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Abstract

Lung and cardiovascular monitoring applications of Electrical Impedance Tomography (EIT) require localization of relevant
functional structures or organs of interest within the reconstructed images. We describe an algorithm for automatic detection of
heart and lung regions in a time series of EIT images. Using EIT reconstruction based on anatomical models, candidate regions
are identified in the frequency domain and image based classification techniques applied. The algorithm was validated on a set of
simultaneously recorded EIT and CT data in pigs. In all cases, identified regions in EIT images corresponded to those manually
segmented in the matched CT image. Results demonstrate the ability of EIT technology to reconstruct relevant impedance changes
at their anatomical locations, provided that information about the thoracic boundary shape (and electrode positions) are used for
reconstruction.
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Towards morphological thoracic EIT:
Major signal sources correspond

to respective organ locations in CT

I. INTRODUCTION

ELECTRICAL Impedance Tomography (EIT) is a medical
imaging modality that allows recording of changes in the

conductivity distribution within the body. Using a series of
imperceptible current stimulations and voltage measurements
from electrodes placed around the chest, EIT images of the
thorax can be reconstructed. Cyclic air flow (respiration)
within the lungs or blood filling of the heart and blood vessels
modify the conductivity distribution of the thoracic cavity.
A sequence of EIT images involving several cardiac and
respiratory cycles represents such changes.

EIT has been demonstrated experimentally to represent
regional ventilation (e.g. [9], [17], [21], [24]). This is of high
clinical relevance, as EIT has the potential to become a routine
means to identify optimal ventilator settings and thus help
improve outcomes of mechanically ventilated patients. EIT
is non invasive and can in principle be used for continuous
monitoring.

However, despite its unique advantages and over two
decades of research and development, EIT has not yet entered
mainstream use in the intensive care unit. Clinical adoption is
hindered by difficulties in analysing the EIT images caused,
among others, by an uncertainty about the anatomical bound-
aries of the lungs on the reconstructed images and the source
of the cardiac activity.

Several methods to segment the lung region of interest
(ROI) in EIT images have been proposed. Using the standard
deviation [14] or the maximum linear regression [16], images
of the distribution of ventilation are computed. Thresholds
then define ROIs with significant ventilation. Pulletz et al. [20]
showed that both methods give similar results and have since
often been used, with slight modification [11], [20]. However,
since the most commonly used reconstruction algorithms pro-
duce EIT images that are circular, and thus do not correspond
to the anatomy, none of these methods could be validated
against a morphological medical imaging modality.

Isolating cardiac-related activity is more challenging, due
to its smaller amplitude, the concurrent pulmonary and sys-
temic perfusion and the potential overlapping with respiratory
harmonics. Frerichs et al. [9] used breath holding to remove
respiratory activity and electrocardiogram-gated-EIT [7]. Both
techniques have been shown to correctly separate cardiac activ-
ity, but they need either the patient’s engagement or additional
equipment (ECG). Frequency-based [25] and statistics-based
(PCA/SVD) algorithms [6] have then been used to identify
cardiac changes. Pikkemaat et al. [19] compared both methods
and obtained similar results. However, signals obtained with

statistical-based algorithm are more complex to interpret [15].
Moreover, the exact underlying physiological mechanism

of the EIT signal at cardiac frequencies remains unknown,
with recent results indicating that impedance-pulsatility does
not reflect lung perfusion [4]. One might hypothesize that
the filling of heart chambers with blood generates a decrease
in regional impedances. However, the mechanical interactions
occurring at the heart-lung interface might also be a source of
cardiac-related EIT signals.

In this paper, for the first time, functional EIT images are
compared directly with the anatomy as seen on a CT slice in
the plane of the electrodes. The sources of ventilation- and
cardiac-related activity in the EIT images are localised by a
novel unsupervised method combining statistical and spectral
analysis with an image processing algorithm to find the heart
rate and to define heart and lung ROIs. The comparison
is facilitated by the recent enhancements to the EIDORS
software allowing reconstruction of EIT images with arbitrary
boundary shape.

II. METHODS

Overview: Simultaneous EIT data and CT images were
acquired in pigs (section II-A), and CT slices within the EIT
electrode plane were segmented to identify heart and lung
regions (II-B). A finite element model (FEM) was created for
each individual animal based on its own segmented CT scan.
These were employed in a time difference EIT reconstruction
algorithm to reconstruct the EIT image sequence (II-C). This
temporal image sequence was analysed with a novel algorithm,
which uses temporal and spatial information to detect and
localize heart and lung regions (II-D). Finally, the detected
functional regions within the EIT images were validated
against the manually segmented CT images (II-E).

A. Experimental procedure

Experiments were conducted at the University of Mainz,
Germany with appropriate ethical approval (licence no.
1.5 177-07/041-75, Landesuntersuchungsamt Rheinland-Pfalz,
56028 Koblenz, Germany). Experiments were carried out on
12 ± 3 weeks old pigs weighting 23 ± 2 kg. The animals
were sedated by intramuscular injection of 8 mg/kg azap-
eron, 8 mg/kg ketamine and 0.2 mg/kg midazolam prior to
transportation to the animal laboratory. General anesthesia
was induced by 4 µg/kg fentanyl, 4 mg/kg propofol and
0.15 mg/kg pancuronium via peripheral intravenous injection.
The pigs were intubated via the orotracheal route. They
were ventilated with a standard clinical ventilator (AVEA,
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Fig. 1. Block diagram of the proposed method to compare regions of interest (ROI) of heart and lung activity as detected by EIT to ground-truth CT scan
segmentation of these organs. In order to facilitate the comparison, EIT images were generated by using accurate position of EIT electrodes as extracted from
CT images. The heart and lung (H&L) ROIs within the EIT images were then automatically identified and compared to the structures manually segmented
in the CT images. Finally, the precision of the automatic identification was assessed.

CareFusion, San Diego, CA, USA) with a PEEP of 5 mbar,
a FiO2 of 0.5 and an I:E ratio of 1:1. General anesthesia
was maintained by continuous intravenous administration of
15 mg/kg/h propofol and additional boluses of 4 µg/kg fentanyl
(e.g. before surgery, before euthanasia). Canulation of right
Vena jugularis interna (pulmonary artery catheter), one Vena
femoralis (central venous access) and one Arteria femoralis
(arterial catheter) were achieved by surgical cut-down of
the respective vessels. After the experiment the pigs were
euthanized in deep analgosedation by intravenous injection of
40 mmol potassium.

During the study, the piglets were investigated using static
thoracic computed tomography (CT) of the whole lung (5 mm
slices, HRCT: Somatotom Plus 4, Siemens, Erlangen, Ger-
many) at continuous positive airway pressure (CPAP) dur-
ing 25 s of apnea at CPAP levels of 5, 15 and 45 mbar
with periods of standard ventilation maintaining the same
positive end-expiratory pressure (PEEP) interposed between
them. Simultaneously, EIT measurements were taken (Goe-
MF II EIT device, CareFusion, San Diego, CA, USA) with
a sampling frequency of 13 Hz controlled by MCFEIT study
software (University of Göttingen, Germany). In all pigs, 16
EIT measurement electrodes (Blue sensor: BR-50-K, Ambu,
Bad Nauheim, Germany) were attached around a transversal
thoracic layer defining the area to be represented in the EIT
slice. In the cranio-caudal axis the level of this measurement
layer was defined by an area between sternum and first
mamilla of the pigs. The fold of the axilla was the upper
limitation of the ring of electrodes in each pig. In post mortem
examinations the level of the electrode layer was found to be
35 mm or more cranial from the expiratory position of the
diaphragm.

B. CT data segmentation

For each animal, the CT slice corresponding to the electrode
positions was manually segmented by an expert to identify
heart and lung regions. CT-based inclusion criteria for image
segmentation were: 1) healthy subject, with no obvious pneu-
monia or lung collapse, and 2) EIT electrode level at a position

caudal to the maximum heart area in the CT. Of the nine in-
strumented animals, seven met these criteria. After identifying
within the stack the transverse CT slice which contained the
highest number of electrode markers (metallic center points of
the gel EIT electrodes), the following structures were manually
segmented within that slice: 1) outline of the piglet’s outer
body contour (boundary); 2) positions of electrodes; 3) heart
and lungs; and 4) the descending aorta. If no marker could be
identified for an electrode, the electrode position was defined
as the geometric center of its visible part within the analyzed
slice. To account for the inherent limitations of transverse
CT cuts through oblique structures (partial volume effects)
the heart was segmented as the maximum outer boundary
encompassing pixels which could be attributed to the heart
(adjacent slices were consulted in difficult cases). The same
approach was taken when segmenting the lungs. This led, in
some cases, to a degree of overlap between the heart and lung
regions.

In general, a different CT slice was segmented for each
CPAP level reflecting the movement of the electrode plane
with respect to the tracheal carina.

 

 

Lung
Heart

E

Fig. 2. Example of manual segmentation of the heart and lungs on a CT
image of the electrode plane.

C. Morphological EIT image reconstruction

Using the boundary shapes segmented from CT, morpholog-
ically corresponding EIT images were reconstructed for each
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Fig. 3. Sample 3D fine (a) and 2D coarse (b) meshes used for forward and
inverse modeling, respectively.

animal using EIDORS [3]. Normalized time difference EIT
images of conductivity change were reconstructed from EIT
measurements using a one-step Gauss Newton algorithm [2]
which calculates a linear reconstruction matrix R that relates
the calculated impedance image vector x̂ to the data vector y
as:

x̂ =
(
JtJ + λP

)−1
Jty = Ry (1)

where y = v
vr
− 1 is the normalized difference between a

measurement v and the reference data vr. Here, the reference
data set was chosen to be the mean EIT data over all frames;
this choice has no effect on the properties of the EIT images
in the frequency domain (except at DC). J is the Jacobian (or
sensitivity) matrix of the forward model, and P is a Tikhonov
type regularization matrix. P was formed from the sum of
two parts: 1) the prior estimate of covariance between image
elements (modeled as a Gaussian high pass filter using the
approach of Adler and Guardo [2]), and 2) a model of the
data variance due to electrode movement using the approach
of Soleimani et al. [23]. Electrode movement compensation
incorporates calculation of a movement Jacobian sensitive to
linear displacements of each electrode, which, in our experi-
ence, significantly reduces image artifacts near the medium
boundary. Noise variance was modeled to be equal on all
EIT data channels, and the Tikhonov factor, λ, was chosen
heuristically to give a good compromise between noise and
image resolution.

To obtain accurate reconstructed object positions the 3D
model used to calculate the forward model and the sensitivity
matrix J, and the 2D model on which the inverse solution
was calculated were both conforming to the body shape as
segmented from CT. The fine (∼ 20× 103 nodes) 3D forward
model (Fig. 3a) was created using Netgen [22], an open-
source meshing software, by extruding the boundary shape
segmented from CT into the vertical direction by half the body
width above and below the electrode plane. Electrodes were
modeled at their exact and real anatomical positions using
the complete electrode model [5] with FEM refinement in the
region surrounding the electrodes. The coarse (∼ 1 × 103

nodes) 2D FEM model (Fig. 3b) onto which EIT images
were reconstructed was also built from the anatomical body
shape, but without electrode refinement. Mapping between the

forward and inverse models was obtained by interpolating the
area projected by the fine elements onto the coarse elements
in the electrode plane.

EIT and CT image matching: Reconstructing EIT data on an
anatomical model (rather than a circular one as is most often
done) had a profound effect on the resultant images [13] and
assured morphological correspondence between the EIT and
CT images. To further facilitate comparison, the EIT images
were interpolated from the original resolution of 32 × 32
pixels to match the resolution of the corresponding CT slices
(originally 512×512 but cropped individually for each animal
tightly around the shape), thus guaranteeing physical corre-
spondence as well. A block diagram of the entire process
allowing comparison between CT and EIT images is depicted
in Fig. 4.

Interpolation 

Physical correspondence 

Morphological 
reconstruction 

RAW EIT 
Data 

Morphological 
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and thorax shape 
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selection CT images 

Fig. 4. Steps to obtain physical correspondence between EIT and CT images.
Electrode position and thorax shape obtained from the CT image were used to
reconstruct EIT images with the individual thoracic shape. EIT images were
then interpolated to match the resolution of the CT images.

D. Unsupervised detection of lung and heart activity in EIT

Reconstructed EIT images were arranged in a matrix x ∈
RI×T where I is the number of pixels in an image, and
T the number of images (time points) in the series. From
this sequence of images, regions containing significant cardiac
and respiratory activity were automatically identified. Cardiac
and respiratory frequencies were estimated and the amount
of energy exhibited by each pixel at both frequencies was
calculated resulting in functional images depicting cardiac and
respiratory activity. Adjacent pixels with significant activity
were identified and associated to the heart and lung regions
of interest (ROI). An overview of the method is presented in
Fig. 5. The method consisted of the following five steps A-E:

Step A — Filtering: A High Pass (HP) filter with a cutoff
frequency of 0.05 Hz (4th order finite impulse response (FIR)
filter) was applied to x along the time dimension to remove
activity at low frequencies that was not related to heart or lung
activity.

Step B — Respiratory frequency identification: The av-
erage signal m1 was calculated as an ensemble average over
pixels:

m1(t) =
1

I

I∑
i=1

xi,t (2)
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Fig. 6. Respiratory and cardiac frequency estimation. Top and middle figures
illustrate the normalized FFT of respectively all EIT pixels and non-lung
pixels. Peak frequency in the top figure is the respiratory rate. Cardiac rate is
clearly amplified in the middle figure and remaining respiratory component
canceled in the difference (bottom figure) allowing the detection of the cardiac
frequency.

Respiratory frequency (fre) was then determined as

M1(f) = F {m1(t)} (3)
fre = arg max

f
|M1(f)| (4)

where F indicates the discrete Fourier transform (obtained
through FFT). A sample frequency spectrum is presented in
Fig. 6.

Step C — Lung region definition: Respiratory activity
of each pixel was then calculated by estimating the actual
energy at the respiratory frequency of pixel time series via a

��� ���

Fig. 7. Automatic identification of lung ROI in a sequence of EIT images.
Left figure illustrates the distribution of energy at the respiratory frequency.
Middle figure is the watershed of the energy image. Right figure shows the
ROI with relevant respiratory activity identified as lung.

non-parametric periodogram approach.
The obtained image was interpreted as representing

ventilation-related activity (Fig. 7, left). Regions containing the
two strongest local maxima (Lmax 1,Lmax 2) were identified
using the watershed technique [18] (Fig. 7, middle), and
combined to form a lung ROI (ROILung), the size of which
was controlled by an arbitrary threshold value tLungs · Lmax,
where 0 ≤ tLungs ≤ 1 and Lmax is the greater of Lmax 1 and
Lmax 2 . The greater the value tLungs, the more the resultant
ROI focuses on the two peaks, treated as the source of the
ventilation-related EIT activity. This effect is exemplified in
Fig 8.

Fig. 8. Organ identification. Background: CT-scans of pig 1 at the level of the
EIT electrodes at 5 mbar of PEEP. Dashed line ROIs were manually drawn
and delineate heart and lungs. Automatically identified regions of cardiac
and respiratory functional information are delineated by solid countour lines.
Their respective areas show the influence of the automatic detection threshold.
Threshold values were 0.25, 0.6 and 0.75 with 0.25 delivering the largest ROI.

Step D — cardiac frequency identification: Taking as
I2 the set of |I2| pixels that were not in the lung ROI as
defined above with tLungs = 0.5, the ensemble average m2

was defined as
m2(t) =

1

|I2|
∑
i∈I2

xi,t (5)

The signal m2(t) still contained some ventilation-related activ-
ity, but much less than m1(t). Accordingly, the spectral content
of all the EIT images can be thought of as containing three
components: respiratory Mre, cardiac Mca and other organ
activity or noise, grouped in Mη . The DFT of m1(t) and m2(t)
can then be expressed as

M1 = Mre +Mca +Mη (6)
M2 = αMre + βMca + γMη (7)
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Fig. 9. Automatic detection of heart ROI in a sequence of EIT images.
Left figure illustrates the distribution of energy at cardiac frequency and right
figure the ROI with significant heart activity.

where the suppression factors 0 ≤ α, β, γ ≤ 1 account for
the lost activity of the lung region excluded from I2. Because
pixels exhibiting strong ventilation activity (ROILung) were
excluded from M2, β ≥ α (assuming heart and ventilation
activity are not co-located). If noise is evenly distributed
over the image, it will be attenuated at least as much as the
ventilation activity, hence β ≥ γ.

To yield an estimate of the cardiac frequency fca (Fig. 6),
M1 and M2 were normalized with respect to the ventilator
frequency:

‖M1‖ = aM1 = a (Mre +Mca +Mη) (8)
‖M2‖ = bM2 = b (αMre + βMca + γMη) (9)

(a and b being normalization factors) and subsequently sub-
tracted:

∆ ‖M‖ = ‖M2‖ − ‖M1‖
= (bα− a)Mre + (bβ − a)Mca + (bγ − a)Mη

(10)

In the difference ∆ ‖M‖ between the normalized spectra,
the energy in the respiratory band cancelled out (bα−a = 0),
whereas energy in the cardiac frequency band was preserved
since respiration was more attenuated than cardiac activity in
M2(β ≥ α), thus bβ−a > 0. Finally, assuming cardiac energy
to be larger than noise Mca > Mη and since β ≥ γ, fca
becomes the strongest component of ∆ ‖M‖ (c.f. Fig. 6). This
demonstration is independent of the cardiac and respiration
frequency and the method should work even if the cardiac
frequency were to coincide with a respiratory harmonic, as
long as the fundamental respiratory frequency remains the
strongest component of M1 and the true fca 6= fre.

Step E — Heart region definition: ROIHeart was defined
analogously to ROILungs. First, the energy of each pixel at the
cardiac frequency was calculated to obtain an image repre-
senting the cardiac-related activity. Then, the same algorithm
used to identify ROILungs (Step C) is applied but this time
only the maximum of the image was taken as the center of
the heart-related activity, and consequently a single watershed
region was selected as ROIHeart (Fig. 9).

E. Assessment of morphological correctness of EIT

While EIT can neither be expected to reconstruct exact tis-
sue boundaries nor produce anatomical images, it is nonethe-
less important that reconstructed impedance changes appear at
anatomically meaningful positions, and that the geometrical
relations between the different organs are preserved on EIT
images, a property we call localization.

To measure the localization of the lung signal, we first define
precision as the fraction of pixels in ROILung (obtained from
the EIT recording as described in Step C above) that fall within
the lung area (as segmented on CT)

precision =
|ROILung ∩ Lung|
|ROILung|

.

Like the size of the ROILung, precision depends on the value
of the threshold tLungs. If the peak of ventilation activity
Lmax lies within the segmented lung area, precision is
guaranteed to reach 100% for some value of tLungs. For each
animal and pressure, we took the value of tLungs required to
achieve precision of 50, 75 and 90 per cent as a measure of
localization of the EIT signal. The smaller the value tLungs
at which a given precision was achieved, the better localized
the EIT signal was. We performed the same analysis for the
heart ROI.

III. RESULTS

The precision of lung localization for each animal and
PEEP level as a function of the tLungs threshold is presented in
Fig. 10. In all cases, precision of 100% (i.e. 1) was reached,
meaning that the maxima of respiratory activity derived from
EIT recordings were always localized within the anatomical
areas of the lungs as segmented from CT. The minimum tLungs
values required to achieve the precision levels of 25, 50, 75
and 90 per cent are reported in Table I. Taking an average over
all PEEP levels, 75% of pixels with just under half (0.4717) the
maximum ventilation activity observed within an image (the
“half-amplitude set” as defined in [1]) lie within the anatomical
lung region. As evidenced by both Fig. 10 and Table I, the
localization of lung activity in EIT varied within the same
subject with the level of PEEP applied, thereby producing
in general the best localization (higher precision for a given
tLungs value in Fig. 10 and, conversely, a lower average tLungs
for a given precision in Table I) at the highest pressure of 45
mbar. The only exception to this rule is pig 6 for which EIT
precision was worst at 45 mbar (c.f. Fig. 10).

TABLE I
AVERAGE VALUE OF THE LUNG DETECTION THRESHOLD ( tLungs)

REQUIRED TO ACHIEVE A GIVEN precision

PEEP precision

[mbar] 25% 50% 75% 90%

5 0.0010 0.0066 0.6193 0.8691
15 0.0366 0.2506 0.5650 0.8464
45 0.0010 0.1223 0.2307 0.7229
all 0.0129 0.1265 0.4717 0.8128

tLungs is a unitless fraction adjusted between 0 and 1. Reported are averages
over all animals for a given PEEP level (all levels in bold) of values required
to achieve the respective precision value.
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Fig. 10. Influence of the threshold tLungs on the precision of automatic
detection of lungs ROIs in individual animals (aggregate results on bottom
right). In general, and with the notable exception of pig 6, for a given value
of tLungs higher precision was obtained at higher pressures.

The maxima of cardiac activity within the EIT images
were in all cases located within the heart as defined on the
corresponding CT slice. As manifested by the increasing value
of tHeart required to achieve a given precision level (Table II),
the heart activity seen in EIT was less locally confined at
higher PEEP levels.

TABLE II
AVERAGE VALUE OF THE HEART DETECTION THRESHOLD (tHeart)

REQUIRED TO ACHIEVE A GIVEN precision

PEEP precision

[mbar] 25% 50% 75% 90%

5 0.0010 0.0010 0.1473 0.3214
15 0.0010 0.0366 0.2716 0.4500
45 0.0010 0.0010 0.2857 0.4643
all 0.0010 0.0239 0.2349 0.4119

tHeart is a unitless fraction adjusted between 0 and 1. Reported are averages
over all animals for a given PEEP level (all levels in bold) of values required
to achieve the respective precision value.

IV. DISCUSSION

We compared EIT lung and heart regions of interest (ROI)
detected by a novel unsupervised method during conventional
ventilation at positive end-expiratory pressure (PEEP) levels
of 5, 15 and 45 mbar against the area of the respective organs
in the electrode plane as segmented from CT acquired at
equal levels of positive airway pressure. The comparison was
enabled by reconstructing EIT data using finite element models
corresponding to the boundary shape of the thoracic surface, as
opposed to cylindrical ones as is the standard practice. Images
of heart and lung activity were obtained through a combination
of spectral analysis and image processing techniques. For each
image, the size of the ROI was controlled by a threshold
expressed as a percentage of the highest value in the image.
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Fig. 11. Influence of the threshold tHeart on the precision of the EIT
automatic detection of heart ROIs in individual animals (aggregate results on
bottom right). With the exception of pig 2 at 5 mbar, 100% precision was
achieved in all cases.

In all cases, the maxima of heart and lung activity as seen on
EIT were within the respective organ as segmented from the
corresponding CT image. At threshold values of, respectively,
47 and 23 per cent for tHeart and tLungs, 75 per cent of lung
and heart ROI overlapped with its true extent, demonstrating
good localization of signals in EIT.

We found that the lungs are generally better localized at
higher PEEP levels. We speculate that this is associated with
a shift of ventilation-related activity in a dorsal and caudal
direction with increasing PEEP, as reported in literature (e.g.
[10]). On a typical CT slice, the area occupied by the lungs
increases in the dorsal direction, with the features being finer
in the ventral part. Due to the strong spatial smoothing inherent
in EIT, the precision measure performs better when the focus
of ventilation activity is more dorsal and thus more distant
from the heart.

 

 

Lung
Heart

Fig. 12. Heart activity detected in Pig 2. The two peaks are opposite in
phase. White lines delineate the organs as segmented from CT.

In one case, presented in Fig. 12, we noticed two clear foci
of activity at the cardiac frequency in the EIT image, both
contained within the heart region as segmented from CT. The
cardiac-frequency activity at the two locations was opposite
in phase and thus could represent the ventricles and the atria,
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respectively. However, similar, sometimes multiple, opposite-
phase peaks were subsequently found in other animals, e.g. the
one presented in Fig. 9, but they were usually much weaker
and located outside the heart area as segmented from CT. A
similar phenomenon can be observed in the results reported in
[26]. We therefore speculate that this effect is associated with
the movement of the heart wall at the heart-lung interface. By
comparing with ECG the phase of the weak cardiac frequency
observed within the lung ROI (found to be delayed with
respect to changes in the heart ROI), it has previously been
demonstrated that they represent changes in blood volume
[26]. However, the opposite-phase (rather than just delayed)
features around the heart, and more specifically the very clear
lines which separate them, have not so far been explored (to
the best of the authors’ knowledge) and may prove a useful
feature for further improving the delineation of the heart within
thoracic EIT images. In the future, we hope to develop a robust
automatic detection of the heart that would take advantage of
this effect.

In our analysis of the CT data, we observed that the CT
slice that best represented the EIT electrode plane remained
virtually fixed with respect to bony landmarks on the spine.
However, the organ content and contours within the EIT plane
of each animal varied significantly with CPAP levels as a result
not only of the downward displacement of the diaphragm by
up to 30 mm but also of the marked changes in the shape of the
heart, which shortened along the cranio-caudal axis by up to
25 mm. The scale of these movements varied greatly between
the animals. The observed positions of the heart, diaphragm,
carina and the electrode plane at the different CPAP levels
are presented as a boxplot in Fig. 13. This observation is
potentially relevant for PEEP titration studies, most of which
have thus far used the same EIT model and background
conductivity throughout the experiment, ignoring the changes
associated with organ movement. It remains to be investigated
to what extent organ movement impacts the clinically relevant
information contained within EIT images.

One limitation of our study is that we only used a single
CT slice to compare against EIT images, while the electrode
plane is rarely aligned with the CT slices. Moreover, electric
current permeates a much larger volume of the body and hence
tissue above and below the electrode plane affects the EIT
measurements, much more than it does in CT. This limitation
was most obvious in the calculation of precision for pig 6
in which the distance between the electrode plane and the
diaphragm at 5 mbar was the smallest (20 mm). Consequently,
the CT slice that contained the most electrodes at 5 mbar
contained no tissue separating the two lungs which were
therefore segmented together within a single ROI. At higher
PEEP values, as the heart and the EIT plane moved upwards
and the lungs moved downwards, the latter became easily
separable in CT but not in EIT, where lungs usually appeared
as a single ROI at all but the highest threshold values (cf.
Fig. 8). This explains the observed decrease in precision with
increasing pressure in this particular animal.

Another limitation inherent to our method is the use of a-
priori information about the position of the electrodes and the
thoracic shape which are hardly available at the bedside. Even
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Fig. 13. Organ and electrode plane positions along the cranio-caudal axis
for CPAP levels between 5 and 45 mbar. The centre of the uppermost
costovertebral joint was used as anatomical point of reference but movements
are referenced to the electrode plane as observed at 5 mbar. Negative numbers
represent positions caudal to the electrode plane. Boxes show interquartile
range with median indicated as a thick line, while whiskers show the range
of data.

if recent findings highlight the importance of adequate infor-
mation about the anatomical contour [13] and the electrode
positions [27] for a meaningful image reconstruction, further
work is necessary to quantify the influence of using accurate
anatomical boundary shape and electrode positions for EIT
reconstruction.

V. CONCLUSION

We presented a novel unsupervised method for defining
heart and lung regions of interest in a sequence of EIT images
and extracting the corresponding signals. The method allows
for the specificity–sensitivity trade off to be adjusted according
to need with a single threshold parameter.

Applying the method to a data set of simultaneously ac-
quired EIT and CT data, we have found that EIT pixels
with the strongest heart and lung signals as detected by our
method were located within the anatomical boundaries of their
respective organs as segmented on corresponding CT images.
We therefore conclude that, contrary to the common treatment
of EIT as a qualitative modality with poor anatomical cor-
respondence, EIT images preserve basic geometric relations
between organs and roughly correspond to the anatomy. This
knowledge could be used to recognize and reject implausible
EIT images and thus increase confidence in this technology.
Two equally important features of our method are prerequi-
sites: 1) reconstruction of EIT data on models with correct
anatomical boundary shape and 2) detection of heart and lung
activity using both spatial and temporal information contained
in the EIT data sequence. For clinical practice, our findings
pave the way towards a novel use of EIT technology based
not only on the functional but also the anatomical information
it provides.
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