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ABSTRACT
This paper develops a new approach to understand and mea-
sure variations in biometric sample quality. We begin with
the intuition that degradations to a biometric sample will re-
duce the amount of identi�able information available. In or-
der to measure the amount of identi�able information, we
de�ne biometric information as the decrease in uncertainty
about the identity of a person due to a set of biometric mea-
surements. We then show that the biometric information for
a person may be calculated by the relative entropy D(p‖q)
between the population feature distribution q and the person's
feature distribution p. The biometric information for a sys-
tem is the mean D(p‖q) for all persons in the population. In
order to practically measure D(p‖q) with limited data sam-
ples, we introduce an algorithm which regularizes a Gaussian
model of the feature covariances. An example of this method
is shown for PCA, Fisher linear discriminant (FLD) and ICA
based face recognition, with biometric information calculated
to be 45.0 bits (PCA), 37.0 bits (FLD), 39.0 bits (ICA) and
55.6 bits (fusion of PCA and FLD features). Based on this
de�nition of biometric information, we simulate degradations
of biometric images and calculate the resulting decrease in
biometric information. Results show a quasi-linear decrease
for small levels of blur with an asymptotic behavior at larger
blur.

1. INTRODUCTION

Biometric sample quality is a measure of the usefulness of a
biometric image [9]. One recent development is the signif-
icant level of interest in standards for measurement of bio-
metric quality. For example, ISO has recently established a
biometric sample quality draft standard [9]. According to [9],
biometric sample quality may be considered from the point of
view of character (inherent features), �delity (accuracy of fea-
tures), or utility (predicted biometrics performance). A gen-
eral consensus has developed that the most important measure
of a quality metric is its utility � images evaluated as higher
quality must be those that result in better identi�cation of in-
dividuals, as measured by an increased separation of genuine
and impostor match score distributions. The nature of bio-
metric sample �delity has seen little investigation, although

for speci�c biometric modalities, algorithms to measure bio-
metric quality have been proposed. For example, the NFIQ
algorithm [12] is a widely used measure for �ngerprint image
quality.
One current dif�culty is that there is no consensus as to what
a measure of biometric sample �delity should give. In this
paper, we propose a new approach to measure this quantity,
based on an information theoretic framework. We begin with
the intuitive observation that a high quality biometric image
is more useful to identify the individual than a low quality
image. This suggests that the quantity of identi�able infor-
mation decreases with a reduction in quality. Given a way to
measure the decrease in information caused by a given im-
age degradation, one can measure the associated decrease in
biometric information.
Measuring biometric information content is related to many
issues in biometric technology. For example, one of the most
common biometric questions is that of uniqueness, eg. to what
extent are �ngerprints unique? From the point of view of
identi�ability, one may be interested in how much identi�-
able information is available from a given technology, such
as video surveillance. In the context of biometric fusion [11]
one would like to be able to quantify the biometric informa-
tion in each system individually, and the potential gain from
fusing the systems. Additionally, such a measure is relevant
to biometric cryptosystems and privacy measures. Several
authors have presented approaches relevant to this question
( [1, 6, 11, 14]). In this paper we elaborate an approach to
address this question based on de�nitions from information
theory [2]. We de�ne the term �biometric information� as
follows:
biometric information (BI): the decrease in uncertainty about
the identity of a person due to a set of biometric measure-
ments.
In order to interpret this de�nition, we refer to two instants:
1) before a biometric measurement, t0, at which time we only
know a person p is part of a population q, which may be the
whole planet; and 2) after receiving a set of measurements,
t1, we have more information and less uncertainty about the
person's identity.
Based on these measures, we then de�ne the information loss
due to a degradation in image quality, as the relative change



in BI. The degradation process is modeled by H , which maps
the original high quality images F to G. For the case with no
degradation, we measure the image from a person pF as part
of a population qF , while in the presence of degradation H ,
we obtain a person's image pG as part of population qG.
This paper then develops a mathematical framework to mea-
sure biometric information for a given system and set of bio-
metric features. In practice, there are limited numbers of sam-
ples of each person, which makes our measure ill-conditioned.
In order to address this issue, we develop a stable algorithm
based on a distribution modeling and regularization. We then
use this algorithm to analyze the biometric information con-
tent of three different face recognition algorithms, and to mea-
sure biometric quality loss due to a degradation.

2. METHODS

In this section we develop a approach to measure the effect
of an image degradation model on biometric image quality.
First, we develop an algorithm to calculate biometric informa-
tion based on a set of features, using the relative entropy mea-
sure [5]. We explain our method in the following steps: A)
measure requirements, B) relative entropy of biometric fea-
tures, C) Gaussian models for biometric features and relative
entropy calculations, D) regularization methods for degener-
ate features, E) regularization methods for insuf�cient data,
and F) information loss due to degradation.

2.1. Measure requirements

In order to elaborate the requirements that a good measure of
biometric information measure must have, we consider sys-
tem that measures height and weight. These values differ
within the global population, but also vary for a given indi-
vidual, both due to variations in the features themselves and
to measurement inaccuracies. We now wish to consider the
properties a measure of biometric information should have:

1. If an intra-person distribution p is exactly equal to the
inter-person q distribution, then there is no information
to distinguish a person, and biometric information is
zero.

2. As the feature measurement becomes more accurate (less
variability), then it is easier to distinguish someone in
the population and the biometric information increases.

3. If a person has unusual feature values (i.e. far from the
population mean), they become more distinguishable,
and their biometric information will be larger.

4. The biometric information of uncorrelated features should
be the sum of the biometric information of each indi-
vidual feature.

5. Features that are unrelated to identity should not in-
crease biometric information. For example, if a bio-
metric system accurately measured the direction a per-
son was facing, information on identity would be un-
changed.

6. Correlated features such as height and weight are less
informative. In an extreme example consider the height
in inches and in cm. Clearly, these two features are no
more informative than a single value.

Based on this de�nition, the most appropriate information
theoretic measure for the biometric information is the rela-
tive entropy (D(p‖q)) [5] between the intra- (q(f)) and inter-
person (p(f)) biometric feature distributions. D(p‖q), or the
Kullback-Leibler distance, is de�ned to be the �extra bits�
of information needed to represent p(f) with respect to q(f).
D(p‖q) is de�ned to be

D(p‖q) =
∫

f

p(f)log2
p(f)
q(f)

df (1)

where the integral is over all NF feature dimensions, f . p(f)
is the probability mass function or distribution of features of
an individual and q(f) is the overall population distribution.
A comment on notation: we use p to refer to both an indi-
vidual, and the distribution of the person's features, while q
represents the population and the distribution of its features.

This measure can be motivated as follows: the relative en-
tropy, D(p‖q), is the extra information required to describe a
distribution p(f) based on an assumed distribution q(f) [5].
D(p‖q) differs from the entropy, H(p), which is the informa-
tion required, on average, to describe features f distributed as
p(f). H is not in itself an appropriate measure for biomet-
ric information, since it does not account the extent to which
each feature can identify a person p in a population q. An
example of a feature unrelated to identity is the direction a
person is facing. Measuring this quantity will increase H of
a feature set, but not increase its ability to identify a person.
The measure D(p‖q) corresponds to the requirements: given
a knowledge of the population feature distribution q, the in-
formation in a biometric feature set allows us to describe a
particular person p.

2.2. Distribution modeling

In a generic biometric system, an image F is acquired, from
which Nf features are measured, to create a biometric feature
vector f for each person. For person p, we have Np samples,
while we have Nq samples for the population. For conve-
nience of notation, we sort p's measurements to be the �rst
grouping of the population. De�ning f as an instance of ran-
dom variable F , we calculate the population feature mean

µq = E
q

[F ] (2)



where the feature mean of person p, µp, is de�ned analo-
gously, replacing q by p. The population feature covariance
is

Σq = E
q

[
(F − µq)

t(F − µq)
]
. (3)

The individual's feature covariance, Σp, is again de�ned anal-
ogously. Features are calculated from a set of Nq images us-
ing three different feature extraction methods: Principle Com-
ponent Analysis (PCA, also referred to as Eigenface features)
[7] [13], Fisher linear discriminant (FLD) [10] and Indepen-
dent Component Analysis (ICA) [8]. µp and µq are Nf×1
vectors of the population and individual mean distributions,
while Σp and Σq are Nf×Nf matrices of the individual and
population covariance matrices.
One important general dif�culty with direct information the-
oretic measures is that of data availability. Distributions are
dif�cult to estimate accurately, especially at the tails; and yet
log2 (p(f)/q(f)) will give large absolute values for small p(f)
or q(f). Instead, it is typical to �t data to a model with a small
number of parameters. The Gaussian distribution is the most
common model; it is often a good re�ection of the real world
distributions, and is analytically solvable in entropy integrals.
Another important property of the Gaussian is that it gives
the maximum entropy for a given standard deviation, allow-
ing such models to be used to give an upper bound to entropy
values. Based on a Gaussian model for p and q, D(p‖q)can
be written as:

D(p‖q) = k
(
α + trace

(
(Σp + T)Σq

−1 − I
))

(4)

where α = ln
|Σq|
|Σp|

, T = (µp − µq)t(µp − µq) and k =

log2
√

e.
This expression calculates the relative entropy in bits for

Gaussian distributions p(f) and q(f). This expression corre-
sponds to most of the desired requirements for a biometric
information measure introduced in the previous section:

1. If person's feature distribution matches the population,
p = q; this yields D(p‖q) = 0, as required.

2. As feature measurements improve, the covariance val-
ues, Σp, will decrease, resulting in a reduction in |Σp|,
and an increase in D(p‖q).

3. If a person has feature values far from the population
mean, T will be larger, resulting in a larger value of
D(p‖q).

4. Combinations of uncorrelated feature vectors yield the
sum of the individual D(p‖q) measures. Thus, for un-
correlated features f1 and f2, where {f1, f2} represents
concatenation of the feature vectors, D(p(f1)‖q(f1))+
D(p(f2)‖q(f2)) = D(p({f1, f2})‖q({f1, f2}))

5. Addition of features uncorrelated to identity will not
change D(p‖q). Such a feature will have an identical

distribution in p and q. If U is the set of such uncorre-
lated features, [Σp]ij = [Σq]ij = 0 for i or j ∈ U , and
i 6= j, while [Σp]ii = [Σq]ii and [µq]i = [µp]i. Under
these conditions, D(p‖q) will be identical to its value
when excluding the features in U . One way to under-
stand this criterion is that if the distributions for q and p
differ for features in U , then those features can be used
as a biometric to help identify a person.

6. Correlated features are less informative than uncorre-
lated ones. Such features will increase the condition
number (and thus reduce the determinant) of both Σp

and Σq . This will decrease the accuracy of the measure
D(p‖q). In the extreme case of perfectly correlated fea-
tures, Σp becomes singular with a zero determinant and
D(p‖q) is unde�ned. Thus, our measure is inadequate
in this case. In the next section, we develop an algo-
rithm to deal with this effect.

2.3. Regularization for degenerate features

In order to guard against numerical instability in our mea-
sures, we wish to extract a mutually independent set of Nw

�important� features (Nw ≤ Nf ). To do this, we use the
principal component analysis (PCA) [7] to generate a map-
ping (Ut : F → W ), from the original biometric features F
(Nf×1) to a new feature space W of size Nw×1. The PCA
is calculated from a Singular Value Decomposition (SVD) of
the feature covariance matrix, such that

USqUt = svd(cov(F )) = svd(Σq) (5)
Since Σq is positive de�nite, U is orthonormal and Sq is di-
agonal. We choose to perform the PCA on the population
distribution q, rather than p, since q is based on far more data,
and is therefore likely to be a more reliable estimate. The
values of Sq indicate the signi�cance of each feature in PCA
space. A feature j, with small [Sq]j,j will have very little ef-
fect on the overall biometric information. We use this analy-
sis in order to regularize Σq , and to reject degenerate features
by truncating the SVD. We select a truncation threshold of j
where [Sq]j,j < 10−10[Sq]1,1. Based on this threshold, Sq

is truncated to be Nw×Nw, and U is truncated to Nf×Nw.
Using the basis U calculated from the population, we decom-
pose the individual's covariance into feature space Y:

Sp = UtΣpU (6)
where Sp is not necessarily a diagonal matrix. However, since
p and q describe somewhat similar data, we expect Sp to have
a strong diagonal component. Note that the PCA analysis
used here is not the same as that for eigenface features [13].

Based on this regularization scheme, (4) may be rewritten
in the PCA space as:

D(p‖q) = k
(
β + trace U

(
(Sp + St)Sq

−1 − I
)
Ut

)
(7)

where β = ln
|Sq|
|Sp|

and St = UtTU



2.4. Regularization for insuf�cient data

The expression developed in the previous section solves the
problem of ill-poseness of Σq . However, Σp may still be
singular in the common circumstance in which only a small
number of samples of each individual are available. Given
Np images of an individual from which G features are cal-
culated, Σp will be singular if G ≥ Np, which will result in
D(p‖q) diverging to ∞. In practice, this is a common occur-
rence, since most biometric systems calculate many hundreds
of features, and there are only rarely more then ten of samples
of each person. In order to address this issue, we develop an
estimate which may act as a lower bound using the following
assumptions:

1. Estimates of feature variances are valid [Sp]i,i for all i.

2. Estimates of feature covariances [Sp]i,j for i 6= j are
only valid for the most important L features, where
L < Np.

Features which are not considered valid based on these as-
sumptions, are set to zero by multiplying Sq by a mask M,
where

Mi,j =
{

1, if i = j or (i < L and j < L);
0, otherwise (8)

Using (8), [Sp]i,j = (Mi,j)[UtΣpU]i,j . This expression
regularizes the intra-person covariance, Σp, and assures that
D(p‖q) does not diverge. To clarify the effect of this regu-
larization on D(p‖q), we note that intra-feature covariances
will decrease |Σp| toward zero, leading a differential entropy
estimate diverging to ∞. We thus consider this regulariza-
tion strategy to generate a lower bound on the biometric in-
formation. The selection of L is a compromise between using
all available measurements (by using large L) and avoiding
numerical instability when Sp is close to singular (by using
small L).

2.5. Average information of a system

This section has developed a measure of biometric informa-
tion content of a biometric feature representation of a single
individual with respect to the feature distribution of the pop-
ulation. The biometric information will vary between people;
those with feature values further from the mean have larger
biometric information. Using this approach, the biometric in-
formation content of a biometric system is calculated as the
average information across all people in the system at a spe-
ci�c L.

2.6. Information loss due to degradation

In this section, we explore the effect of image degradation
and the resulting decrease in biometric quality on the relative

entropy measure. Intuitively, it is expected that image degra-
dation changes the intra and inter person distribution of the
face features resulting in a loss of biometric information. In
general, image degradation is a non-linear process; however,
in this paper we use a linear degradation model to explore
its effect. Equation(9) represents the blur degradation model
used to generate degraded features where h is a space invari-
ant Gaussian operator of size n×n and σ = 3, F is the original
image and G is the resulting degraded image.

G(x, y) =
∑
α

∑

β

F (α, β)h(x− α, y − β) (9)

Features, g, are then extracted from the degraded images G
using three feature extraction methods given. We then com-
pute the biometric information for the non-degraded distri-
butions (D(p(f)||q(f))) and for the degraded distributions
(D(p(g)||q(g))) using equation (7). Here D(p(f)||q(f)) rep-
resents the relative entropy between the individual and pop-
ulation distribution prior to degradation while D(p(g)||q(g))
is the relative entropy measure between the degraded individ-
ual and population distributions, respectively. From this, we
calculate the normalized mean square distance characterizing
the loss of information caused by the degradation model on
the underlying features as:

∆BI =
1
Nf

Nf∑

i=1

|D(p(fi)||q(fi))−D(p(gi)||q(gi))|2
σ2

Df

(10)

where σ2
Df

is the variance of D(p(fi)||q(fi). ∆BI measures
the relative distance offset between the original and degraded
distributions. ∆BI is a unitless measure, and may be inter-
preted as the fractional loss in BI due to a given image degra-
dation.
In order to motivate this calculation, we initially considered
calculating D(p(g)‖q(f)) as a function of degradation. Sur-
prisingly, this measure increases with decreasing quality. The
reason is that a single person p is considered to have degraded
images in a population q of high quality images. The algo-
rithm seems to be saying: �Aha! I can recognize p. He al-
ways has a blurry face!�. Therefore, it is necessary to com-
pare a degraded person's image to the degraded population
D(p(g)‖q(g) in order to compensate for this effect.

3. FACE RECOGNITION

Information in a feature representation of faces is calculated
using our described method for different individuals. Using
the Aberdeen face database [4], we chose 18 frontal images of
16 persons, from which we calculate the PCA (eigenface) fea-
tures using the algorithm of [7], the FLD (�sherfaces) using
the method described in [3] and the ICA face features com-
ponents using the FastIca algorithm [8]. For PCA, FLD and
ICA feature decompositions, 288 independent vectors were
computed, and the most signi�cant 100 features used for sub-
sequent analysis.



3.1. Biometric information calculations

After �tting the distributions of p(f) and q(f) to a Gaussian
model, we initially analyze the biometric information in each
PCA, FLD and ICA feature separately. The PCA and FLD
relative entropy measures as function of a feature number
are shown in Fig. 1, and show a gradual decrease from an
initial peak at feature 2. The form of the curve can be un-
derstood from the nature of the PCA decomposition, which
tends to place higher frequency details in higher number fea-
tures. Since FLD features are calculated using PCA, these
tend to contain similar amount of information. Also, since
noise tends to increase with frequency, the biometric infor-
mation in these higher numbered PCA features will be less.
In order to calculate D(p‖q) for all features, we are limited
by the available information. Since Np = 18 images are used
to calculate the covariances, attempts to calculate D(p‖q) for
more than 17 features will fail, because Σp is singular. This
effect is seen in the condition number (ratio of the largest to
the smallest singular value) which was 4.82×103 for Sq and
1.32×1020 for Sp. The relatively small condition number of
Sq indicates that no features are degenerate for PCA, FLD
and ICA face recognition features. However, Sp is severely
ill-conditioned. To overcome this ill-conditioning, we intro-
duced a regularization scheme based on a mask (equation 8)
with a cut-off point L. This scheme is motivated by the di-
agonal structure of Sp. To ensure convergence, the mask size
L is set to a value smaller than Np. Results for D(p‖q) for
PCA features for each person as a function of L are shown in
Fig. 2 for Np = 8, 12 and 18. In these curves, we observe a
�hockey stick� shape. The relative entropy measure remains
stable when L < Np, but if L ≥ Np, we observe a dramatic
increase in D(p‖q) as the algorithm approaches a singular-
ity of Σp and the ill-conditioning of Σq . In order to pro-
duce an unique and stable estimate for D(p‖q), it is necessary
to choose a compromise between having an under-estimated
(L ¿ Np) or an over-estimated (L ≥ Np) solution. We there-
fore recommend choosing L = 3

4Np, since a larger value of
L puts the estimate in an unstable region of Fig. 2. Using
this algorithm and value of L, we calculate the overall bio-
metric information for different face recognition algorithms.
For PCA features, the average D(p‖q) is 45.0 bits and 37.0
bits for FLD features. If PCA and FLD features are combined
(making 200 features in all), average D(p‖q) is 55.6 bits (Fig.
3).

3.2. Degraded features

Using the degradation model described by equation (9), two
different sets of images (S1 and S2) are generated. Each set
of images is composed 16 people with 18 images per indi-
vidual for a total of 288. S1 is obtained by degrading half of
each individual's face using different Gaussian operators of
size n × n while S2 is a set of images obtained as a result of
blurring the entire face region. An example of images in S1

and S2 are seen in Fig. 4.
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Fig. 1. Biometric information as a function of feature number
(circles) for PCA (top) and FLD (bottom) feature decomposi-
tion.
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Fig. 2. D(p‖q) (y-axis) vs L (x-axis) for each person. Each
sub�gure represents a different value of Np: (A) 8, (B) 12 and
(C) 18. The curves show that D(p‖q) diverges as Σp becomes
singular (L ≥ Np).
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Fig. 3. Average D(p‖q) (y-axis) vs L (x-axis) for Np = 18.
Each line represents the average of information calculated for
a population of 16 individuals with 18 images each using PCA
(middle), FLD (bottom) and a fusion of PCA and FLD fea-
tures (top).

Using S1 and S2, new PCA, FLD and ICA features (g) are
extracted using the original (non-degraded) principal compo-
nent vectors. From the degraded features, ∆BI is computed
for the degraded individual and population distributions us-
ing equation(10). This measure represents the amount of in-
formation lost as a function of the degradation level. Fig.( 5)
shows ∆BI computed as function of the blur level for dif-
ferent images taken from S1 and S2. The x-axis represents 9
different levels (in increasing order) of Gaussian blur. As seen
in Fig.( 5), the relative information loss in an image increases
with the amount of system degradation. Interestingly, ∆BI
tends to reach a steady state after some level of degradation.



This suggests that some features are unaffected by the degra-
dation process and represent a lower bound of information
measure of an individual distribution. PCA features extracted
using the dominant eigenvalues of the system tend to be ro-
bust against blur since they preserve valuable information at
a large degradation level.

a b c

Fig. 4. Degraded image obtained by applying a Gaussian blur
to (b) a section of the original image (S1) and to (c) the entire
image (S2).
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Fig. 5. Normalized mean square distance(y-axis) as a func-
tion of an increasing blur level (x-axis)for images taken from
(a) S1 and (b) S2

4. DISCUSSION

This paper proposes a new approach to measure the changes
in biometric sample quality resulting from image degrada-
tions. A de�nition of biometric information is introduced and
an algorithm to measure it proposed, based on a set of popula-
tion and individual biometric features, as measured by a bio-
metric algorithm under test. Examples of its application were
shown for different face recognition algorithms based on PCA
(Eigenface), FLD (Fisherfaces) and ICA feature decomposi-
tions. Subsequently, we introduced a measure of information
loss as a function of image degradation. It is shown that the
normalized mean square distance measure (∆BI), based on
the relative entropy, increases with the blur level but reaches a
steady state after some amount of degradation which suggests
that some features are unaffected by this degradation process.
In a general biometric system, the following issues associ-
ated with biometric features must be considered: 1) Feature
distributions vary. Features, such as minutiae ridge angles
may be uniformly distributed over 0�2π, while other features
may be better modeled as Gaussian, 2) Raw sample images
need to be processed by alignment and scaling before fea-
tures can be measured, 3) Feature dimensionality may not be
constant. While we have introduced a measure in the con-
text of face recognition, we anticipate that such a measure

may help address many questions in biometrics technology,
such as: uniqueness of biometric features, inherent limits to
biometric template size requirements, feasibility of biometric
encryption, performance limits of biometric matchers, bio-
metric fusion and privacy protection.
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