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Abstract. This study focuses on the noise statistics of the normalized data, in
time-difference imaging. The commonly practiced normalization procedure, represents
the normalized data as the ratio of two random variables. We provide closed form
expressions for computing estimates of the first, second order moments, and the
covariance matrix of normalized data. The expressions are derived using Taylor series
expansion method for the function of random variables (propagation of uncertainty,
delta method), and accurate provided that the signal to noise ratio of the reference
measurement is larger than 16 dB. The analysis presented here, provides an explanation
as well as insight, into the potential cause and presence of spikes in normalized data.
Furthermore, we demonstrate that the statistics of normalized data, is significantly
different to that of the raw measurements. We validate the closed form expressions
using a Monte-Carlo method. We also conclude, that a minimum SNR of 13 dB is
required for the reference measurement, in order to guarantee the existence of moments,
and to ensure the accuracy of reconstructed images.

1. Introduction

Electrical impedance tomography is a low frequency imaging modality [1, 2]. It

involves estimating the unknown electromagnetic properties, namely the permittivity

and conductivity in a given domain from a finite number of voltage measurements made

on it’s boundary [3]. It is therefore a parameter estimation problem, and is the subject

of much interest in inverse problems and signal processing [4, 5].

This paper focuses on the noise statistics of normalized data in time-difference imaging.

The normalization procedure implemented in the freely distributed software package

(EIDORS) [6], represents the normalized data as the ratio of two random variables.

Moreover, at times, large unexpected spikes are observed in the normalized data. If the

measurement noise is an additive Gaussian random process, then the normalized data

will have a Cauchy distribution [7]. It is well known that the Cauchy distribution is an

example of a distribution which has no mean, variance or higher order moments defined

[7, 8]. However if the signal to noise ratio (SNR) of the reference measurement is above

13 dB, then estimates of the mean and variance may be obtained numerically [7, 9, 8].



The Statistics of Normalized Data in Electrical Impedance Tomography. 2

Under the stated condition, one can then obtain an estimate of the covariance matrix

of the normalized data. This matrix features explicitly in the Gauss-Newton solver,

Kalman filter, and the Cramér Rao Bound analysis [10, 3, 5, 11].

The outline of the paper is follows : In section 2, we formulate the problem and describe

the normalization procedure in time-difference imaging. In section 3, we provide closed

form expressions for approximating the first, and second order moments of normalized

data. Moreover, we outline a method for computing the non-diagonal elements of the

covariance matrix. In section 4, we validate the closed form expressions using a Monte-

Carlo method. Finally, the conclusion of this study is discussed in section 5.

2. Formulation of the Problem

Time-difference imaging is a linearized solution to the nonlinear estimation problem

[12, 13, 10, 3]. We consider, an underlying probability space (Ω,F ,P)[8]. Where, Ω

denotes the sample space, F is a sigma field on Ω, and P : F → [0, 1] is the probability

measure. The voltage measurements represent a discrete time stochastic process. This

can be expressed succintly by v : Ω × N+ → RM ( ∀k ∈ N+,v[k] : Ω → RM). Where,

M denotes the dimension of the measurement vector. In practice, only a finite number

of samples can be recorded. We denote the total number of discrete observations by

Ns. The normalization procedure involves selecting a reference time index, denoted by

k0 ≤ Ns. The voltages measured at time index k0 are used to form difference voltages.

The normalized difference voltages are computed using the expression below

δvi[k] =
vi[k]

vi[k0]
− 1; 1 ≤ i ≤ M (1)

It is clear from equation (1), that the normalization procedure results in the ratio of

two random variables. As a result, δv[k] may not have first and second order moments

(i.e E(δvi) = ±∞, and VAR(δvi) = ∞). It is by this, that we mean that the first and

second order moments do not exist. If they exist, then the objective is to compute the

covariance matrix of the normalized voltages denoted here, by Cδv.

3. Covariance Matrix

The covariance matrix of normalized data features explicitly in the expressions for image

reconstruction and lower bound analysis [14, 15, 10, 3, 5, 11]. One must therefore, ensure

that is it is computed accurately. The elements of this matrix at time index k, can be

computed below by

[Cδv[k]]i,j = E
[( vi[k]

vi[k0]

vj[k]

vj[k0]

)]
− E

[ vi[k]

vi[k0]

]
E
[ vj[k]

vj[k0]

]
; (2)

The closed form expressions presented here, are based on a Taylor series expansion

method (propagation of uncertainty, delta method) [9], and accurate provided that the

SNR of the reference measurements is SR

NR
> 16 dB. We introduce the following notation
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for convenient Z = vi[k], W = vi[k0]. The mean (first order moment) reads as

E(δvi) = E
[ Z
W

]
− 1 ' µz

µw
− σzσwρz,w

µ2
w

+
µz
µ3
w

σ2
w − 1 (3)

The variance (second order moment) of the difference voltage is given by

VAR(δvi) = VAR
( Z
W
− 1
)
' σ2

z

µ2
w

− 2
(µzσzσwρz,w

µ3
w

)
+
µ2
zσ

2
w

µ4
w

(4)

Where µz, and σz, respectively denote the mean and variance of Z, and µw, σw
respectively denote the mean and variance of W . Here, ρz,w is the correlation coefficient

of the pair (Z,W ). It is clear from the expressions (3), and (4), that if µw → 0, then

E(δvi) → ±∞, and VAR(δvi) → ∞. This is the potential explanation behind the

presence of spikes in normalized data. The spikes will occur, if µw ' 0, or µw < 4σw.

However, If µw > 6σw ( SR

NR
> 16 dB), then VAR(δvi) <∞, and we have obtained an an

accurate estimate for diagonals of the covariance matrix Cδv. It should be noted that

expressions (3), and (4) do not require the assumption that the measurement noise is

additive Gaussian.

We now focus on computing, the non-diagonal elements of the covariance matrix Cδv. In

order to simplify the analytical expressions, for the non-diagonal elements, we make the

assumption, that the raw measurements are corrupted by a Gaussian random process.

It can be seen from expression (2), that (vi[k]vj[k], vi[k0]vj[k0]) form a product pair. We

must, first compute the mean, variance and the correlation coefficient of this product

pair. Once, these values are obtained, we can simply use expression (3) to compute the

expected value of this ratio. The remaining terms E
[
vi[k]
vi[k0]

]
E
[
vj [k]

vj [k0]

]
, can be computed

directly using expression (3).

We introduce the following set of notations for convenience: X1 = vi[k], X2 = vj[k],

X3 = vi[k0], X4 = vj[k0], σi,j = Cov(Xi,Xj), σ
2
i = Var(Xi), Z = X1X2 , and W = X3X4.

It is trivial to show that µz = EZ = σ1,2 + µ1µ2, and µw = EW = σ3,4 + µ3µ4. The

expression for Var(Z), is given below by

σ2
z = (µ1σ2)

2 + 2µ1µ2σ1,2 + (µ2σ1)
2 + (σ1σ2)

2 + σ2
1,2 (5)

By inspection, Var(W ) reads as

σ2
w = (µ3σ4)

2 + 2µ3µ4σ3,4 + (µ4σ3)
2 + (σ3σ4)

2 + σ2
3,4 (6)

The expression for Cov(Z,W ), is given below by

σz,w = µ1µ3σ2,4 + µ1µ4σ2,3 + µ2µ3σ1,4 + µ2µ4σ1,3 + σ1,3σ2,4 + σ1,4σ2,3 (7)

We obtain the correlation coefficient, using the simple relation ρz,w = σz,w

σzσw
. At this

stage, we have all the terms required, to compute E
[(

vi[k]
vi[k0]

vj [k]

vj [k0]

)]
using expression (3).

4. Results and Discussions

Here, we compare the analytical expressions presented in section 3, against a Monte-

Carlo simulation. It is worth noting that (VAR( Z
W

) < ∞) ⇒ (E[ Z
W

] < ∞). The
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Figure 1. This figure shows the first and second order moments of the ratio Z/W

as a function of 20 log µw

σw
on the x-axis. Black solid dotted line corresponds to the

Taylor expansion method, and red solid line with circle is the Monte-Carlo method.
The parameter are µz = 0.75, µw = 0.8, ρz,w = 0.5, σz = 0.15, and σw ∈ [0.029, 0.24].
Fig (a) is the plot of E[ ZW ] (first order moment), Fig (b) is the plot of VAR( ZW ) (second
order moment).

results are show in Fig. 1. The numerical results, are as expected, and agree well with

the theory. In Fig 1 (b), the Monte-Carlo simulations show, that when |µw| < 4σw
(20 log(µw

σw
) < 13 dB), then VAR( Z

W
) → ∞. This is a fundamental result in statistics,

and under such condition, it becomes difficult to compute an accurate mean and

variance. It is also clear that when, |µw| < 4σw (20 log 10( |µw|
σw

) < 13 dB), the mean

and variance computed using the Taylor method is no longer accurate. However, when

|µw| > 4σw (20 log 10( |µw|
σw

) > 13 dB), then the analytical approach begins to agree

well with the Monte-Carlo simulation, and this is particularly true for |µw| > 6σw
(20 log 10( |µw|

σw
) > 16 dB).

5. Conclusions

In this study, we have presented closed form expressions for computing the first and

second order statistics of the normalized data, in time-difference imaging. These

expressions are accurate provided that the signal to noise ratio of the reference

measurement is above 16 dB. Moreover, they provide an explanation and insight, into

the potential cause and presence of spikes in normalized data. We validate the closed

form expressions using a Monte-Carlo procedure. It is also concluded that in order to
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guarantee accuracy in time-difference imaging, one must ensure that the minimum SNR

of the reference measurement is above 13 dB.
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