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Abstract: We show that variability in the finite element model (FEM) geometry in the
EIT forward model can result in image artefacts in the reconstructed images. We explain
these artefacts as the result of changes in the projection of the anisotropic conductivity
tensor onto the FEM system matrix. This introduces anisotropic components into the
simulated voltages, which cannot be reconstructed onto an isotropic image, and appear
as artefacts. In order to address this problem, we show that it is possible to incorporate
a FEM vertex movement component into the formulation of the inverse problem. These
results suggest that it may be important to consider artefacts due to FE mesh geometry
in the formulation of EIT image reconstruction.

1 Introduction

In this paper, we describe the image reconstruction artefacts which occur in electrical
impedance tomography (EIT) images due to limitations in the finite element models, and
show an algorithmic approach to limit such effects. The earliest approaches to EIT image
reconstruction were based on 2D circular approximations of the thorax[6]. However, since
such analytical models cannot describe electrical propagation in realistic body shapes, finite
element models were used. Other numerical models, such as those based on finite differences
[9] have been used, but are less popular, primarily because FE mesh elements can be easily
refined in regions of high electric field, typically near to electrodes. While the FEM litera-
ture is rich in terms of variety of model structure, most EIT research has used the simplest
FEM implementations. Simplex elements are chosen (triangles in 2D and tetrahedrons in
3D) and conductivity is modelled as piecewise constant (so that changes in conductivity
occur only at element boundaries). Such choices are reasonable: all FE meshing packages
provide good support for simplex elements, and anatomically realistic conductivity changes
do occur abruptly at organ boundaries. The most common models use first order elements.
Physically, such elements may be modelled by a resistor network[8], which has been used as
the basis for a physical resistor network model of the medium [4]. On the other hand, FEM
model errors decrease linearly with element size for first order FEMs, while the rate of error
decrease is larger for higher order models.

The most common approach to image reconstruction in EIT has been to parametrize
the conductivity distribution, x, based on the FEM element (or vertex) geometry. The
conductivity (or conductivity change) distribution, x̂ is calculated from data (or difference
data), y as

x̂ = arg min
x

‖y − F (x)‖2

Σ−1

n

+ ‖x− x0‖2

Σ−1

x

(1)

where F (x) represents the FEM, Σn the noise covariance, and x0, and Σx the prior expected
mean and covariance. In this way, reconstructed image is the one which, by varying the
FEM conductivity parameters, best fits the data.

In this paper, we report that this approach to image reconstruction is very sensitive
to any geometrical variability in the FEM. For example, small changes in the positions of
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internal nodes, such that the same conductivity distribution is represented, can result in large
image reconstruction artefacts. This effect was unexpected, since the voltage distribution
simulated by the FEM is accurate even for moderately dense models. This effect may explain
a few puzzling results. For example, studies of electrode movement have often used FEM
simulations to show that unacceptable artefacts occur for very small electrode displacements
(under 1%) (eg. [2]); while, experimentally, electrode movements an order of magnitude
greater still permit usable images.

2 Geometry variability example

In this section, we show how re-meshing around a circular object can introduce large artefacts
into the reconstructed difference images. The easiest (and most common) way to simulate
a target in a medium is to use a single FEM to select and then interpolate which elements
are part of the target. There is no change to the underlying FEM, and thus no model
noise in the images. A more accurate representation of a target is to create a target region
within the FEM and to remesh around it. This means that the mesh changes between each
target position, not only near the target, but throughout the FEM due to the propagation
of changes in triangularization.
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Figure 1: A: Simulation FEMs and simulated conductivity target positions in blue circle. Electrode
nodes are indicated in green. An inner region surrounding a target is shown. Left: Coarse meshes
(maximum mesh size of 0.16, 1441 triangles) Right: Fine meshes (maximum mesh size of 0.07,
1941 triangles) Top: Meshes with no adaptation for target. Element conductivity is defined by
region membership. Bottom: Meshes adapted to target region. B: Reconstructed difference images
calculated from the simulation FEMs (A) on a 576 element 2D mesh. In each case, the homogeneous
data were simulated on the unadapted mesh. The target position is indicated by the blue circle.

To illustrate this process, Fig. 1 shows 2D circular FEMs with 16 electrodes with local
refinement of the FEM near each electrode. Coarse and fine meshes are shown by controlling
the maximum permissible element size. Two different strategies to specify the region of a
simulated conductivity target region are shown. On top, the mesh is not adapted to the
target. The conductivity of each element is selected based on the membership in the target
region (an element with 50% of its area in the region will have a target conductivity of
the average of the background and target region). On the bottom, the FEM is adapted
to the target region, resulting in mesh geometry changes which propagate throughout the
FEM. EIT data were simulated using a Sheffield-type adjacent stimulation and measurement
protocol, and images are reconstructed on a simple regular mesh geometry. A one-step Gauss
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Newton reconstruction is used with a scaled diagonal image prior[3], and the regularization
parameter is chosen such that the noise figure is 1.0[1].

Images in which the simulation mesh geometry matched exactly (top) show the expected
location and shape. However, if the mesh geometry changes between difference data simu-
lations (bottom) artefacts occur throughout the images. As shown in Fig. 1, reconstruction
artefacts reduce as the FEM density increases. This is largely due to the increase in accuracy
of the FEM model with decreasing mesh size. Similar artefacts occur for 3D simulations;
however, it the effect is considerably larger because many more FEM elements are required
to achieve the same level of refinement in 3D compared to 2D.

3 Compensation for image reconstruction errors

We hypothesize that these image reconstruction errors result largely from an effect equivalent
to anisotropic conductivity in the simulated EIT measurements. A selection of a particular
FEM geometry is equivalent to a particular representation of the (potentially anisotropic)
conductivity tensors on each tetrahedron onto the FEM system matrix. Any change in
the FEM geometry projects this conductivity tensor differently, resulting in slightly dif-
ferent anisotropic “content” in the simulated voltages. During image reconstruction, such
anisotropic content cannot be explained by an inverse model parametrized only for isotropic
conductivity. These differences then appear as noise, which is projected as artefacts into the
reconstructed image.

Since a first-order FE model is equivalent to a resistor on each FE mesh edge, the max-
imum number of degrees of freedom in the FE model is the number of edges. Since there
are more edges than elements (by approx 3

2
in 2D), not all FEM matrices correspond to

isotropic conductivities, and any distortion of the mesh will (typically) be consistent with
an anisotropic conductivity on the original mesh.

This hypothesis suggests that the origin of these image errors is the geometrical con-
straints of the inverse model. The reconstruction process is not allowed to vary the FEM
geometry to “explain” the measurements, but must only use isotropic conductivities on each
element. Therefore, we can address this issue by parametrizing both the element conductiv-
ities and the positions of each vertex. This allows the image reconstruction to “jiggle” the
node locations to avoid pushing artefacts into the conductivity images.

4 Image Reconstruction Formulation

We consider EIT difference measurements, y = F (∆σ), originating from isotropic conduc-
tivity changes ∆σ and a FEM model, F (∆σ, ∆p), with vertex positions ∆p. Based on
this model, we calculate a conductivity Jacobian, Jc – the sensitivity of measurements to
conductivity changes; and a movement Jacobian, Jm – the sensitivity of measurements to
vertex position movements.

[Jc]ij =
∂Fi(∆σ, ∆p)

∂[∆σ]j
, and [Jm]ij =

∂Fi(∆σ, ∆p)

∂[∆p]j
, (2)

The standard linear solution, x̂, to (1) is

x̂ =
(
JtΣ−1

n J + Σ−1
x

)−1
JΣ−1

n y = ΣxJ
t
(
JΣxJ

t + Σn

)−1
y, (3)

assuming x0 = 0, as normally done for difference EIT.
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Normally, the parameters, x̂, represent only the conductivity change ∆σ. Instead, we
represent our scheme using the conductivity change and vertex movement as parameters
and: x̂ = [∆σt|∆pt]t and J = [Jc|Jm]. In this case, the prior Σx may be decomposed into
a conductivity changes Σc and movement Σm parts with no correlation assumed between
these parameters (following [7]), yielding:

x̂ = [ΣcJc|ΣmJm]t
(
JcΣcJ

t
c + JmΣmJt

m + Σn

)−1
y (4)

Since we are only interested in displaying the reconstructed conductivity change, ∆σ̂, the
standard and proposed reconstruction may be shown:

∆σ̂ =

{
ΣcJ

t
c

(
JcΣcJ

t
c + Σn

)−1
y standard

ΣcJ
t
c

(
JcΣcJ

t
c + JmΣmJt

m + Σn

)−1
y proposed

(5)

5 Results and Discussion

The standard and proposed image reconstruction approaches (5) were implemented for the
simulated data of Fig. 1, and are shown in Fig. 2. The proposed approach (bottom row)
shows a significant reduction in image artefacts, but roughly the same resolution of the
conductivity target. Σm was chosen as the scaled identity matrix with an amplitude such
that the noise figure[1] reduced from 1.0 (standard) to 0.8 (proposed).
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Figure 2: Reconstructed difference images calculated as in Fig. 1 for changes in FEM geometry.
The target position is indicated by the blue circle. A: Standard approach using Left: Coarse Mesh,
Right: Fine Mesh B: Proposed approach using Left: Coarse Mesh, Right: Fine Mesh.

Based on these results, we note the following observations. First, these results explain
the strange effect that EIT simulations from adapted target meshes can show large artefacts.
It also explains why simulations of electrode movement show much larger effects than are
observed. Second, these results suggest that EIT image reconstruction should allow for
anisotropic behaviour in the measured signals. Thus, this work calls for consideration of FE
models and the assumption of isotropic conductivity in EIT.
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