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ABSTRACT
We show that electrical impedance tomography (EIT) image
reconstruction algorithms based on the Level Set (LS) method
are suitable for real data, which is breathing data in our appli-
cation. The LS based reconstruction method (LSRM) helps
track fast topologically changing interfaces, which are typi-
cally smoothed by traditional voxel based reconstruction me-
thod (VBRM), during the monitoring process. We represent
lung images by applying the LSRM using difference solver
and then compare the results with the VBRM. According to
our results, LSRM outperforms its voxel based counterparts
in producing high quality, high contrast images of lung.

Index Terms— Inverse Problem, Electrical Impedence
Tomography, Image Reconstruction Algorithm

1. INTRODUCTION
Tomographic imaging systems seek to see the inside objects,
by introducing energy and measuring its interaction with the
medium. Electrical Impedance Tomography (EIT) measures
the internal impedance distribution using surface measure-
ments. Electrical current is applied to the medium and the
voltage at the surface is measured using electrodes. The impe-
dance distribution is then estimated based on the measured
voltages and medium geometry. Some of typical applications
of these techniques are for geophysical imaging [1, 2, 3], pro-
cess monitoring [4, 5], and functional imaging of the body
[6, 7].

In this paper, we focus on image reconstruction in EIT
using the level set approach. The level set approach has be-
come popular because of its ability to track propagating in-
terfaces [8, 9], and more recently it has been applied in vari-
ety of applications in inverse problems and in image process-
ing [10, 11, 12, 13]. Level set based reconstruction method
(LSRM) is a nonlinear inversion scheme using an optimiza-
tion approach to iteratively reduce a given cost functional,
which is the norm of the difference between the simulated
and measured data. In comparison to the voxel based recon-
struction method (VBRM) ( e.g. [14]), the LSRM has the
advantage of introducing the conductivity of background and
that of inclusions as known priori information into the recon-
struction algorithm, enabling it to reconstruct sharp contrasts
[4]. The unknown parameters to be recovered from the data
are the size, number, shapes of the inclusions. These unkown
parameters are given as the zero level set of a higher dimen-
sional function, called level set function. In every iteration,
the level set function (LSF) is modified according to an up-
date formula to modify the shape of the inclusion at its zero
level set (see fig. 1).

The level set method for shape based reconstruction is
well studied in electrical and electromagnetic imaging for sim-

ulated data [10, 11, 12, 15, 16, 17, 18, 19]; however, it has
been seldom shown to be used for human data. This study is
the first implementation of LSRM for EIT breathing real data
demonstrating the results of applying a difference solver.

The remainder of the paper is organized as follows: in the
next section, we formulate level set approach using difference
solver for EIT; in section 3, we introduce into the level set
technique employed for solving the inverse problem of EIT
lung images; the experimental data is represented in section 4;
in section 5, we evaluate the performance of LSRM for lung
monitoring data and compare LSRM to VBRM; and finally
section 6 presents discussions and conclusions.

2. DIFFERENCE AND ABSOLUTE
RECONSTRUCTION METHODS

There are two primary reconstruction types in EIT: ”abso-
lute (static) imaging” which attempts to recover an estimate
of the absolute conductivity of the medium from the achieved
data frame, and ”difference imaging” which attempts to re-
cover an estimate of the change in conductivity between two
times based on the change between two data frames, v2 and
v1. Difference EIT can compensate for measurement errors
which do not change between data frames. Difference EIT is
based on a difference data vector, [y]i = [v2]i− [v1]i or, in or-
der to decrease measurement noise, the normalized difference
data [y]i = [v2]i − [v1]i/[v1]i. Using a finite element model
(FEM), the medium is discretized into N elements with con-
ductivity σ. The conductivity change vector x = σ2 − σ1 is
the change between the present conductivity distribution, σ2,
and that at the reference measurement, σ1. The linearized dif-
ference forward solution for small changes in conductivities
over time is given by [20]:

y = Jx̂+ n, (1)
where J is Jacobian or sensitivity matrix around the refer-
ence conductivity distribution, defined by ∂y

∂x |σ1
and n is the

measurement noise, typically assumed to be an uncorrelated
white Gaussian noise. In an EIT application where the con-
ductiity of the medium (x̂) is unkown, we need to solve an
inverse problem to find an estimate of the conductivity, ref-
ered to as x̂. The most common approach to find x̂ is the use
of the Gauss-Newton (GN) algorithm for EIT reconstruction
[21, 22]. The GN method solves the EIT inverse problem by
minimizing the following quadratic residue [20]:

‖y − Jx̂‖2∑−1
n

+ ‖x̂− x0‖2∑−1
x
, (2)

where
∑−1
n and

∑
x̂−1 are the covarience matrix of measure-

ment noise and that of conductivity vector (x̂), respectively;
and x0 represent the expected value of element conductivity
changes. By solving (2) for x̂, the linearized EIT inverse so-
lution is obtained as [20]:

x̂ = (JTJ + λ2R)−1JT y, (3)
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Fig. 1: LSF mapping to a 2D plane. From left to right columns, The 3D representation of an arbitarary LSF and its zero level
set function crossing zero level set surface, and 2D mapping of the LSF on the zero level set surface.

where R is the regularization matrix and λ is the regulariza-
tion hyperparameter to which can control the trade off be-
tween resolution and noise attenuation in the reconstructed
image. In the remainder of this paper, the GN approach is
considered the reference technique. GN image reconstruction
is understood to result in smoothed images, since the regular-
ization matrix is typically based on a penalty filter for non-
smooth images.

3. LEVEL SET METHOD
One effective method to allow the reconstruction of sharp im-
ages is the Level Set method [12]. The classic formulation
of this method assumes that the reconstructed image can take
only two conductivity values: one for background with value
σb and another one for inclusions with value σi. The regions
which form the background and the inclusions are defined by
a LSF, Ψ: a signed distance function to identify the unknown
interface between the two conductivities. The value of the
LSF is zero on the interface, negative inside the interface, and
positive outside.

Compared to the more typical VBRMs, the LSRMs are
more accurate reconstruction of objects with high step change
of conductivity at the interface (high contrast objects). This is
because most regularization schemes for the traditional meth-
ods, which are necessary for stabilizing the inversion, have
the side-effect of artificially smoothing the reconstructed im-
ages. Therefore, these schemes are not well-suited for recon-
structing high contrast objects with sharp boundaries.

In order to arrive at a robust and efficient shape-based
inversion method, a powerful technique needs to be incor-
porated for computationally modelling the moving shapes.
Level set technique [8, 9] is capable of easily modeling the
topological changes of the boundaries. The LSRM has been
shown the capability of being suitable for reconstructing ob-
ject with fast changes at its interface over time, applicable to
EIT in brain for cryosurgery monitoring [4]. Fig. 1 shows a
two pahses image reconstructed using the LSRM. The LSF Ψ
has separated the zero level set surface into two regions: fore-
ground (inclusions) and background. The mapping function
Φ projects the LSF to a 2D mesh to be applied for inverse so-
lution calculation using FEM. Fig. 1, right panel, shows the
conductivity of the inclusions in black where the LSF is neg-
ative and that of background in white where the LSF is pos-
itive. To begin with, we need to define an initial LSF, which
may be a circle on level zero; and then deform this inital LSF
using a predefined energy functional iterationally. Fig. 2 rep-
resents the steps as k represents the iteration number. After

defining the initial LSF, the mapping function Φ projects the
LSF to a 2D mesh to be fed to difference solver block to cal-
culte the system senitivity matrix, Jacobian (Jk), as well as
element differential potential vectors, ∆di. The next step is
to update the energy functional which is Guass-Newton for-
mula, ∆LSFk. The initial LSF is then deformed by ∆LSFk
generating a new LSF. This new LSF is fed again to difference
solver block for another iteration if the current iteration num-
ber (k) is not bigger than a maximum iteration number (K).
In the following, we discuss about the mathematical presen-
tation of the LSRM.
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Fig. 2: The level set based reconstruction algorithm using dif-
ference solver. Steps from top to down: LSF initial guess, in-
verse difference solver, Guass-Newton update, LSF displace-
ment by the given update, and iteration number increment.

In this technique, the shapes which define the boundaries,
are represented by the zero level set of a LSF Ψ. If D is
the inclusion with conductivity σi embedded in a background
with conductivity σb, the boundary of the inclusion, which is
also an interface between two materials, is given by the zero
level set [17]: ∂D := {r : Ψ(r) = 0}, (4)
where the image parameter at each point r is [17]

σ(r) =

{
σi for {r : Ψ(r) < 0},
σb for {r : Ψ(r) > 0}

(5)

If we change this LSF for example by adding an update, we
move the shapes accordingly. This update to a given LSF
causes the shapes being deformed in a way which reduces an
error residue (cost functional).



The LSRM combines the general idea of GN optimization
approach with a developed shape-based inversion approach.
In order to mathematically derive the LSRM, we define the
mapping (Φ) which assigns a given LSF ΨD to the corre-
sponding parameter distribution by σ = Φ(ΨD). The pa-
rameter distribution σ has the same meaning as in the tradi-
tional GN inversion scheme. The only difference is that in
the shape-based situation it is considered as having only two
values, namely an ”inside” value and an ”outside” value. In
shape-based reconstruction approach, We are looking for the
LSF ΨD which have finally divided the image into two sepa-
rate areas as foreground (inclusion) and background.

Having defined this mapping Φ, we can now replace the
iterated parameter σn by σn = Φ(ΨD) = Φ(Ψn). Instead of
the forward mapping F (σ), we need to consider now in the
new GN type approach the combined mapping [17]:

d(Ψ) = G(Φ(Ψ)), (6)

where d is data point, G is system matrix, and Φ(Ψ) stands
for conductivity, see fig. 1.

According to the chain rule, the level set (LS) sensitivity
matrix can be written as below:

Sensitivity = JLS =
∂d

∂Ψ
= ( ∂G

∂Φ(Ψ) )(∂Φ(Ψ)
∂Ψ )

= (JGN )(M), (7)

where ∂G
∂Φ(Ψ) stands for the traditional GN sensitivity matrix

(JGN ), and ∂Φ(Ψ)
∂Ψ = M is the matrix representing the map-

ping function (Φ(Ψ)). Then, the new GN update is [17]:
Ψk+1 = Ψk + · · ·

λ
[
(JT(LS,k)J(LS,k) + α2LTL)−1(JT(LS,k)(dreal − d(Ψk)))

]
· · ·

−
[
α2LTL(Ψk −Ψint)

]
= Ψk +GNupdate

= LSF (k) + ∆LSF, (8)

where Ψint in the update term corresponds to the initial es-
imate of the LSF. There are two parameters λ and α to be
tuned in this level set formulation.

Fig. 2 illustrates the algorithm to calculate the above up-
date formula. The optimal choice of the two parameters, λ
and α, depends on the mesh density, the conductivity contrast
and the initial guess [4]. The length parameter λ determines
the magnitude of the LSF displacement, changing the shape
of inclusion, in a given update. The higher the λ, the higher
the LSF displacement will be. The effect of the regularization
parameter α depends on the choice of the regularization oper-
ator L. An identity matrix for L increases the stability of the
inversion due to not smoothing out the LSF. However, a first
order difference operator for L will smooth the LSF [4]. As
α increases, the smoother the final LSF tends to be. A large
value for α disturbs the reconstruction algorithm to separate
close objects to each other properly (low distinguishibility).
To have a better distinguishibility, in our experiments shown
in the following section, we will choose L to be the identity
operator. This allows us to better separate different objects

from each other. In our results, we have put a value of zero
for our initial guess of Ψint in the above shape-reconstruction
form.

4. EXPERIMENTAL DATA AND RESULTS
Human breathing data were acquired from a healthy young
male subject during normal breathing while seated. Elec-
trodes were placed around the chest at the 6th intercostal space.
EIT surface potential data corresponds to end-expiratory, and
end-inspiratory cycles. Images were reconstructed on a mesh
roughly conforming to the anatomy of the subject.

We tested the suitablility of the LSRM for lung data using
the breathing data. Fig. 3 shows the reconstructed images for
one stage of breathing cycle using eithor the VBRM or the
LSRM. The reconstructed image by the LSRM represents the
air distribution isnide the lungs after 10 iterations (fig. 3(c)).
As inspired air increases, the resistivity of the lungs increases
which has been shown as blue regions in the reconstructed
images in fig. 3. The reconstructed images show the supe-
riority of the LSRM with respect to the VBRM in terms of
creating sharper reconstructions with larger contrasts at the
interface between the inclusion and the background, present-
ing step change of conductivity.

The frame # 20 of breathing achieved from a real data

(a)

shape based reconstructed images using level set

(b)

the minimum residue is ocurred in iteration 12and is equal to 24322.927

(c)

Fig. 3: level set based reconstruction algorithm using a dif-
ference solver for breathing data (scale=1). (a) The lung re-
constructed image using GN approach. (b) The iterations of
the LSRM for the same lung image in (a). (c) The final lung
reconstructed image using the LSRM.

5. CONCLUSION AND DISCUSSION
We proposed the LSRM in difference mode for real data of
breathing, which have not already been investigated for EIT.
The inverse solution of Guass-Newton formula updates the
sensitivity matrix and consequently the LSF with every itera-
tion, dividing the medium into two maximally homogeneous
areas; the foreground and the background. The LSRM de-
picts the capability of finding the big conductivity changes at
the interface between lung and the background (fig. 3). Due
to the update sensitivity matrix has been calculated on a nar-
row band region, involving the elements sharing an edge with
the interface between foreground and background (see fig. 2),
the LSRM is faster and less computationally expensive com-
paring with the VBRM.

There are many cases of inverse problems where more
than two phases need to be reconstructed from given data.



For these applications, novel level set descriptions have to be
developed to model these multi-phase situations in an effi-
cient way, such as the Color level set technique [23]. In the
original color level set technique, n LSFs are used in order
to describe the evolution of up to m = 2n different phases.
This approach has also been investigated more theoretically in
[24]. Irishina et al. in [25] described four different breast tis-
sue types (skin, fatty tissue, fibroglandular tissue and a possi-
ble hidden tumor) by three different LSFs in a modified color
level set representation for the application of early breast can-
cer detection. In this work, the theoretically possible 23 = 8
different characteristic tissue values are enforced to fall into 4
different groups of characteristic tissue values.

Our results represents that the LSRM is suitable to be ap-
plied for EIT real data of breathing (fig. 3); Comparing with
the VBRM, the LSRM shows high quality and high contrast
lung images.

6. REFERENCES
[1] Loke M H, and Barker R D 1996a Rapid least-squares

inversion of apparent resistivity pseudo-sections using
quasi-Newton method Geophysical Prospecting vol 48
p 181

[2] Loke M H, Barker R D 1996b Practical techniques for
3D resistivity surveys and data inversion Geophysical
prospecting vol 44 p 499

[3] Church P, McFee J E, Gagnon S and Wort P 2006 Elec-
trical impedance tomographic imaging of buried land-
mines IEEE Transaction of Geoscience and Remote Sens-
ing vol 44 p 2407

[4] Soleimani M, Dorn O and Lionheart W R B 2006a A
Narrow-Band Level Set Method Applied to EIT in Brain
for Cryosurgery Monitoring IEEE Trans. Bio. Eng. vol 53
No 11

[5] Manwaring P, Halter R, Wan Y, Borsic A, Hartov A,
Paulsen K 2008 Arbitrary geometry patient interfaces for
breast cancer detection and monitoring with electrical
impedance tomography Conf Proc IEEE Eng Med Biol
Soc. p 1178

[6] Gao N, Zhu S A, He B 2006 A New Magnetic Resonance
Electrical Impedance Tomography (MREIT) Algorithm:
RSM-MREIT Algorithm with Applications to Estimation
of Human Head Conductivity Physics in Medicine and
Biology vol 51 p 3067

[7] McCann H, Polydorides N, Murrieta-Lee JC, Ge K,
Beatty P, Pomfrett CJ 2006 Sub-second functional imag-
ing by electrical impedance tomography Conf Proc IEEE
Eng Med Biol Soc. p 4269

[8] Osher S and Sethian J 1988 Fronts propagation with cur-
vature dependent speed: Algorithms based on hamilton-
jacobi formulations J. Computational Phys. vol 56 p 12

[9] Sethian J A 1999 Level Set Methods and Fast March-
ing Methods (2nd ed. Cambridge, U.K.: Cambridge Univ.
Press)

[10] Santosa V 1996 A level-set approach for inverse prob-
lems involving obstacles in ESAIM: Control, Optimiza-
tion and Calculus of Variations1 p 17

[11] Litman A, Lesselier D and Santosa F 1998 Reconstruc-
tion of a two-dimensional binary obstacle by controlled
evolution of a level-set Inverse Prob. vol 14 p 685

[12] Dorn O, Miller E L and Rappaport C M 2000 A shape
reconstruction method for electromagnetic tomography
using adjoint fields and level sets Inverse Prob. vol 16
p 1119

[13] Osher S and Paragios N 2003 Level Set Methods in Geo-
metric Level Set Methods in Imaging, Vision, and Graph-
ics (Eds. New York, NY: Springer) p 1

[14] Polydorides N, Lionheart W R B and McCann H 2002
Krylov subspace iterative techniques: On the detection of
brain activity with EIT IEEE Trans. Med. Imag. vol 21
no 6 p 596

[15] Boverman G, Khames M and Miller E L 2003 Recent
work in shape-based methods for diffusive inverse prob-
lems Review of Scientific Instruments p 2580

[16] Chan T F and Tai X C 2004 Level set and total varia-
tion regularization for elliptic inverse problems with dis-
continuous coefficients Journal of Computational Physics
p 40

[17] Soleimani M, Lionheart W R B and Dorn O 2006b
Level set reconstruction of conductivity and permittivity
from boundary electrical measurements using experimen-
tal data Inverse Problems in Science and Engineering
vol 14 No 2 p 193

[18] Soleimani M 2007 Level-Set Method Applied to Mag-
netic Induction Tomography using Experimental Data
Research in Nondestructive Evaluation vol 18 p 1

[19] Banasiak R and Soleimani M 2010 Shape based recon-
struction of experimental data in 3D electrical capaci-
tance tomography NDT&E International vol 43 p 241

[20] Adler A, Dai T and Lionheart W R B 2007 Temporal Im-
age Reconstruction in Electrical Impedance Tomography
Physiol. Meas., vol 28 p 1

[21] Cheney M, Isaacson D, Newell J C, Simske S and Goble
J C 1990 NOSER: an algorithm for solving the inverse
conductivity problem Int. J. Imaging Syst. Technol. vol 2
pp 66

[22] Adler A, Guardo R 1996 Electrical impedance tomog-
raphy: regularized imaging and contrast detection IEEE
Trans. Med. Imagingvol 15 pp 170

[23] Dorn O, Lesselier D 2009 Level set methods for in-
verse scatteringsome recent developments Inverse Prob-
lem vol 25 p 11

[24] DeCezaro A, Leito A, Tai X C 2009 On multiple level-
set regularization methods for inverse problems Inverse
Problem vol 25

[25] Irishina N, lvarez D, Dorn O, Moscoso M 2009 De-
tecting and imaging dielectric objects from real data:
A shape-based approach Mathematical and Computer
Modelling in press


