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Abstract – Recently, electrical impedance tomogra-
phy (EIT) has begun to see a significant clinical in-
terest for monitoring of ventilated patients. The key
capability of EIT is to provide real-time images of
the distribution of ventilation in the patient’s lungs.
However, most clinical and physiological research in
lung EIT is done using older and proprietary algo-
rithms; this is an obstacle to interpretation of EIT
results because the reconstructed images are not well
characterized. To address this issue, we are devel-
oping a consensus linear reconstruction algorithm for
lung EIT, called GREIT (Graz consensus Reconstruc-
tion algorithm for EIT). This algorithm is being de-
veloped in three phases: 1) selection of the “ingre-
dients” and evaluation methodology (this paper), 2)
evaluation and experience with GREIT variants, and
3) consensus and definition of the GREIT algorithm.
Algorithms evaluation criteria are identified to be: a)
quantitative output for all positions, b) reconstructed
position error (low and uniform), c) resolution (small
PSF, uniform, few artefacts), d) good noise perfor-
mance, e) low sensitivity to electrode and boundary
movement, f) good performance on clinical and exper-
imental data. This approach represents the consensus
of a large and representative group of experts in EIT
algorithm and clinical applications. All software and
data to implement and test GREIT will be made avail-
able under an open source license which allows free
research and commercial use.
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1 Introduction

Electrical Impedance Tomography (EIT) measures con-
ductivity changes within a body from current stimulation
and voltage measurement on the body surface. One of

the most promising applications of EIT is for measur-
ing the lungs, since these are large organs which undergo
large changes in conductivity during normal functioning.
Indeed, lung function measurement was among the first
physiological applications of this technology. (Barber and
Brown 1984). While there are several medical imaging
and instrumentation technologies to measure ventilation,
EIT is unique in that it is able to non-invasively and con-
tinuously monitor the distribution of ventilation. Based
on these advantages, there is significant interest in EIT
to monitor patients with respiratory compromise.

One limitation is that most clinical and physiological
research on lung EIT is being done using proprietary vari-
ants of older image reconstruction algorithms, such as the
backprojection algorithm as implemented in the Sheffield
(Brown and Seagar, 1987) or Göttingen (Hahn et al, 2001)
EIT systems. This is an obstacle to clinical use of EIT
because: 1) it is difficult to determine whether a given im-
age feature is physiological or an artefact, 2) comparison
of regional ventilation is impacted by algorithm spatial
non-uniformity and position errors, and 3) multi-centre
studies are not possible without a common imaging algo-
rithm. Many approaches to reconstruct EIT images have
been proposed, however, it is not easy to compare them,
because complete implementation detail are not available.
However, there is general consensus amongst experts in
EIT image processing of the “ingredients” that should be
part of a robust and high performance algorithm.

We plan to address this problem, and to develop a con-
sensus linear reconstruction algorithm for EIT images of
the chest. This algorithm is named GREIT, the “Graz
consensus Reconstruction algorithm for EIT”, since early
discussions took place at the 2007 ICEBI conference in
Graz, Austria. Our aim is to develop a standard which
has broad agreement from experts in the mathematical,
engineering, physiological, and clinical EIT communities.
This paper is the first step in developing GREIT: we de-
fine the selection of “ingredients” in the algorithm and the
evaluation methodology. Subsequently, we plan to evalu-
ate and gain experience with GREIT “recipes” based on
variants of the ingredients. This will lead to consensus
and definition of the GREIT algorithm.

The current work is limited to the reconstruction al-
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gorithm. We do not propose calibration tests, data for-
mats or phantoms, standards for image interpretation or
EIT based lung parameters; we do not feel there is suf-
ficient experience yet to reach consensus in these areas.
It is important to clarify that there is no financial goal
to development of this algorithm, and all developed algo-
rithms, software models and simulation and experimental
test data used in this algorithm will been made available
as part of the open source EIDORS distribution (Adler
and Lionheart, 2006).

The goals identified for GREIT are for:
◦ single and double ring electrode configurations with

Sheffield-type EIT systems, using adjacent current in-
jection and measurement.

◦ linear (real-time) reconstruction of a 2D conductivity
change image, based on a 3D forward model

◦ quantitative reconstructions: given an input in trans-
fer impedance (Ω) units, the output is in impedivity
change (Ω ·m)

◦ settings for all parameters: any tunable parameters
must have assigned values in the recommended algo-
rithm.

◦ published reconstruction matrices for a 32×32 pixel ar-
ray for a single ring of 16, 12 and 8 electrodes, for the
shapes: a) neonate chests, b) adult chests (for perhaps
several body shapes), and c) cylindrical tank phantoms.
For other shapes and electrode configurations, recon-
struction matrices may be calculated from the provided
source code.

◦ all software and data to implement and test GREIT to
be made available under an open source license which
allows royalty free use in both research and commercial
applications.
In the remainder of this paper, we clarify two aspects

of GREIT: 1) the “ingredients” for the algorithm, and 2)
the evaluation methodology.

2 “Ingredients”

There is general agreement that the algorithm features
described in this section are the most suitable for linear
EIT reconstruction. However, the best selections for the
details of each feature are subject to discussion and exper-
imentation. For example, we agree on using regularized
image reconstruction, but are not yet certain of the best
reconstruction matrix prior. For this reason, we use the
metaphor “ingredients” and “recipe”.

2.1 Dual Models
A dual reconstruction model uses a fine finite element

model (FEM) to implement the forward solution (volt-
ages at electrodes), and a coarse mesh for the inverse so-
lution. For GREIT, the forward model is a 3D FEM with
mesh refinement near the electrodes, and the reconstruc-
tion model is a square pixel grid (Fig. 1). Given a forward
model, F , which calculates a voltage measurement vector,
v, from a forward (fine) model conductivity element vec-
tor, σf , we have v = F (σf ). The reconstruction (coarse)

Figure 1: Dual model example. black: a cut away view of a
cylindrical 3D FEM (fine) forward model (with electrode re-
finement), blue: (coarse) reconstruction model with 2D square
pixels of defined height.

model is defined on square elements σr related by a coarse
to fine projection matrix P, where σf = Pσr.
2.2 Rasterized Output Image with Units

GREIT output images will be parametrized onto a 2D
grid with square pixels (Fig. 2). This differs from many
EIT reconstruction algorithms which reconstruct to an
arbitrary FEM triangularization. Square pixels are cho-
sen because it allows easier display and analysis of im-
ages, and because the resolution limits of EIT are eas-
ier to communicate this way. Non-circular reconstruction
geometries (for adult and neonate chests) will be repre-
sented onto the same 2D grid.

GREIT output images will be in impedivity change
units (Ω · m) given input in transfer impedance units
(measured V/stimulation I = Ω). Assigning units this
way requires one length parameter to be measured from
the patient. For GREIT, this is the lateral width of the
chest (or the diameter of the cylindrical tank).

Figure 2: Left: Reconstructed image onto 16× 16 pixel array
using dual model (triangular divisions of pixels is an artefact of
EIDORS representation). Precalculated GREIT models will
use 32× 32 pixel arrays. Right: Reconstructed image using a
single FEM reconstruction model.

2.3 Regularized GN Reconstruction.
Gauss-Newton (GN) reconstruction seeks a solution x̂
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which minimizes

‖y − Jx‖2W + λ2‖x− x0‖2R.

y = v(b) − v(a) is the vector of time difference mea-
surements (between times (a) and (b)). The choice of
times (a) and (b) depend on the measurement proto-
col, and often (a) is an average measurement at a time
when the patient lung status is stable (ie end-expiration).
The selection of times (a) and (b) is out of scope for
GREIT. The use of normalized difference measurements
([y]i = [v(b) − v(a)]i/[v(a)]i), has the advantage of com-
pensating for differences between measurement channels,
but makes it difficult to assign units to x̂. Both dif-
ference and normalized difference measurement schemes
will be considered for GREIT. x = f(σ(b)

r ) − f(σ(a)
r )

is the (parametrized) conductivity change vector on the
inverse model. The parametrization will be chosen to
maximize the linear range of the solution; some possible
parametrization functions f(·) are logarithmic and linear.

J is the Jacobian matrix calculated from the fine model
and projected on the inverse model, such that

[J]ij =
∑

k

∂[y]i
∂[f(σf )− f(σbkg)]k

Pkj ,

where σbkg is the background conductivity distribution in
the body about which conductivity changes take place.
Precalculated GREIT models will assume homogeneous
σbkg, since this assumption is well understood, even
though it is not physiologically realistic in the chest. Effi-
cient techniques to compute J are out of scope for GREIT,
since the calculation of the Jacobian is off-line.

GN reconstruction uses the 2-norm (‖ · ‖2), since this
makes image reconstruction linear, and allows precalcu-
lation of a reconstruction matrix. Based on this matrix,
real-time EIT image reconstruction is implemented using
matrix multiplication. It may be possible to increase the
computational efficiency of reconstruction using scaled
integer multiplication, and with use of hardware which
supports parallel computation; however, such implemen-
tation details are out of scope for GREIT.
2.4 Image Prior with Spatial Correlations

W and R represent the estimates of inverse covariances
of the data noise (Σn) and conductivity change, or image
prior (Σx), such that σ2

nW−1 = Σn and σ2
xR

−1 = Σx.
Here λ = σn/σx, is the regularization hyperparameter.
Precalculated GREIT models assume uniform uncorre-
lated Gaussian measurement noise, and thus W = I, the
identity matrix.

Many different approaches have been used to select the
image prior R, including scaled diagonal matrices and
various forms of spatial high pass filters including discrete
Laplacian and Gaussian high pass filters. The choice of
R has several subtle but important implications on re-
constructed images, as illustrated in Fig. 3. We iden-
tify these undesirable image features as: a) ringing: the
presence of opposite polarity regions surrounding a recon-
structed target (which may be incorrectly interpreted as

physiological), b) position error: incorrect positioning of
a reconstructed target, and c) blurring: increased area of
a reconstructed target. Clearly, there are compromises
to be made between optimizing each feature, such as for
ringing and blurring. Additionally, the uniformity of a
feature with spatial position is more important than low
average feature errors.

For the evaluation process for GREIT, various pro-
posed reconstruction matrices (and combinations of these
matrices) will be tested against the image features. Ma-
trices will be defined directly on the inverse (coarse) grid
(and not the forward model).

Figure 3: Illustration of several undesirable features affected
by the choice of R. A: Ground truth simulations of a small
non-conductive target. B: Reconstructed images. The lower
graphs show average image amplitude and position error as a
function of simulated radial position.

2.5 Hyperparameter selection method
In many studies, the EIT hyperparameter, λ, is selected

manually based on heuristic criteria, probably because
automatic techniques, such as the L-curve, work poorly
on the EIT problem (Graham and Adler, 2006). Further-
more, these methods select the best λ for each image,
rather than for the system configuration.

It is essential that the algorithm define the hyperpa-
rameter selection method, as this is necessary for reliable
clinical interpretation. Unfortunately, there is little con-
sensus on the best way to choose λ, and thus exploration
of this issue will be a major part of the GREIT evaluation
process. The criteria for selection are: λ must depend on
the EIT equipment (and noise performance) and the ex-
pected EIT signal level (of thoracic EIT measurements).
We propose to define calibration protocols that may be
performed by the equipment maker (or as part of instal-
lation) from which an optimal λ may be chosen.
2.6 Electrode Movement and Model Inaccuracy
Compensation
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Movement of electrodes due to breathing and posture
change contributes artefacts to EIT images, which appear
as image degradation near the boundary, and a broad
artefact that changes image amplitude. Some recent work
to correct for movement (Soleimani et al, 2006) and gen-
eral model inaccuracies (Kaipio and Somersalo, 2007)
show promising results and may be represented in a lin-
ear GN reconstruction, by modifying the data noise model
(Σn) to include both measurement noise and “noise” due
to geometrical inaccuracies. Given parameters, xg, which
express electrode movement and other model inaccura-
cies, we create Σn = σ2

nW−1 + JgRgJt
g, where Jg is the

Jacobian of model parameters and Rg represents the prior
covariance between parameters.

Since such techniques are relatively new, they are less
well understood than the “ingredients” discussed pre-
viously. During the evaluation these techniques may
demonstrate their value, or not.
2.7 Temporal reconstruction

Typically, a frame of EIT data is reconstructed assum-
ing that all measurements were made at the same instant.
However, EIT systems make sequential measurements for
each current pattern. It is possible to take this time dif-
ference into account to calculate more accurate EIT im-
ages of rapid conductivity changes, such as those due to
perfusion or high frequency oscillatory ventilation. This
approach may be generalized as a “temporal” image re-
construction (Adler et al, 2007) in which measurements
from several nearby frames are used. Such an approach
may be used to achieve improved noise performance.

3 Evaluation: model data

This paper also defines the evaluation strategy against
which GREIT algorithms candidates will be evaluated.
Unfortunately, this paper does not provide space to algo-
rithmically define how each evaluation parameter is cal-
culated; instead, the general criteria are listed:

3.1 Amplitude Response
◦ output image amplitude is correct
◦ the amplitude response is uniform for all radial posi-
tions.

3.2 Position Error
◦ low average position error
◦ uniform position error with radial position

3.3 Resolution
◦ small average PSF (point spread function) size
◦ uniform PSF size with radial position
◦ no (or very little) overshoot in the PSF
◦ regular shape (round or oval) PSF (backprojection,
with its streaks, does badly here)

3.4 Noise Performance
◦ low average noise amplification

3.5 Boundary Shape and Electrode Sensitivity
◦ low sensitivity to electrode movement
◦ low sensitivity to boundary distortions (with breath-
ing and posture change)

3.6 Performance on in vivo data
◦ good performance on animal and clinical experi-
mental data. This includes performance monitoring
rapid changes with ventilation and perfusion, and slow
changes over hours and days of monitoring. Monitoring
of slow changes means that GREIT will need to com-
pensate for drift in hardware and electrode behaviour.
The most difficult evaluation criteria will be the last:

“experimental data performance” (Faes et al. 2005). Our
approach is based on a database of experimental EIT data
from clinical research groups at Harvard University and
the Universities of Kiel and Göttingen. Some of these EIT
data sets were measured with simultaneous CT images,
which will facilitate developing validation tests of EIT
algorithm output. Since the in vivo evaluation strategy
is still somewhat unclear, we plan to develop these criteria
Development of appropriate evaluation criterion as part
of the GREIT development process.

4 Discussion

This paper clarifies two aspects of the GREIT algo-
rithm: the technical “ingredients” and the evaluation
methodology. Based on this description, we aim to select
the best “recipe” for GREIT algorithm as follows: First,
algorithm candidates will be built and made available for
testing on simulation and experimental data (time frame
June – Sept, 2008). Based on this experience, a consen-
sus will be developed and the GREIT algorithm will be
defined and published. We anticipate several benefits for
this work. It will allow detailed interpretation of EIT im-
ages in terms of known algorithm performance, providing
a thoroughly characterized baseline against which clinical
measurements and newer EIT work may be compared.
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