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Abstract. Current methods for identifying ventilated lung regions utilizing electrical

impedance tomography (EIT) images rely on dividing the image into arbitrary regions

of interest (ROI), manually delineating ROI, or forming ROI with pixels whose signal

properties surpass an arbitrary threshold. In this article, we propose a novel application

of a data-driven classification method to identify ventilated lung ROI based on forming

k clusters from pixels with correlated signals. A standard first-order model for lung

mechanics is then applied to determine which ROI correspond to ventilated lung tissue.

We applied the method in an experimental study of 16 mechanically ventilated swine

in the supine position, which underwent changes in positive end-expiratory pressure

(PEEP) and fraction of inspired oxygen (FIO2). In each stage of the experimental

protocol, the method performed best with k = 4 and consistently identified 3 lung

tissue ROI and 1 boundary tissue ROI in 15 of the 16 subjects. When testing

for changes from baseline in lung position, tidal volume, and respiratory system

compliance, we found that PEEP displaced the ventilated lung region dorsally by 2

cm, decreased tidal volume by 1.3%, and increased the respiratory system compliance

time constant by 0.3 s. FIO2 decreased tidal volume by 0.7%. All effects were tested

at p < 0.05 with n = 16. These findings suggest that the proposed ROI detection

method is robust and sensitive to ventilation dynamics in the experimental setting.

Keywords: electrical impedance tomography, lung ventilation, pattern recognition,

cluster analysis, acute lung injury.

1. Introduction

Electrical impedance tomography (EIT) can be utilized as a noninvasive lung ventilation

imaging modality. EIT lung imaging shows promise as a valuable tool for the bedside
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monitoring of mechanically-ventilated patients in the intensive care unit (ICU) (Wolf

& Arnold 2006). In essence, EIT uses voltage and current stimulation patterns via a

series of electrodes in order to apply and measure electrical energy along the chest

circumference. These data are in turn used to determine changes in the regional

conductivity distribution in the chest as a regularized inverse solution of the generalized

Laplace equation (Adler et al. 2009). While improvements in the spatial resolution of

EIT remain an important pursuit for clinical applications, the present spatiotemporal

resolution and sensitivity to conductivity change have been shown to be sufficient for

monitoring regional lung ventilation (Frerichs et al. 1999). Observational studies in clinic

also suggest that EIT could play an important role in the treatment of lung disease,

such as in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)

(Victorino et al. 2004, Wolf & Arnold 2005).

The challenge of regionally monitoring lung ventilation in patients is formidable

because, according to computed tomography (CT) studies, ALI-ARDS affects lung tissue

heterogeneously (Gattinoni et al. 2006). Consequently, ventilated ICU patients exhibit

a variety of collapsed (atelectatic), properly recruited, and overdistended lung regions

(Wolf & Arnold 2006). This is compounded with the known gravitational effect that

produces a dorsoventral gradient of alveolar recruitment in supine patients (Frerichs

et al. 1996, Frerichs et al. 2003). However, the possibility of obtaining timely information

on regional lung tissue state during mechanical ventilation would provide valuable

insight on the regional effects of ventilation parameters for the development of EIT-

guided ventilation protocols to maximize proper recruitment and minimize atelectasis

and overdistension (Wolf & Arnold 2006). Indeed, recent clinical evidence shows that

patients with ARDS will respond differently to the application of positive end-expiratory

pressure (PEEP) depending on the potential recruitability of their lungs (Caironi

et al. 2010). While lung recruitability is currently determined during an isolated CT

scan, more information about the patient’s response could be obtained by continuously

monitoring mechanical ventilation using EIT. In this setting, the automatic classification

of lung tissues that respond distinctly during ventilation would be instrumental to study

the regional effects of ventilation protocols and apply these observations to optimize

them in a patient-specific and adaptive manner.

Currently, all proposed approaches to determining physiological parameters of

ventilation from EIT data may be classified as “model-based” techniques. Such

techniques fit data to a predefined set of specific parameters. They are effective in

finding patterns fitting the specified model; however, these approaches would overlook

potentially relevant patterns in the data which are distinct from the specified model. In

this work, we are motivated by the potential utility of data-driven techniques, which do

not require a particular model to be specified in order to search for structured patterns

in the data. We envision a complementary role for data- and model-driven techniques:

data-driven algorithms could help discover novel structure in exploratory studies, while

model-based algorithms have an enhanced specificity to identify a particular structure

in a clinical test.
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Toward this goal, here we show how data-driven classification can be used

to automatically distinguish distinct lung regions from EIT data based on tissue

expiratory dynamics. The proposed approach is based on data-driven methods for

functional brain imaging (Goutte et al. 1999, Jarmasz & Somorjai 2002, Gómez-Laberge

et al. 2008, Gómez-Laberge et al. 2011) involving: i) fuzzy cluster analysis for the

partitioning of EIT conductivity maps into regions with distinct conductivity dynamics,

and ii) a lung tissue classification model-based on regional conductivity dynamics. In

contrast to classical EIT analysis methods (Frerichs 2000), this approach does not

require predefined regions of interest for analysis; e.g., partitioning the image using

geometrical or regression models (Pulletz et al. 2006). Instead, the EIT data set is

automatically partitioned into regions, each exhibiting distinct dynamics. The results

demonstrate the classification of several lung regions having distinct temporal responses

to ventilation for an appropriate choice of clusters. This study also provides evidence

supporting i) the dorsoventral gradient of alveolar recruitment during ventilation in

the supine body position, ii) the expected increase in respiratory system compliance

when PEEP is applied, and iii) the decrease in variability of tidal volume with PEEP

and elevated fraction of inspired oxygen (FIO2). Furthermore, we introduce novel

analytical perspectives for EIT data based on the stability of clusters during the

variation of ventilation parameters and on the hierarchical progression of clusters for EIT

analysis. These aspects are demonstrated here to show their utility for the exploration

of ventilation responses in case studies.

2. Materials & Methods

The first section begins with a description of the animal lung ventilation model

with detail of the pharmacological materials and the ventilation protocol. Next, the

EIT instrumentation and materials are listed, and the data acquisition and image

reconstruction methods are described. The second section presents the analysis methods

used to classify ventilated lung regions. It begins with a pre-processing step to mitigate

unrelated physiological noise. Next, the data-driven clustering algorithm fuzzy k-means

is presented from an applied perspective. The section ends with a compliance model

used to classify data clusters that represent ventilated lung tissue. The third section

describes the approach used to compare results within the ventilation protocol and

between subjects. A spatial measure of lung displacement and a temporal measure of

respiratory system compliance and tidal volume are given.

2.1. Lung ventilation model and EIT imaging

A ventilation protocol inducing controlled changes in PEEP and FIO2 was performed on

sixteen anaesthetized pigs of mass 39 ± 4 kg in supine position, referred to as subjects

1-16. The study took place at the University Medical Center of Schleswig-Holstein,

Campus Kiel in Germany and was approved by the university committee for animal
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care. The animals were first sedated with azaperon (8 mg/kg) and then anaesthetized by

continuous intravenous infusion of propofol (6-12 mg/kg/h) and sufentanil (10 µg/kg/h).

Vecuronium bromide (0.1 mg/kg) was administered for muscle paralysis. Subsequently,

the animals were intubated and connected to a ventilator (Siemens Servo 900 C, Siemens-

Elema, Solna, Sweden). Hemodynamic and ventilatory parameters including heart

rate, carbon dioxide partial pressure (PCO2) in respired gas, arterial oxygen saturation

(SaO2), airway pressure and lung compliance were continuously monitored using the

S/5 anaesthesia monitoring system with a gas-density compensated module (M-CAIOV,

Datex Ohmeda, Helsinki, Finland). All animals were ventilated in a volume-controlled

mode with constant tidal volume, respiratory rate (20 breaths/min), and inspiration-to-

expiration ratio of 1:2 in order to maintain normocapnia (Pend−tidalCO2 35-45 mmHg).

Each animal underwent a ventilation protocol which began with a baseline state (15

min, PEEP 0 cmH2O, 0.21 FIO2) followed by a PEEP state (5 min, PEEP 5-10 cmH2O,

0.21 FIO2), an elevated FIO2 state (15 min, PEEP 0 cmH2O, 1.0 FIO2), and a return-to-

baseline state (15 min). Subjects 1-8 underwent PEEP at 5 cmH2O PEEP and subjects

9-16 at 10 cmH2O.

EIT data were acquired (Goe-MF II, Cardinal Health, Höchberg, Germany) with

sixteen Ag/AgCl electrodes (Blue Sensor BR-50-K, Ambu, Bad Nauheim, Germany)

that were evenly spaced around the chest circumference on the transverse plane at the

level of the sixth intercostal space. Electrical current (50 kHz, 5 mA rms) was injected

between all adjacent pairs of electrodes, while the remaining electrodes measured the

voltage with respect to a distal reference electrode, yielding one frame. During each

ventilation state of the protocol, 780 frames were acquired over one minute (13 frames/s).

Thus, for each animal, a one-minute EIT session was performed during each of the

four, 15-minute ventilation states of the protocol. The starting point of the EIT scan

was chosen on the final minute of each ventilation state in order to allow time for

the respiratory system to transition from the previous settings to the new settings.

Image reconstruction of the internal conductivity distribution was computed using a

one-step linearized Gauss-Newton estimate using a regularization penalty term based

on a Laplacian filter with hyperparameter value corresponding to a noise figure of 0.60

(Adler & Guardo 1996). These reconstructions were implemented in EIDORS (version

3.3) (Adler & Lionheart 2006) and produce normalized difference EIT data, which

measure conductivity change as ∆σ = (σ − σr)/σr, i.e., the fractional conductivity

change from a reference measurement σr (Adler et al. 2009). All conductivity data in

this work are presented as normalized conductivity ∆σ.

2.2. Data-driven EIT tissue classification

The EIT session is a time series for each image pixel of one-minute duration.

Approximately twenty breaths take place during the one-minute session. To mitigate

breath asynchronous signals (e.g., uncorrelated motion, heartbeat) a breath-averaged

EIT time series is produced. It represents the average conductivity change taking place
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Figure 1. Lung tissue classification method overview. The breath-averaged EIT time

series shows the progressive conductivity change during expiration (top left). The pixel

conductivity (∆σ) corresponding to the grey line through the EIT data is plotted for

the entire averaged-breath (bottom left), where time is on the abscissa and conductivity

is on the ordinate. The EIT data are clustered by the fuzzy k-means algorithm for k = 5

producing the membership maps in grayscale and centroids shown (right), where time

is on the abscissa and conductivity is on the ordinate. Data shown are from subject 1

at baseline.

in each pixel during a breath and is obtained as follows. First, a global time series

signal µ is computed, such that, at every time point t throughout the session, µ[t] is

the average of all pixel conductivity values. Then, the signal µ finding the local minima

corresponding to the maximally inflated lungs. The first and last partial breaths in

the session are discarded, and the remaining breaths are ensemble-averaged over the

shortest breath interval. We express the breath-averaged EIT time series as z = z[x, t]

for pixel index x ∈ N2 at time t. All subsequent analyses described in this article pertain

to z[x, t] computed for each part of the experimental paradigm.

All sessions in this study have 19-21 breaths of 2.77-2.92 s duration with the

exception of one session (subject 10) that ran for only 30 seconds and collected 10

breaths. All breath-averaged sessions have 36-38 time points Nt and Nx = 322

pixels arranged along the left-right (horizontal) and dorsoventral (vertical) axes. A

representative session (subject 1, baseline) is shown on the left side of Fig. 1. An

increase in conductivity during expiration is seen in this session. The conductivity in

the pixel indicated by the grey line through the time series is plotted for the entire

breath (∼2 s expiration followed by ∼1 s inspiration).

A data-driven approach is used to partition the pixels from z into k clusters with the

objective that the best correlated pixel time series are in the same cluster. Hence, the
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tissue contributing to each pixel may be classified based on its conductivity during the

ventilation protocol. The algorithm is called fuzzy k-means developed by (Dunn 1973)

and is based on the fuzzy set theory of (Zadeh 1965). The clusters in the solution assign

a membership, a real number 0 ≤ u ≤ 1, to each pixel x according to a correlation-based

metric d that measures the distance between the pixel time series z[x] and the average

time series of the cluster of pixels vi, called the cluster centroid (Dunn 1973). The

metric is called the hyperbolic correlation distance (Golay et al. 1998) and depends only

on the phase difference between time series

d(z[x],vi) =

√
1− r(z[x],vi)

1 + r(z[x],vi)
, (1)

where r(·, ·) is the Pearson product-moment correlation.

The memberships satisfying the solution form a k ×Nx matrix U = [u1, · · · ,uk]>,

where each vector contains the memberships for all pixels in z. The corresponding

centroids form a k×Nt matrix V = [v1, · · · ,vk]>, where each vector is the membership-

weighted average of all time series in z. The right side of Fig. 1 shows the solution of

the illustrated session for k = 5. Here, the membership vectors are mapped onto the

image with a grey intensity scale, and the centroid vectors are plotted as conductivity

change versus time. Technically, each time series z[x, t] for t = 1, . . . , Nt is mapped to

a point in the metric space (RNt , d). Given k and an initial partition U0, the algorithm

minimizes the least squares objective function

J(U,V, z) =
k∑
i=1

Nx∑
j=1

u2i [xj] d
2(z[xj],vi), (2)

where d(·, ·) is a distance function described below. Equation (2) is minimized by

iterating between the centroid computation

vi =

Nx∑
j=1

u2i [xj]xj

Nx∑
j=1

u2i [xj]

, for i = 1, . . . , k (3)

and the membership computation for each pixel x

ui[x] =
d−2(z[x],vi)
k∑
j=1

d−2(z[x],vj)

, for i = 1, . . . , k. (4)

The stopping criterion requires that the maximum Euclidean distance between iterations

of V be smaller than ε = ‖µ‖/1000. That is, the centroid vectors must not move in RNt

by more than one thousandth of the magnitude of the global time series vector.

In order to compare clusters between protocol ventilation states and between

sessions, a fixed number of clusters was chosen that produces stable partitions for the

largest number of sessions. Fig. 2 illustrates our idea of a stable partition during a
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Figure 2. Partition stability during state changes. A fictitious data set undergoing a

state change (direction of arrow) is partitioned with k = 2 (left) and k = 3 (right). In

the space (RN , d), the data points are scattered within a boundary (solid line) and are

most concentrated near three foci (crosses). The state changes causes a migration of

points from one focus to another. The unstable 2-partition shifts considerably during

the change, while the stable 3-partition remains in place.

state change. In the metric space, the data form three foci of data points. A 2-

partition (left panel) is unstable after the state change due to a migration of points from

one focus to another, while the 3-partition (right panel) is not disturbed by the state

change. The inter-state comparison of each cluster is accomplished by corresponding

the memberships U from all ventilation states back to the baseline state. This is done

by choosing the bijective correspondence between ventilation states that maximizes

the inner product between membership vectors. For each baseline vector uB,i, only

one vector from the PEEP state will correspond to uB,i because its inner product

〈uPEEP,j|uB,i〉 =
√∑

x uPEEP,j[x] uB,i[x] is largest from that state. The same process

is repeated for the elevated FIO2 and return-to-baseline ventilation states. Considerable

inconsistencies of the inner product between ventilation states are used to detect

unstable partitions.

In each session, the clusters that represent ventilated lung tissue are classified by

fitting the expiration part of each centroid to a first order model

∆σ = A+B(1− e−t/τ ), (5)

where the time constant τ > 0 is in seconds, and A < 0 and B > 0 are conductivity

offset and scale parameters, respectively. In equation (5), ∆σ satisfies the step-response

signal for a circuit composed of a resistance element in series with a compliance element;

this model has been shown to be valid for lung mechanics during tidal breathing

(Webster 1998). In this model, the parameter τ is proportional to the product of airway

resistance and respiratory system compliance. According to the literature, we expect
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that changes in PEEP will primarily affect respiratory system compliance by distending

the parenchyma, and that changes in FIO2may have an opposite effect on by causing

absorption atelectasis (Rothen et al. 1995). Therefore, we hypothesized that changes

in respiratory system compliance between these ventilation states can be detected by

proportional changes in τ .

For example, only clusters 1-3 in Fig. 1 fit this model. Equation (5) is fit to the

data using a multivariate unconstrained nonlinear minimisation (Lagarias et al. 1998)

of the residual sum of squares. The initial parameters used are τ = 1 s, A = −0.1, and

B = 0.3; the residual error tolerance is 10−4. Clusters that fit the model are classified

as containing lung tissue and are subsequently included in the inter-session analysis.

2.3. Plethysmographic surrogate measures using EIT

The effects of PEEP and elevated FIO2 are investigated by analysing the conductivity

changes in lung tissue, which are used as measures of i) the displacement of lung

ventilation distribution (we use the term “lung displacement” for brevity), and ii)

expiratory dynamics between ventilation states. Although each centroid provides a

good representation of the dynamics in a cluster, they should not be used for parameter

estimation of the underlying data z. This is evident by observing that in (3), the

centroid vi differs from the membership-weighted average of the data by a multiplicative

constant. Consequently, for parameter estimation of the data, we use U to compute

the membership-weighted averages ṽi =
∑

x z[x] ui[x]/
∑

x ui[x]. Moreover, the fuzzy k-

means algorithm adjusts U and V simultaneously to converge to the optimal k-partition

in the least squares sense. Thus, to avoid the redundancy of inter-state changes in ṽi
resulting merely from changes in ui, the lung displacement analysis is performed while

fixing ṽi across ventilation states, and in turn, the dynamical analysis is done with ui
fixed.

Inter-state estimates of lung displacement are performed by calculating the centre

of mass x̄ for each lung tissue cluster. The baseline ṽB,i of these clusters are correlated

with all pixel time series for each state to produce a correlation map r[x] > θ for a

preset threshold θ. For each ṽi-fixed cluster, the displacement of x̄ is computed across

all ventilation states. Inter-state estimates of respiratory system compliance and tidal

volume are performed by fitting (5) to ṽi of each lung tissue cluster. For these baseline

clusters, the membership-weighted averages ṽi compute the model parameters of (5)

across all ventilation states. Data from each ventilation state are compared to ‘Baseline

I’ using a two-tailed paired t-test with a type I error rate of α = 0.05.

3. Results

For each subject, EIT images were reconstructed for each ventilation state and were

analyzed using the proposed algorithm as follows: i) fuzzy cluster analysis to partition

EIT images into distinct regions, ii) lung tissue classification based on regional image
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Figure 3. Hierarchical progression of fuzzy k-means clustering. The membership

maps in grayscale from the data set in figure 1 (subject 1 at baseline) are presented

for k = 1, . . . , 6. The clusters between subsequent partitions form a hierarchical

progression demonstrating the consistency of the algorithm applied to these data.

The thickness of the arrows indicates the similarity between clusters in subsequent

partitions.

dynamics, and iii) the estimation of standard ventilation parameters from EIT data.

3.1. Hierarchical progression of the k-partitions

The consistency of the algorithm is verified by examining the relationship between

subsequent k-partitions for increasing k. As we intuitively expect, the clusters with

largest variance in the k-partition are further subdivided in the (k+1)-partition, and the

remaining clusters stay relatively unchanged. This hierarchical progression is shown in

Fig. 3, using the same data set from Fig. 1 (subject 1 at baseline), where the membership

maps are shown for k = 1, . . . , 6. The arrows illustrate the relationship between k and

k+1 partitions; the thickness of each arrow qualitatively describes the similarity between

the clusters. At k = 2, the boundary cluster first appears (bottom cluster) and remains

intact afterward. This boundary signal is the well known consequence of chest wall

expansion and contraction during breathing (Adler et al. 1996). Next, at k = 3, the

main contribution from the lungs appears (top cluster); the middle cluster in k = 3

progressively splits until k = 6. This hierarchical behaviour was seen for all 64 data sets

used in this study (not shown) and demonstrates the consistency of the algorithm.
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3.2. Partition stability during ventilation protocol

The order in which the regions subdivide as k grows is informative of the heterogeneity

of the data set. Typically, incrementing k leads to the splitting of only one cluster; i.e.,

the one with the largest variance. Finally, we also observe that the average membership

value of each cluster decreases as k grows. Figure 3 also illustrates this effect as the

number of dark grey pixels in each cluster increases with k. These observations led

us to avoid seeking a single value for k but instead to use a general approach that also

considers how k affects the stability of the partitions throughout the ventilation protocol

for each session.

In this 16-subject study, k = 4 yields fifteen subjects with stable partitions

throughout the baseline, PEEP, FIO2, and return-to-baseline ventilation states. These

partitions consistently identify one boundary region and three distinct lung regions

stratified in the dorsoventral direction throughout the ventilation protocol. Subject 12

contains unstable 4-partitions at PEEP, FIO2, and return-to-baseline. At k = 5, seven

sessions have stable partitions that identify the regions described and an additional

cluster with an attenuated ventilation response which involves the ventral area near

the heart. These regions, however, are not as consistently clustered as for k = 4.

Figure 4 illustrates a stable 5-partition (subject 1) throughout the ventilation protocol,

where clusters 1-3 fit the compliance model. The remaining nine subjects have unstable

5-partitions and, interestingly, seven of them have instabilities only occurring during

PEEP. Figure 5 demonstrates one of these seven cases (subject 14) where the partition

becomes unstable during PEEP and is subsequently restored. Lung region cluster 3 is

split (green lines), and boundary clusters 4 and 5 are merged (blue lines) only during

PEEP and are restored afterward. The two remaining unstable subjects are 11 and 12,

having instabilities during FIO2 and return-to-baseline, respectively. Analysis at k = 6

yields five stable subjects and nine PEEP, one FIO2, and one return-to-baseline unstable

subjects. A strong cardiac artifact is also present in five of the subjects, regardless of

the k value used. For example, Fig. 5 also shows a 2 Hz frequency artifact (red box),

which matches the heart rate of 128 bpm (2.1 Hz) recorded at the time of acquisition.

3.3. Lung displacement, compliance, and tidal volume

EIT-based measures of lung displacement, compliance, and tidal volume are estimated

using the results from k = 4, which yields eleven subjects with stable partitions and

without cardiac artifact. For each subject, the clusters that fit the compliance model

(5) are selected for the parameter estimation. In this case, 3 clusters per session

were selected, yielding 33 measurements for parameter estimation for each state. In

a preliminary approach, we overestimate the standard error of the mean (SEM) by

dividing the standard deviation of the 33 measurements by
√

11.

Summary results are shown in Fig. 6(a) for the centre of mass as a fractional distance

from the image centre relative to the thoracic diameter, in Fig. 6(b) for the compliance

model scaling parameter B in conductivity units ∆σ, and in Fig. 6(c) for the compliance
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Figure 4. Stable 5-partition throughout the ventilation protocol. Solution from

subject 1 demonstrates a stable partition as was observed in 7 of 16 subjects.

Columns represent the k = 5 membership maps in grayscale (left) for all ventilation

states arranged in rows. The corresponding cluster centroids are shown in the same

configuration (right), where time is on the abscissa and conductivity is on the ordinate.

The boundary cluster 5 and clusters 1-3 containing lung tissue are consistently found.

Cluster 4, however, varies between cases, exhibiting an attenuated compliance or

boundary movement signal.

model time constant τ in seconds. These represent changes between ventilation states

of lung position, tidal volume, and respiratory system compliance, respectively. For the

centre of mass estimates, we pre-selected a threshold value of θ = 0.97 for all subjects

based on a visual check to ensure the resulting correlation maps reasonably represent

the membership maps obtained during cluster analysis.

These results suggest that PEEP and FIO2 have appreciable effects on EIT data.

In none of the graphs, however, is the Baseline II state significantly different from the

Baseline I. There is a significant lung displacement in the dorsal direction by 1% of

the thoracic diameter (2 cm) when PEEP is applied (p < 0.05). The estimated time

constant during expiration increases significantly (p < 0.05) by 0.3 seconds when PEEP

is applied. Finally, the tidal volume estimates decrease significantly (p < 0.05) during

PEEP and FIO2 by 1.3% and 0.7%, respectively.

4. Discussion

In this article, a novel data-driven EIT approach to classify lung tissue based on

their expiratory dynamics is proposed. We demonstrate how such information could

be used to monitor how these distinctly-behaving tissues evolve during ventilation
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Figure 5. Unstable 5-partition during PEEP. Solution from subject 14 demonstrates

an unstable partition as was observed in 9 of the 16 subjects. Columns represent the

k = 5 membership maps in grayscale (left) for all ventilation states arranged in rows.

The corresponding cluster centroids are shown in the same configuration (right), where

time is on the abscissa and conductivity is on the ordinate. During PEEP, lung region

cluster 3 is split (green lines) and subsequently merged (blue lines), while the opposite

occurs for boundary clusters 4 and 5. Also, a cardiac artifact (red box) is seen during

PEEP.

protocol adjustments. The preliminary results shown here are encouraging because

they not only corroborate the known effects of PEEP but also demonstrate how

heterogeneously ventilated tissue can be identified and monitored. Namely, these

data corroborate the known dorsoventral gradient of alveolar recruitment during

supine ventilation, the expected increase in respiratory system compliance during

PEEP application, and the decrease in tidal volume during ventilation with PEEP

(Adler et al. 1996, Frerichs et al. 1996, Frerichs et al. 1999, Frerichs 2000, Wolf &

Arnold 2005, Wolf & Arnold 2006, Wolf & Arnold 2007, Meier et al. 2008). Interestingly,

our analysis did not reveal indications of atelectasis during the 15 minute protocol for

1.0 FIO2, despite its detection in previous studies using computed tomography during

comparable hyperoxic exposure in healthy (Brismar et al. 1985, Rothen et al. 1995) and

injured lungs (Neumann et al. 1998). In line with evidence suggesting that respiratory

system compliance is independent of atelectasis (Rothen et al. 1995), we conclude based

on our findings that the surrogate measures of respiratory system compliance proposed

here are also unaffected by the FIO2. Therefore, while the proposed measurements

are sensitive to PEEP, and potentially PEEP-induced overdistension, complementary

measures are likely required to indicate the presence of elevated FIO2-induced atelectasis.

This study is of course not without limitations. Regarding the proposed methods,
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Figure 6. Estimates of changes in lung position, tidal volume, and respiratory system

compliance between ventilation states. (a), Lung displacement is represented by the

centre of mass coordinates shown as a fractional distance from the image centre relative

to the thoracic diameter. (b), Tidal volume is represented by the compliance model

scaling parameter B in conductivity units ∆σ. (c), Respiratory system compliance is

represented by the compliance model time constant τ in seconds. Parameter estimates

for each ventilation state were obtained from eleven sessions. Histograms represent the

sample mean and its standard error. A ventilation state whose mean differs significantly

from Baseline I is marked with an asterisk (two-tailed paired t-test with α = 0.05).

the algorithm stability and hierarchical progression used here to determine optimal k

values were qualitatively assessed. This could be improved using a quantitative approach

to determine inter-partition relationship, e.g., based on an inner product metric between

membership map vectors. Regarding the mechanical model, we utilized the parameter

τ to detect changes in respiratory system compliance between ventilation states where

PEEP and FIO2were varied. We do not rule out the possibility that concurrent changes

in airway resistance also influenced the changes in τ . Studies seeking to quantify

changes between treatments in either resistance or compliance (but not both) must
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keep the other variable fixed. Finally, the stages of our experimental protocol were

not randomized; therefore, the unequivocal determination of the effect of ventilation

states on EIT data cannot be established here. In particular, we cannot conclude on the

effects observed during FIO2, since they may be confounded with those of the preceding

PEEP maneuver. However, the initial baseline and return-to-baseline measurements

were consistent throughout the study.

Acquiring continuous lung images during mechanical ventilation that reveal the

proportion of atelectatic, recruited and overdistended tissue is of great value, since

it would provide new insight into how atelectasis and overdistension evolve during

ventilation and also how they relate to ICU patient outcome (Wolf & Arnold 2006).

Furthermore, such a technique would play a key role in developing protocols that

interactively maximise tissue recruitment while minimising ventilator-associated lung

injury.

In conclusion, the preliminary results presented here show how data-driven EIT lung

tissue classification is sensitive to the ventilatory dynamics of lung tissue. Our findings

suggest that data-driven EIT lung tissue classification is robust in an experimental

setting and may be useful to continually monitor regional lung injury at the bedside

during mechanical ventilation. Such findings would represent a significant step toward

the classification of the atelectasis, recruitment and overdistension of tissues affected by

ALI and ARDS.
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