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Abstract – Multi-sensor monitoring devices that use skin surface or 

implanted sensors are susceptible to changes in temperature, sweat, 

and movement, such that the measured data cannot be used. This 

paper presents an automatic approach to detect such erroneous 

sensors. It is based on the assumption that valid measurements are 

related by a reconstruction model, while measurements from 

erroneous sensors are unrelated. The method estimates the data at 

each sensor based on the measurements from all other sensors, and 

compares it to the measurements. The sensor-data match is tested 

using ANOVA to detect the presence of an erroneous sensor. The 

method was tested on simulated and experimental data of Electrical 

Impedance Tomography (EIT) and ECG data which showed 

consistent identification of erroneous electrodes. 
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I. INTRODUCTION 

Health care systems worldwide are under pressure to 

deliver a better and more efficient service. One approach to 

help deliver such services is technology to enable home and 

mobile care; several studies have shown that such care 

improves the patient's quality of life and outcomes, while 

reducing cost [14, 15]. A key technological component 

required to enable such care is non-invasive portable 

biomedical monitoring devices. Such technology enables 

continuous measurement of parameters as heart and lung 

activity, blood chemical concentrations, and blood pressure 

levels. While a growing market provides great incentive for 

the researchers and companies in the field, there are difficult 

challenges associated with design of these devices. The 

monitoring devices typically use skin surface or implanted 

sensors to measure the electrical and optical properties of the 

body. These sensors are susceptible to changes in 

temperature, sweat, and movement with exercise and 

breathing. For example, it has been shown that electrodes on 

the body surface give false readings due to electronic 

interference [4], patient movement, or sweat and peripheral 

edema [6], especially in long term monitoring applications 

[5].  

 

For reliable monitoring of patients, it is thus important to 

detect sensor errors. Unfortunately, it appears that strategies 

to detect such errors are rarely published and most strategies 

are largely heuristic measures to verify the goodness of data. 

One common approach is detection based on identification of 

unusually large changes in the measurements. The 

disadvantage is the difficulty of defining an appropriate 

threshold for unusual measurements that can be applied 

across different devices. 

 

In this work, we address this issue by proposing an 

algorithmic framework for detection of unreliable 

measurements and erroneous sensors in multi-sensor devices 

for biomedical instrumentation. This paper develops an 

approach based on explicitly modeling the sensor and device 

characteristics and using the interrelationships to ascertain the 

goodness of measurements. 

II. METHODS – ALGORITHM 

This paper extends the method developed in [1, 2] for 

electrical impedance tomography (EIT) systems to calculate a 

measure of sensor reliability for general multi-sensor systems 

with and without known system model. It identifies sensors 

subject to data errors or variability, and calculates a measure 

of the reliability of each sensor's data. Essentially, the 

algorithm works by inversing the detection criterion: rather 

than looking for errors, the approach looks for good data, 

defined by its consistency with other sensor measurements 

and prior models of sensor behavior.  

A. System Model 

We assume that the system model of a multi-sensor 

device may be linearized around an operating point, and 

expressed as: 

                                         Hxz =                                           (1)                 

where H is the linearized observation of model, z is a vector 

representation of measurements from all sensors, and x is the 

vector of system model parameters. H is also known as a 

Jacobean or Sensitivity matrix where it is expressed as a 

partial derivative of z with respect to x.  
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Based on the system model, we calculate a reconstruction 

model (inverse of the system model) expressed as: 

 

                                             Rzx̂ =                                     (3) 



where R the reconstruction model, and x̂  is the estimate of 

the system model. 

 

The reconstruction model (R) is determined by inverting 

the system model equation. If the system model fulfills 

Hadamard condition [6], then R can be determined through 

direct inversion. Otherwise, R can be determined using a 

regularization scheme, such as that of [1]. In a multi-sensor 

device the characteristics of the system model could either be 

known or unknown, hence requiring different approaches of 

determining the observation and reconstruction model.  

 

If the system model is known the underlying principle 

that defines H and R is pre-determined. [1] shows an 

example of a known system model in Electrical Impedance 

Tomography (EIT). EIT is an imaging technique which 

calculates the electrical conductivity distribution within a 

medium from electrical measurements made at a series of 

electrodes on the medium surface. The observation model 

(equation 4) defined through a generalized relationship 

between the background conductivity (x) of the medium and 

the measurements at the boundary (z) and is therefore 

considered to be known.  
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x is the difference in conductivity of the medium: 

                                         21 σσ −=x                                     (5) 

and z is the normalized difference in the voltage 

measurements  v
1

i and  v
2

i  which represents the i
th

 voltage 

measurements at time t
1 
and t

2
, respectively: 

                                        21 vv ii −=z                                       (6) 

Since this system does not fulfill the Hadamard condition [6], 

R is determined through a regularization scheme as shown in 

[1] to solve equation 2.  

 

If the system model is unknown, H and R can only be 

deduced by applying generalized techniques such as Principle 

Component Analysis (PCA) or Independent Component 

Analysis (ICA) on the test data [9, 10]. One such example of 

a multi-sensor system with unknown system model is 

Electrocardiogram (ECG). The system uses multiple surface 

electrodes to monitor the heart activity of a patient. The 

measured values from each sensor are organized as column 

vectors in the matrix z. To enforce non-singularity the matrix 

is multiplied by its transpose: 

                                            D=z*z
T 

                                     (7) 

Applying SVD to the square matrix D provides us the 

decomposition into eigenvectors and eigenvalues: 

                                             D=UΣV
T                                                    

(8) 

where V is the eigenvector and Σ is column matrix of the 

eigenvalue, The top n dominant eigenvectors 

(
nv,...,v,v,v 321

) can be used to simulate an observation 

model (equation 9). Therefore, the eigenvectors can be used 

to build the observation model H, where each column of H 

represents the eigenvectors. 
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The inverse of the system model, R, is determined through 

direct inversion:  

                                    R=(H
T
H)

-1
H

T
                                  (10) 

B. Estimation Scheme 

The estimation scheme is based on the assumption that a 

set of good sensors produces internally consistent data as 

discussed in [3]. Such consistency can be verified by 

estimating the measured data at each sensor in the set, using 

only measurements on other sensors, and then comparing the 

estimate to the actual data measured. The general procedure 

for the algorithm is outlined as follows:  

 

 

Figure 1: Block Diagram of calculation for estimation error of Ej. 
R(si,sj) is the inverse of the system model without the contribution 

from si sj. Based on the estimate of system model parameters x̂ and 

Hj , the measurement from sensor sj can be reconstructed. The 
difference between the real data and the estimate provides us with an 
estimation error.   

We iterate over each sensor si in set A (containing all 

sensors), forming a set A′ (all sensors not including si). In a 

known system model, the consistency of the data within A’ is 

tested by removing sj and estimating its result based on data 

from all other remaining sensors. The sum of the estimation 

error (Ti) from all possible sj within A’ gives an indication of 

the status of si. When an erroneous sensor is removed, the 

data that remains will be in agreement with the model. If the 

erroneous sensor is a part of the A’ set, the estimation error 

for all sensors within that specific A’ set will be high as the 

erroneous data would not be in agreement with the model.  

 

In devices with unknown system models, the system 

parameters, H and R, are estimated for all possible set of 

sensors by excluding one sensor at a time. In the presence of 

an erroneous sensor, the noise introduced into the system will 

dominate all other data coming from all other sensors. Hence, 

the eigenvectors are good descriptors of the dominant data 

from the erroneous sensors. Consequentially, a model that 

excludes the erroneous sensors has a high estimation error 
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jẑ



and a model that excludes the non-erroneous sensors results 

in a low estimation error. Therefore, the consistency test is 

the sum of estimation error (Ti) for sensor si within all 

possible A′. This approach stems from the fact that H and R 

are mainly descriptors of the data and more specifically the 

dominant noisy data. Therefore, the data fits the model only 

when the erroneous sensor is part of A’. 

 

In either case, Hj represents the rows of the sensitivity 

matrix H which correspond to measurements on sj. x̂  is then 

calculated from x̂ =R(si,sj)z, which excludes data from 

sensors si and sj. The estimate of z is determined using 

equation 1 and the estimation error (Ei,j) is determined for all 

possible sensor pairs si and sj. We have shown that Ei,j can be 

efficiently calculated in known system models by pre-

computing parameters which are independent of data [3]. 

C. Decision Parameter 

If all values of sum of estimation error (Ti) are low, the 

data set contains all “good” sensors; otherwise it contains at 

least one erroneous sensor. Ti values are tested against each 

other to detect if any are significantly less than the others. 

This is tested using Analysis of Variance (ANOVA) between 

Ei of all sensors in set A. For known system model, Ei 

represents a list of estimation errors from set A’ when sensor 

si is removed. For unknown system model, Ei represents a list 

of estimation errors for si calculated from all sets A’. 

 

Using the statistical terminology, Ei are referred to as 

Treatments [8]. ANOVA is used to determine the statistical 

similarity between the Ei’s by testing the equality of N 

Treatment means (µ1,µ2,µ3,…,µN) [8]. The treatment effect 

(τi) represents difference of an individual measurement from 

the overall mean (µ). The null hypothesis (H0) in this case is 

that no sensors are erroneous, and thus the treatment effect 

(τi) is equal to zero for all si in A. 

 

H0: τ1 = τ2 = τ3 =…= τN =0 

H1: τi ≠ 0  for at least one i 

 

Under the null hypothesis, each Treatment consists of µ with 

a random error component, with observations taken from the 

normal distribution of µ with overall variance (σ
2
). In this 

case, the estimation error values of A′ for each candidate 

sensor (si) are similar to one another. The hypothesis is tested 

by comparing two independent estimates of the population 

variance:  

 

1. Variance between µi and µ:    (µi-µ)
2
 

2. Variance within Treatments:  (Ei-µi)
2
 

 

The first variance determines the difference between 

Treatments and the second variance determines the error 

within each Treatment. From the above two variances, we 

calculate sum of squares of Treatments variances: 

                            SS
N

i
iT   ∑

=

−=
1

2)( µµ                          (11) 

and sum of squares of error variance:  

                    SS
N

i

N
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1 ,1

2
, )( µE               (12) 

By dividing SST and SSE by their respective degrees of 

freedom (N-2 and ((N-1)N)-1), the mean square Treatment 

(MST) and mean square error (MSE) are calculated. MSE is an 

unbiased estimate of the σ
2
 regardless of statistical difference 

between Treatments. On the other hand, MST is an unbiased 

estimate of the variance only if H0 is true. The ratio f0=MST/ 

MSE has an F-distribution with degree of freedom N-2 and 

(N-1)N-1. Hypothesis H0 is rejected if f0 > fα, N-2, (N-1)N-1 [8]. 

Thus, using ANOVA, we test if a data set has erroneous 

sensors, at significance level α=0.05.  

 

However, we do not know the location and number of 

erroneous sensors. To accomplish this task, we use Fisher’s 

Least Significant difference (LSD). LSD compares all pairs 

of means with the t-statistic. The pairs of means are 

considered significantly different if  

 

  |µi-µj| > LSD  

where, 

                              
n

2
tLSD 1-1)N(Nα/2,

EMS
−=                     (13) 

An erroneous sensor will have mean that is significantly 

different from others (p<0.05). On the other hand, a “good” 

sensor will be statistically similar to all other non-erroneous 

sensors.  

III. METHODS-EXPERIMENTAL 

The proposed algorithmic framework is to be applied for 

detection of unreliable measurements and erroneous sensors 

in multi-sensor devices for biomedical instrumentation. The 

Biomedical systems of EIT and ECG are used as examples.  

A. EIT Data 

EIT data are acquired by successively applying a low 

amplitude low frequency current across each pair of 

electrodes while measuring the voltage differences produced 

on all the other pairs of electrodes. The measurement system 

used for these experiments has 16 electrodes. In adjacent 

current drive pattern, two adjacent electrodes are used for 

current injection and the remaining electrodes are used to 

make voltage measurements. Overall, there are N×(N-3) 

measurements available when all electrodes give good data. 

However, when there is one erroneous electrode, the total 

number of measurements available is reduced to (N-3)×(N-4). 

Typically, with sixteen electrodes the remaining “good” data 

are sufficient to reconstruct a reasonable image [2]. 



B. ECG Data 

The system uses multiple surface electrodes to monitor 

the heart activity of a patient. Considering that these 

electrodes are monitoring the same medium, we would expect 

a relationship between the source (heart muscles) and 

sensors. A setup of the 12 lead ECG with 9 electrodes is used 

to acquire the data. There are 12 measurements: VI, VII and 

VIII, aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6. VI, VII and VIII 

and aVR, aVL, aVF are based on measurements from ΦL, ΦR, 

and ΦF. The remaining 6 measurements are from electrodes 

attached around the torso on the Transverse plane. V2 and 

aVF measure activity along the Sagittal plane. VI, VII and VIII, 

aVR, aVL, aVF measure heart activity along Frontal plane[11]. 

This shows that the electrodes measure the heart activity 

along a specific plane and the measurements are inter-related 

to use the estimation scheme.  

C. Simulated noise 

The noise in EIT and ECG data is considered to be non-

stationary since the mean and variance of the noise vary over 

time. However, the detection is performed over a time 

difference ∆t which is generally treated stationary Gaussian. 

Therefore, simulated erroneous data is generated using 

representative non-erroneous data and additive Gaussian 

noise. The low level signal of the difference measurement is 

usually dominated by noise. Therefore, the signal power is 

measured and the additive noise data has relative magnitude 

for each data point. A simulated erroneous data is assumed to 

have one faulty sensor and Gaussian noise is added to data 

that is related to the faulty sensor.  

IV. RESULTS 

A. Electrical Impedance Tomography(EIT) 

EIT Data were acquired from a previous study in which 

mechanically ventilated mongrel dogs were monitored with 

sixteen EIT electrodes spaced evenly around the shaved 

thorax [2, 13]. A representative set EIT data of ventilated 

dogs was used for data with no error (Figure 2A), and 

simulated erroneous data from electrode 5 was generated 

(Figure 2B). Applying the Fisher F-Test based decision 

parameter, we can look up the critical value at 95% with 

degree of freedom N-2 and (N-1)N-1. For this experiment the 

critical value corresponds to f0.05, 14, 239=1.67. In Figure 2A the 

ratio f0 is equal to 1.47, which is less than f0.05, 14, 239=1.67; 

and H0 cannot be reject at p<.05, and we conclude there are 

no erroneous electrodes. In Figure 2B, the electrode with 

errors has significantly lower Ti (p<0.05). The null hypothesis 

is rejected as the ratio f0=2.71 is significantly higher than f0.05, 

14, 239.  

 

To determine the sensitivity of the method, white 

Gaussian noise was added to the data of a particular electrode 

from a representative clean data. Data were calculated for 

SNR values from -50dB to 50dB, where simulations are 

repeated 100 times to calculate the error distribution. The 

resulting F ratio vs. SNR graph indicates the method can 

reliably detect an erroneous electrode when the SNR is below 

approximately 5dB (see Figure 3). 

 

  

Figure 2: Top: (A) Reconstructed conductivity distribution of a dog 
thorax with no electrode error. (B) Reconstructed conductivity 
distribution of dog thorax with simulated erroneous electrode data of 
SNR=-10dB to electrode 5. Electrodes are numbered in the clockwise 
direction starting at 12 o’clock position. Dark colors are regions of low 
conductivity. Bottom: (A) T vs. electrode graph shows consistency in 
the absence of no erroneous electrode. (B) T vs. electrode graph 
shows T for electrode 5 is much lower than the rest of the T values, 
suggesting that electrode 5 is erroneous 

−60−40−200204060

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

 
 

Figure 3: F statistic (± Std Dev) vs. SNR: Representative “good” data 
were used to analyze the sensitivity of the method. White Gaussian 
noise was added to electrode 5 (SNR: -50dB to 50dB). The 
experiment was repeated to determine the margin of error. The 
threshold for detection is at a SNR of 5dB. 
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B. Electrocardiogram (ECG) 

The ECG data were from the online database of [11]. We 

categorize the data into two classes: non-erroneous and 

erroneous data due to synthetic noise. The first data category 

is used to establish how well the scheme can estimate data 

based on the forward and inverse model. The second data 

category is used to observe the sensitivity of the data to noise.  

 

Before applying our sensor error detection scheme for 

ECG, we need to establish the number of independent sources 

that contribute to the ECG signal and determine its 

dimensionality. One way to establish dimensionality is by 

decomposing the data into its eigenvector and eigenvalue. 

The most dominant vectors are represented with large 

eigenvalues. The eigenvalue analysis shows that the 

maximum number of sources present for an ECG data is 

seven. As confirmation, [12] showed that ECG is generated 

due to electrical activity of seven different tissues of the heart 

that make up the typical QRS amplitude. Hence, the QRS 

amplitude is the linear sum of the action potential of the 

seven sources. The seven signals are generated in different 

times by different tissues and do not contribute information 

regarding other sources which makes them statistical 

independent. It is also clear to see that the signals are non-

Gaussian.  

 

A 12-Lead system measures activity over three 

measurement planes: V2 and aVF measure activity over the 

Sagittal plane (X-Z plane), aVR, aVL, I, II, aVF and III 

measure activity over the Frontal plane (Z-Y plane), and V1 

to V6 measure activity over the Transverse plane (X-Y plane). 

The possibility of estimating the measurement of a specific 

electrode from the other electrodes becomes difficult as only 

a fraction of the 12 leads are observing the data from the 

similar plane. Moreover, the data for Sagittal plane and 

Frontal plane is constructed out of 6 Leads determined from 3 

electrodes (measurement points) [12]. Any two Leads contain 

exactly the same information as the remaining four. 

Therefore, this characteristic violates the assumption that the 

data from each lead is an independent measure of ECG signal 

used to estimate error from a single electrode. In addition, the 

three measurement points are situated further away from the 

heart (limb, shoulder and ankle) making ECG signal weaker 

and susceptible to noise from EEG signal and other sources. 

For the above reasons the estimation scheme was only 

applied to electrodes along the Transverse plane on the chest. 

Figure 4, shows the original data from electrode 4 and its 

estimate based on the transverse plane. This figure 

demonstrates that data from the Transverse plane, based on H 

and R, created through SVD is sufficient as an estimate.  
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Figure 4: Original data (dotted line) and estimate (solid line) of original 
data: H and R estimated based on data of the transverse plane. The 
data is from electrode 4 (V1) 

Synthetic erroneous ECG data is generated by adding 

white Gaussian noise to a specific sensor data. This data is 

used to validate the detection scheme introduced in the 

previous section. Figure 5 shows an ECG data corrupted with 

White Gaussian noise of 0 dB SNR on data from electrode 4. 

When the detection scheme is applied, it is clear to see that 

the estimation error of all electrodes except electrode 4 is 

high. The corrupted data from electrode 4 is contributing to a 

model that cannot properly estimate the other electrodes. 

However, the f-value for the ECG data with no erroneous 

electrode is greater than fα, N-2, (N-1)N-1     
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Figure 5: (a) Corrupted ECG data from electrode 4 with 0dB noise 

The detection threshold of the method on Transverse 

plane is determined by adding White Gaussian noise from -50 

to 50 dB and plotting the F statistics vs. SNR. Looking at the 

resulting graph in Figure 6, we can clearly see a jump in the 

f-value after 0dB of SNR. The null hypothesis is rejected if 

the f-value is less than f0.01,4,29 = 4.12. Based on the above 

critical f-value, we can conclude that the system is sensitive 

to noise levels of 0dB for data on the transverse plane.  
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Figure 6: F vs. SNR: F statistic (± Std Dev) vs. SNR: Representative 
“good” data were used to analyze the sensitivity of the method. White 
Gaussian noise was added to electrode 4 (SNR: -50dB to 50dB). The 
experiment was repeated to determine the margin of error. The 
threshold for detection is at a SNR of 0dB.  

V. CONCLUSION 

In this paper, we have presented a method to 

automatically detect erroneous sensors in multi-sensor 

system, such as EIT and ECG. The method is based on the 

model that an erroneous sensor produces measurements 

inconsistent with those from other good sensors. Multi-sensor 

systems were divided into two categories: known and 

unknown system models. A known system model has an 

underlying relationship between the measurement and the 

medium that is independent of the data. Whereas an unknown 

system model, does not have an obvious underlying 

relationship and can only be deduced based on the available 

data.  

 

Based on these two system model definitions, an 

estimation scheme was developed to handle both scenarios. 

Results show that the method is able to correctly detect the 

presence of noise and identify the location of erroneous 

sensors in representative EIT and ECG data. The decision 

criterion is based on ANOVA and shows that detection of one 

or more erroneous sensor is feasible above a specific SNR 

level. White Gaussian noise was added to a specific 

electrode, as in Figure 2 and 5, and the algorithm was tested 

based on the appropriate estimation scheme.  

 

The analysis showed erroneous electrode in EIT can be 

detected at noise level of 5dB with p<0.05, see Figure 3. The 

result for ECG based on data from the transverse plane 

showed that detection of erroneous electrodes is possible 

above 0dB with p<0.01, see Figure 6. Our attempt to 

incorporate data from all 12-Leads failed due to lack of data 

independence as 6 of the Leads are determined from 3 

electrodes only. Moreover, the fact that several of the Leads 

acquired the data from different planes complicated the 

modeling. Nevertheless, the data acquired from the 6 

electrodes measuring ECG signal on the transverse plane was 

successfully used demonstrate the algorithm.  

 

Automatic detection of sensor errors in multi-sensor 

system has several possible applications. In offline 

processing, such a technique could identify and correct for 

such errors. More usefully, if implemented in multi-sensor 

monitoring equipment, it would be possible to alert staff who 

could then attend to the problem. However, for such online 

applications, the algorithm is still slow (5s) for real-time data 

analysis, but would permit erroneous sensor detection in the 

background. 
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