicity. In the medical EIT setting, this type
of prior information is likely attained through the literature
on the targeted physiological phenomenon [2].

2 Methods
The scalar conductivity function σ : B→ ℜ, is related to
a finite set of real valued observations ζ ∈ ℜm through the
model

ζ = M(σ)+n, (1)
where M : σ 7→ ζ is the nonlinear forward EIT mapping and
n is some additive noise corrupting the data. Suppose fur-
ther that σ is a priori known to belong within a subspace S.
To enforce this assumption we introduce the injective map-
ping ν : ℜ(B)→ S(B) from the space of real functions over
the domain onto a subspace S(B)⊆ℜ(B), such that

σ(x) .
= ν [γ(x)], (2)

and conversely γ(x) = ν−1[σ(x)], where ν−1 : σ 7→ γ al-
ways exists and it is continuous. Based on this one may
formulate another forward model F : γ 7→ ζ , such as

ζ = F(γ)+n, where F(γ) = (M ◦ν)(γ). (3)

2.1 Positivity

To impose positivity prompts to consider the subspace S .
=

{σ(x) ∈ B|0 < σ ≤ ∞} where a suitable choice for ν is the
exponential function scaled by a relaxation factor κ 6= 0

ν [γ(x)] .= eγ(x)/κ , x ∈ B, (4)

Under this transformation notice that the perturbations in
the original and surrogate unknown functions, from refer-
ence points σ∗,γ∗ are related by

δσ
.
= eγ/κ(eδγ/κ −1). (5)

To linearise the model (3) at (σ∗,γ∗), we appeal to the
chain differentiation rule,

∂γ F(γ∗) δγ = ∂γ(M◦ν)(γ∗) δγ = ∂σ M(σ∗)σ∗κ
−1

δγ, (6)

where ∂σ M(σ∗) is the Jacobian of M. In this way, the linear
approximation of the inverse problem for γ becomes

δζ = ∂σ M(σ∗)σ∗κ
−1

δγ +n. (7)

2.2 Boundness

As an extension of the above scheme we consider mapping
the conductivity into the subspace S .

= {σ(x) ∈ B|0 < p ≤
σ ≤ t < ∞} for some a priori known bounds p < t, using
the scaled logistic regression function

ν [γ(x)] .= p+
t− p

1+ e−γ(x)/κ
. (8)

In this instance the perturbations δσ and δγ from a fixed
reference are related via

δσ = ν(γ +δγ)−ν(γ) = w(γ,δγ)ν1(−γ), (9)

where w(γ,δγ)
.
= (t−p)(1−e−δγ/κ )

(1+e−(γ+δγ)/κ )
, and ν1(γ)

.
= 1

1+e−γ/κ
. Ap-

pealing to the chain differentiation now yields the linearised
problem for δγ as

δζ = ∂σ M(σ∗)
(
ν(γ∗)− p

)
ν1(−γ∗)κ

−1
δγ +n. (10)

3 Results
To test the performance of our scheme we formulate the
inverse problems as least squares problems based on (1)
and (3) respectively. We then apply the Gauss-Newton al-
gorithm for a few iterations while we regularise the linear
problems using smoothness imposing regularisation.
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Figure 1: Top row, the target σ and the reconstructions using
two Gauss-Newton iterations with smooth priors [2] on the ori-
ginal (middle) and positivity preserving model (right). Below, the
corresponding images for a different target by implementing two
iterations on the bound preserving model. Regularisation matrices
and parameters are kept fixed to aid comparison of the results.

4 Conclusions
This work demonstrates how to obtain a constrained solu-
tion of the inverse problem in EIT using unconstrained op-
timisation. The proposed framework is computationally
simple and can be used in conjunction with various inver-
sion algorithms.
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EIT of the Human Body with Optimal Current Patterns and
Skin-Electrode Impedance Compensation

Gregory Boverman1, Tzu-Jen Kao1, Jeffrey M. Ashe1, Bruce C. Amm1, David M. Davenport1
1GE Global Research Center, Niskayuna, NY (email: boverman@ge.com)

Abstract: Following the lead of the EIT research group
at Rensselaer Polytechnic Institute, we have designed and
implemented a system comprising 32 independent current
sources, in which it is possible to apply current patterns op-
timizing distinguishability. One potential technical prob-
lem is that we are measuring voltages on current-carrying
electrodes, giving some sensitivity to time varying skin-
electrode impedances. We demonstrate here an algorithm to
estimate simultaneously changes in the medium and time-
varying skin-electrode impedances.

1 Introduction

Most of the electrical impedance tomography systems de-
veloped to date, with the notable exception of the group
at Rensselaer Polytechnic Institute (RPI) [1, 2], have been
based upon pairwise current patterns utilizing a single cur-
rent source. These systems have the advantage of relative
simplicity, but a significant disadvantage is that the current
patterns utilized are not optimal with respect to maximizing
distinguishability [3].

One technical issue involved in utilizing the opti-
mal patterns and multiple-electrode excitation is that volt-
age changes are induced by time-varying skin-electrode
impedances. We have developed algorithms, similiar to
those described previously [4], but with significantly re-
duced computational complexity, to simultaneously esti-
mate time-varying skin-electrode impedances and changes
within the body.

2 Methods

2.1 Estimation and compensation of skin-electrode
impedances

We assumed that electrode skin-electrode impedances could
be modeled as being due to a discrete complex circuit
element coupling the electrode to the body. Given this
model, the Jacobian of voltage changes with respect to
time-varying changes in the value of this discrete element
could be computed explicitly for a given pattern set. We
could then compute the skin-electrode impedance changes
responsible for a set of voltage changes directly using least-
squares methods.

2.2 Experimental protocol

Under institutional review board (IRB) supervision, we col-
lected free respiration data from several human subjects
measuring with 32 adhesive AgCl electrodes equally spaced
in a single ring around the circumference of the chest. We
utilized the GE-built GENESIS EIT system, currently an

investigational prototype, and for each of the cases applied
the optimal current patterns, as generated by a geometry-
specific finite-element model and EIDORS [5].

3 Results
We computed the standard deviations of the changes in volt-
ages vs. a reference data frame, in mV, for the optimal pat-
tern set, with and without compensation for changes in skin-
electrode impedances. We also synthesized the voltages
that would have resulted from application of adjacent cur-
rent patterns, measuring voltage differences between pairs
of electrodes not carrying currents. We found that the
preponderance of the voltage differences for the optimal
patterns was due to changes in skin-electrode impedance,
but that these changes could be estimated and compen-
sated. The adjacent patterns were largely immune to skin-
electrode impedance changes, but, for the same maximal
current, smaller changes in voltage were induced, thus a
larger SNR would be required for imaging. The results are
summarized in Fig. 1.
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Figure 1: Standard deviations of difference in voltages of a given
frame from a reference frame, in mV, for optimal patterns without
compensation (a), with compensation, and adjacent currentpat-
terns (b).

4 Conclusions
In conclusion, it is possible to probe the body with “opti-
mal” current patterns and to measure on current-carrying
electrodes, but careful consideration needs to be taken of
changes in skin-electrode impedances.
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Localized frequency difference EIT for lung tumour monitoring  
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Abstract: This paper presents a localized frequency 

difference EIT (fdEIT) algorithm for lung tumour 

monitoring. A simulated fdEIT is used to provide 

tomographic images of lung tumour by assuming local 

area of tumour is known. Limited region technique is 

applied to extract important information out of region of 

interest. Further experimental phantom based tests will be 

carried out to validate the proposed method.  

 

1 Introduction 

Electrical impedance tomography (EIT) is a fast and cost-

effective technique to provide tomographic conductivity 

image of a subject from boundary current-voltage data. 

EIT has various potential applications in medical area, 

such function monitoring in lung EIT imaging.  In 

traditional lung EIT imaging dynamical images of entire 

lung is generated to clinically investigate aspects of 

respiratory functions. 

In this paper we present hypothesis of using lung EIT 

imaging for lung tumour monitoring. The lung tumour 

imaging using EIT is proposed during cancer treatment 

process such as radiation therapy. This poses some major 

challenges including: spatial resolution for lung tumour 

imaging is far more challenging than imaging entire lung 

itself; time difference imaging may not work as the 

reference image of the patient without lung tumour may 

not exist. Additionally imaging lung interior may become 

very challenging due to its low electrical conductivity, so 

a complex impedance imaging may be needed. Traditional 

EIT reconstruction uses time difference imaging 

technique. However, time difference EIT may not be 

useful for monitoring lung tumour behaviour as it is 

difficult to obtain background data of lung while the 

tumour has already consisted in the region. This problem 

may be solved by using frequency difference 

reconstruction [1] as it only requires measurement data in 

two different frequencies. This will work only if we can 

find two frequencies that the lung tumour has different 

electrical conductivity (or permittivity) compare to normal 

tissues. The difficulty is that lung itself has different 

frequency response compared to chest tissues [3]. In this 

case, both data from thorax and lung are treated as 

background data. When lung tumour is moving or 

changing, conductivity changes due to frequency change 

can produce conductivity image of lung tumour.  EIT for 

lung tumour monitoring can take advantage of a priori 

information from diagnostic X-Ray CT images, so a 

localised EIT can be used to further enhance the spatial 

resolution. 

2 Methods 

In this paper, we use a frequency difference EIT (fdEIT) 

algorithm to produce lung tumour image. Using a 

weighted fdEIT algorithm [2] is essential to produce 

satisfying fdEIT images. Patients specify model can be 

developed using diagnostic CT images which can have the 

tumour position located. Limited region tomography 

(LRT) method is added for extracting the useful 

information out of the whole boundary. An FEM model of 

16 electrodes EIT human chest model is created and image 

of lung is reconstructed (Figure 1). Figure 2 shows a 

simulation of lung tumour using a human lung mesh 

model. Reconstructions are done using adjacent current 

pattern. Background data includes thorax and two lungs 

with tumour in one single frequency, secondary data 

includes the same tumour but assuming with different 

frequency response. Reconstruction shows tumour images 

under fdEIT and LRT assumptions.  

 
Figure 1: Reconstruction of simulated lung with 16 electrodes 

chest model. 

 
Figure 2: True images of lung tumour and simulation results of 

reconstructing tumour in a human lung structure. 

The idea of localising the image is that assuming the 

tumour position can be obtained by CT scan, a specific 

region of interest (ROI) can be created by resizing the 

Jacobian matrix and resolving the inverse problem only on 

limited region. 

3 Conclusions 

This paper proposes a localized weighted frequency 

difference EIT technique for lung tumour imaging. 

Localize technique is employed for extracting useful 

information out of the region of interest.  Phantom based 

experimental results will be presented in conference 

presentation. Although, this is an extremely challenging 

imaging tasks, but we hope that we will take advantage of 

recent momentum in conventional EIT lung imaging to 

make progress.  
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Abstract: A cylindrical slice of seeded winter melon 

with an air-cavity was imaged using CT and EIT imaging 

systems.  The structural regions were extracted from the 

CT image using morphological image processing 

algorithms and fused with the functional information of its 

EIT image. Fusion performance showed a detectability 

increase of 67% along with a structural similarity increase 

of 26%.  

1 Introduction 

Conductivities of biological tissues provide useful 

functional information in many areas clinical applications. 

Conductivity images are acquired using EIT but limited by 

poor spatial resolution. The limitation can be overcome by 

fusing the functional information of EIT with the 

morphological features of a CT image. Earlier, we 

demonstrated the potential of fusion by imaging a 

phantom with radiotherapy bolus as medium [1].   In the 

present study, we use winter melon based biological 

phantom.  For simplicity we measure conductivity part of 

the impedance using 2D approach along with an 

assumption that the winter melon shape is circular.  

2 Methods 

A cylindrical slice of winter melon was cut from the 

whole vegetable and a cavity of 4.5 cm diameter was 

made as shown in Fig. 1. 

 

 
EIT data was acquired using sixteen electrodes around the 

phantom, injecting a current of 0.4mA at 66 KHz . Images 

were reconstructed in differential imaging mode using 

one-step Gaussian Newton minimization solver [2]. CT 

image of the melon was obtained using a Phillips CT 

Scanner.  A binary mask image was generated from the 

CT-image using automatic thresholding. The mask and the 

EIT images were resized based on the reference electrode 

position and the CT image dimensions. The mask image 

was then segmented for different regions of interest and 

labelled for the user to specify. The region selected by the 

user was fused with the CT image through logical 

indexing. The CT, EIT and EIT/CT imaging performance 

was evaluated using detectability and structural similartity 

measures. Detectability is measured as  

   
    

            
(1) 

     is the mean of the ROI pixels and                 is 

the standard deviation of the background pixels of the 

image [3].The structural similarity index is a widely used 

measure in signal and image processing applications, 

derived from the visual impact of changes in luminance, 

contrast and structure in an image [4]. It is calculated as a 

single metric using 

     
(        )(       )

(  
    

    )(  
    

    )
(2) 

Where, µx and σx are the mean and standard deviation of 

the CT image µy and σy are the mean and standard 

deviation of the EIT image. σxy is the Correlation 

coefficient between the CT and EIT image under 

assessment  and C1, C2 are computational constants..   

3 Results 

Fig. 2 shows the images obtained before and after fusion 

for the circular inhomogeneity. Detectability and structural 

similarity evaluations of the CT, EIT and the EIT/CT 

images, evaluated using (1) and (2) show an increase in 

structural similarity by 26% along with a detectability 

increase of 67%. 

 

4 Conclusions 

Imaging winter melon phantom through co-registration 

and fusion of functional Electrical Impedance 

Tomography (EIT) and Computed Tomography (CT) 

improved detectability by 67% and structural similarity by 

26%, thereby showing enhanced potential to use in 

radiation therapy treatment planning. 
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Fig.2. EIT/CT Fusion Imaging of seeded winter melon. 

From left to right: EIT Image, CT Image, Image with labelled ROIs, 

and Fused EIT/CT image 
Fig.1. Winter melon Phantom 

(a) 
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Abstract: TAM(trans-admittance mammography) aims
to determine the location and size of any anomaly from
the multi-frequency. A formula is proposed here that
can estimate the depth of an anomaly independent of its
size and the admittivity contrast. This depth estimation
can also be used to derive an estimation of the size of the
anomaly. Numerical simulation shows that the proposed
method also works well in general settings.

1 Introduction
Bioimpedance techniques such as electrical impedance to-
mography (EIT) are potential supplemental tools for breast
cancer detection [1–5]. This paper considers a TAM system
[6, 7] in which the breast is compressed between two elec-
trical plates (see Figure 3). One plate is a large solid volt-
age driving electrode, and the other is composed of current-
sensing point electrodes. The system employs constant si-
nusoidal voltage at frequencies of 50 Hz-500 kHz. The volt-
age is applied through the voltage driving electrical plate; a
grounded voltage is maintained on the other plate. The volt-
age difference induces time harmonic electrical current that
is determined by the conductivity distribution in the breast.
The current-sensing electrodes can be used to measure exit
currents to obtain two-dimensional transadmittance maps at
multiple frequencies. The corresponding inverse problem
is to detect the conductivity anomalies that denote breast
tumor tissue from the multiple-frequency trans-admittance
maps.

2 Methods
When a sinusoidal voltage V0 sinωt with an angular fre-
quency ω

2π
is applied through ϒ(see Figure 3), potential uω

satisfies:
∇ · (γω(r)∇uω(r)) = 0, r ∈Ω

uω(r) =V0, r ∈ ϒ

uω(r) = 0, r ∈ Γ

n · (γω(r)∇uω(r)) = 0, r ∈ ∂Ω\(ϒ∪Γ),

(1)

where γω(r) =
{

γn
ω(r) := σn

ω(r)+ iωεn
ω(r), r ∈Ω\D

γa
ω(r) := σa

ω(r)+ iωεa
ω(r), r ∈ D .

Theorem 2.1 Let gω j = −(σω j + iω jεω j)
∂uω j

∂n be the mea-
sured Neumann data at frequency ω j for j = 1,2 and let
α = γn

ω1
/γn

ω2
. Then we have depth formula:

zD = 2
√

3

∣∣∣∣∣ (gω1 −αgω2)(r
∗)

(∂ 2
x +∂ 2

y )(gω1 −αgω2)(r∗)

∣∣∣∣∣
1
2 ∣∣∣∣1+ r1(r∗)

1+ r2(r∗)

∣∣∣∣ 1
2
,

(2)
where Ck1,Ck2 are depending only on ρ ,δ ,d0/V0,|D|,|Ω|,γn

ω1
,

γa
ω1

,γn
ω2

and γa
ω2

, r∗ = (xD,yD) and u0 is the solution of (1)
in the absence of anomaly.

BREAST

Sensing Electrode Array

Single Metal Plate

Sensing Electrode ArrayΓ

D V0

Figure 1: Trans-admittance mammography (TAM). (L): the sen-
sor electrode array. (R):Schematic cross-section

Observation 2.2 Under the same assumption given in the-
orem 2.1, we define a connected set S containing (xD,yD,0)
such that

S := { (x,y,0)∈Γ : ∇
2
xyG(x,y) · ∇2

xyG(xD,yD) > 0 }, (3)

where ∇2
xy = ∂ 2

x + ∂ 2
y and G(x,y) = [Real(gω1 −

αgω2)](r),r ∈ Γ. Then we have
(1) the set S is independent on the size of anomaly D and

the admittivity contrast
(2) depth zD can be determined by zD ≈ 1.6938 ·

(the radius of S).

3 Numerical simulations

Γ

-surface

-surface : 3600
sensing electrodes

a small anomaly
is placed in the interior
of the domain

(0,0,0) 15

15

4

0

Figure 2: Numerical simulation domain

Figure 3: Anomaly depth estimated by using theorem 2.1 and ob-
servation 2.2

4 Conclusions
Throughout this paper, we gave a rigorous mathematical
analysis for the proposed algorithms to estimate the size
and position of anomaly and presented a successful numeri-
cal simulation results supporting the theories. In the future,
we plan to make use of the suggested algorithm in experi-
ments.
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Abstract: EIT is a new imaging technology that is open 

to many applications with its advanced natures with no 

ionising radiation, relatively low cost. The main 

disadvantage of EIT is the low spatial resolution that 

limits its application areas. This paper presents a new 

methodology that has achieved a significant 

improvement of the spatial resolution, enabling "high 

resolution" EIT imaging. 

1 Introduction 

The Electrical Impedance Mammography (EIM) is a 3D 

EIT based system for breast cancer detection. The ability 

to detect a suspicious lesion of less than 20mm in diameter 

and down to pathological Grade-1 is clinically very 

advantageous. Being able to do so is a current major 

challenge of the EIM technology. This study proposes a 

new novelty method to have increased the spatial 

resolution of EIM for meeting the clinical requirement.  

2 Methods 

Cambridge EIM systems have been designed to use either 

85 or 89 planar electrodes deployed in  hexagonal and 

squared pattern respectively (Fig. 1a,1c). The distance 

between the adjacent electrodes is 17mm. The current 

excitation and voltage measurements are achieved in a 

small hexagonal area (Fig.1 b) with up to 1416 

measurements made [1] at each frequency. In all 

illustrations in this paper, the yellow dots indicate the 

excitation pair electrodes while blue dots connected by red 

arrows indicate measuring pairs of electrodes.. 

               
  (a)                             (b)                                (c)      

Fig 1. The planar electrodes system of Cambridge EIM (a) the 

hexagonal electrodes. (b) the electrode drive and receive 

hexagon.(c) squared based electrode configuration   

The concept of this novelty method is to reconstruct an 

high-resolution (HR) image, based on obtaining very HR 

frames data, to be achieved  by shifting the electrode plate 

of the scan-head via a group of digital stepper motors, 

where the planar electrodes are implanted into any option 

proposed (Fig 2,3). All measurement frames are combined 

together as one set of data and processed by the image 

reconstruction algorithm on an HR mesh. To avoid 

moving artefact during multi-frame shifting data 

collection, patient breast is held by a rigid holder on the 

top of the electrode planar in the tank, which is made of a 

matched conductivity materials. The following figures 

relating to 3 options as examples to show how to achieve 

an HR EIT images, based on "squared-shaped electrode" 

configuration. As shown in Fig 2-3, each movement is 

represented by an arrow, Fig 2 represents 4 shifted frames 

resulting one HR "virtual" electrode arrays (Fig 2 (right)). 

               

Fig 2.  Option 1: Electrodes array with 4-shift HR frames with 1 

interpolation, to achieve the combined numbers of all the  

electrodes: 89*4 = 356 (right) 

                  
Fig 3.  Option 2,3 and Option N: Electrodes with 9 or 16-shift 

HR frames (2 or 3-interpolation) will achieve total 801 or 1424  

combined virtual electrodes respectively. Similarly, electrodes 

with N-interpolation would generate (N+1)2 shifting to achieve 

total (N+1)2 x89 combined electrode effect.  

 

The preliminary results of HR image is shown in Fig 4. 
 

      

      
Fig 4. Result of 85-electrode EIM simulation. Original model: 

hexagonal mesh (top left) and 4-shit based HREIM mesh (top 

right). The results of reconstructed noise-free images: hexagonal 

mesh (bottom left) and the HREIM mesh (bottom right)  

3 Conclusions 

The preliminary results have shown that the HR EIT is 

feasible and significant improvement has been made.  
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