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Abstract

Electrical Impedance Tomography (EIT) applies and measures elec-
trical energy on the boundary of a medium to produce an image of its
internal impedance distribution. In many medical applications, such
as imaging of the chest, the electrodes move during measurements, in-
troducting artefacts into the calculated images. This paper proposes
a new algorithm that compensates for electrode movement during dif-
ference EIT measurements. The reconstructed image is calculated by
regularizing the image reconstruction matrix based on the sensitivity
and smoothness of the conductivity and movement data.

A comparison of the standard and proposed EIT reconstruction
methods is made. Images are reconstructed from 2D and 3D simula-
tions exhibiting conductivity changes and electrode movements. Re-
sults show the proposed method yields a good estimation of electrode
movement and a significant improvement in conductivity image re-
constructions.

Keywords— Electrical impedance tomography; inverse
problems; regularization.

1 Introduction

Electrical Impedance Tomography (EIT) applies and
measures electrical energy on the boundary of a medium
to produce an image of its internal impedance distribu-
tion. In many medical applications, such as imaging of the
chest, the boundary shape changes during measurements,
which results in movement of the electrodes, and causes
significant deterioration in the reconstructed image qual-
ity. Movements greater than 1% of the medium diameter
cause severe artefacts in simulated image reconstructions
[5]. This is particularly the case in medical imaging where
body movements due to breathing and posture introduce
uncertainty in electrode position relative to the organs of
interest. For example, when imaging breathing, boundary
movements of 10% of the medium diameter can be observed.
The effect of boundary motion and electrode position un-
certainty in EIT is also discussed throughout the literature
[2], [3], [4], [6], [7], and [8].

This study proposes a new method to reconstruct the
change in internal conductivity distribution and electrode
movement between measurements. The second section de-
scribes the EIT inverse problem and develops the regular-
ization terms used in the reconstruction algorithm. The
third section compares the image reconstruction of both
the standard and proposed methods and analyzes the ob-
tained results. Finally, a concluding section discusses the
relevant applications that benefit from this study.

2 Methods

This section develops the forward and inverse solutions
for difference EIT. The augmented Jacobian is formulated
in the forward solution section and the a priori reconstruc-
tion matrices are formulated in the inverse solution section.
A brief definition of our figure-of-merit for quantifying the
effect of artefacts introduced by the inverse solution is also
given.

The medium under study is represented by a finite el-
ement model (FEM) partitioned into nN elements of tri-
angular or tetrahedral shape. nE Electrodes are defined
on the medium boundary, using either point or complete
electrode models.

2.1 Difference EIT

Difference EIT data is obtained by periodically apply-
ing a current injection and voltage measurement protocol,
where each period is referred to as a measurement frame.
Each frame collects a vector of measurements

z = vt2 − vt1 = ∆v (1)

between measurements at taken at times t1 and t2.
During this time interval the medium undergoes a change

in internal conductivity distribution ∆σ and a change in
boundary shape. ∆σ is represented by a vector nN × 1 of
the change in conductivity in each finite element, ∆σ =
σt2 − σt1 , while boundary shape change is represented by
the vector displacement of each electrode. All nodes asso-
ciated with an electrode are assumed to be subject to the
same displacement, and thus boundary shape change is rep-
resented by a vector of size nDnE×1, where nD is the model
dimention (2D or 3D). The reconstructed image, denoted
as x̂, reflects both the conductivity change and boundary
movement, and is of size (nN + nDnE)× 1.

2.2 Forward solution

The forward calculations produce the potential difference
measurements from the conductivity change and electrode
movement data relative to the medium with a homogeneous
conductivity distribution σh.

z = F (x)|σh
(2)

The forward solution is implemented as the linearized
model z = Jx+n where J is the Jacobian that quantifies the



sensitivity of the forward operator in (2). Each element of
J is calculated by small perturbations of each finite element
in the forward solution such that

Ji,j =
Fi(xj + ∆xj)

∆xj
. (3)

Estimating x from (2) cannot be done directly with a
least-squares solution since J has a condition number in the
order of 1019 in our calculations, corresponding to a severely
ill-posed problem. Thus, a direct inversion of (2) produces
useless results since boundary measurements cannot deter-
mine the interior conductivity distribution uniquely.

2.3 Inverse solution

The image is estimated by a maximum a posteriori
(MAP) regularization technique [1] that conditions the so-
lution with Gaussian a priori estimates of the noise and
image correlation matrices Σn and Σx, respectively. The
image estimate x̂ is given by the minimization problem,

x̂ = arg min
x

(z− F (x))t Σ−1
n (z− F (x)) + xtΣ−1

x x (4)

where the expected conductivity of image elements and
electrode movements are equiprobable in the positive or
negative direction.

In our implementation of (4), the noise and image corre-
lation matrices are represented by W and R, respectively.
We segregate the image components such that R is written
in terms of conductivity Rc, and movement Rm, correla-
tions. Thus our priors are defined as

Σ−1
n =

1
σ2

n

W, Σ−1
x =

1
σ2

c

Rc +
1

σ2
m

Rm (5)

where the σ-variables represent the a priori amplitude in
the noise σ2

n, conductivity σ2
c , and movement data σ2

m.
The W matrix is constructed assuming equal, additive

Gaussian noise on each electrode channel. The R matrix
is partitioned such that the upper nN × nN part, 1/σ2

cRc,
represents the covariance between conductivity changes of
elements and the lower nDnE ×nDnE part, 1/σ2

mRm, rep-
resents the covariance between electrode movements. The
conductivity changes are modelled with a smoothness con-
straint between adjacent elements such that Rc is a discrete
Laplacian (spatial high pass) filter. A similar smoothness
constraint is applied to electrode movement such that the
movements of neighbouring electrodes are correlated since
they are attached to the same region of the boundary.

It is necessary to introduce a parameter to normalize the
numerical variation between components of R since they
are of different unit. We define µ = σc/σm as the movement
hyperparameter representing the reconstruction fidelity be-
tween conductivity and movement data. The movement
partition Rm of the image prior matrix is scaled by µ2 such

that the elements of R are given by

Ri,j =


nD + 1 if i = j and i ≤ nN

−1 if adj(i,j) and i ≤ nN

2.1µ2 if i = j and i > nN

−µ2 if adj(i,j) and i > nN

0 otherwise

(6)

where adj(i , j ) indicates that elements i and j represent
adjacent elements or electrodes in the FEM.

The MAP estimate is implemented by applying the Jaco-
bian in (3) and the priors from (5) to the expression to be
minimized in (4). This yields the regularized linear inverse
solution for the conductivity and movement x̂ based on the
measured data z.

x̂ =
(
Jt 1

σ2
n

WJ +
1
σ2

c

Rc +
1

σ2
m

Rm

)−1

Jt 1
σ2

n

Wz (7)

This can be written in terms of the global hyperparame-
ter λ2 = σ2

n/σ2
m and the movement hyperparameter µ2 =

σ2
c/σ2

m where R = Rc + µ2Rm. Since we assume the noise
over each channel has equal variance σ2

n, we have W = I.
Thus from (7) we have the inverse solution conditionned by
the regularization matrices W, Rc and Rm and the hyper-
parameters λ and µ,

x̂ =
(
JtJ + λ2(Rc + µ2Rm)

)−1
Jtz

=
(
JtJ + λ2R

)−1
Jtz. (8)

2.4 Artefact measurement

The effect of reconstruction artefacts was found to be re-
duced in the proposed algorithm due to compensation for
incorrect electrode positions. To quantify this effect, we
define the artefact amplitude measure (AAM) as follows:
A reconstruction artefact is defined to be an element re-
constructed with a non-zero conductivity change that cor-
responds to simulated elements without any conductivity
changes. AAM, is defined to be

AAM =

√∑
i∈L Aix2

i∑
i∈L Ai

(9)

where Ai is the area (in 2D) or volume (in 3D) of each ele-
ment, and L is the set of elements which ought to be con-
ductivity change free. Thus, L includes all elements which
do not overlap with any contrast element in the forward
model.

3 Results

Simulated data were generated using the EIDORS
open-source tomographic image reconstruction software
suite.Image reconstructions for 2D and 3D models were
compared using the standard and the proposed algorithms.
The 2D simulations use a circular (unit-radius) forward
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Figure 1. 2D simulation with boundary movement and
standard method reconstruction. Arrows indicate
each electrode’s movement, and are scaled by 20×.
Left : Simulated 576 element FEM with conductivity
change and electrode movement from an elliptical de-
formation of 1% of the medium diameter. Additive
noise yielding a 20 dB SNR corrupts the simulation
data. Right : Standard method reconstruction using
a 256 element FEM with λ = 10−2 (Artefact ampli-
tude AAM = 0.0616).

model of 576 triangular elements and 313 nodes. The differ-
ence EIT data was simulated by calculating vt1 for a homo-
geneous conductivity σh throughout the medium and cal-
culating vt2 for two small inhomogeneities, 0.8× σh shown
in blue and 1.2×σh shown in red in the left part of figure 1.
Boundary movement was simulated by displacing the mesh
nodes in an elliptical deformation such that the boundary
nodes sustained a 1% elongation along the y-axis and a
1% compression along the x-axis of the medium diameter.
Noise was added in the simulation such that the SNR was
20 dB, where the signal was defined to be the measurement
power, ‖z‖2.

The standard reconstruction, shown on the right part of
figure 1, does not account for electrode movement and con-
sequently shows severe artefacts along the boundary. The
inhomogeneities also appear to have been displaced and
show a reflected version opposite the centre of the medium.

The proposed method reconstructs the simulation for the
same global hyperparameter value as the standard method,
λ = 10−2, and two different values of the movement hyper-
parameter µ. Figure 2 shows the proposed method recon-
structions for µ = 1 on the left and µ = 20 on the right.

As stated above, the conductivity variation of the 2D sim-
ulated data was 0.4×σh and movements were on the order
of 1% of the medium diameter. However, solving with µ = 1
implies that movements on the order of 40 % are equivalent
to a conductivity change of σc, since σm = σc/µ. Thus, we
observed an under-regularization of the movement calcu-
lations, resulting in somewhat sporadic movement vectors
shown left in figure 2. Solving with µ = 20 implies move-
ments on the order of 2% are equivalent to conductivity
changes of σc. This corresponds closely to the movements
simulated and an adequate reconstruction of the electrode
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Figure 2. Proposed method reconstructions of the 2D
simulation in figure 1. Arrows indicate each elec-
trode’s movement, and are scaled by 20×. Left : Pro-
posed method reconstruction using a 256 element
FEM with λ = 10−2 and µ = 1 (AAM = 0.0116).
Right : Proposed method reconstruction using a 256
element FEM with λ = 10−2 and µ = 20 (AAM =
0.0135).

movements is observed right in figure 2. It should be noted
however that both values of µ provide movement compen-
sation, illustrating an observable reduction in artefacts re-
sulting in a 78% smaller AAM for µ = 20 and 81% smaller
AAM for µ = 1, compared to the standard method.

The 3D simulations use a cylindrical (unit-radius and of 3
units height) forward model of 828 tetrahedral elements and
252 nodes. The difference EIT data was simulated by calcu-
lating vt1 for a homogeneous conductivity σh throughout
the medium and calculating vt2 for two inhomogeneities,
0.80 × σh in blue and 1.15 × σh in red, on three horizon-
tal slices of the medium, shown in the left column of figure
3. Boundary movement was simulated by displacing the
mesh nodes in a complex elliptical deformation such that
the boundary nodes sustained a 1% elongation along the
x-axis and a 1% compression along the y-axis at the z = 0
plane and with same deformation at the z = 3 plane ex-
cept with x and y axes interchanged. The arrows showing
movement are scaled by 10×. Noise was added in the same
way as the 2D simulation such that the SNR was 20 dB.

A reduction of the artefacts on the boundary is observ-
able in the proposed method and the AAM is 73% smaller
for µ = 20, compared to the standard method. The pro-
posed method was also capable of calculating reasonable
electrode movements.

4 Conclusions

It is well known that boundary movement in flexible me-
dia EIT causes a severe reduction in image quality due to
electrode position uncertainty. Physiological imaging appli-
cations such as pulmonary, gastrointestinal and mammo-
graphic EIT suffer from this effect due to inevitable sub-
ject breathing and slight posture changes. Our proposed
algorithm dramatically reduces movement artefacts by reg-
ularizing the reconstructed image based on both, conduc-



Figure 3. Reconstructed images and electrode movement from simulated 3D data with 20 dB SNR noise, using
hyperparameters λ = 3× 10−3 and µ = 20. Each column shows three horizontal slices of the reconstructed image
(top: z = 0.167; middle: z = 0.500; bottom: z = 0.833). Arrows indicate each electrode’s movement, and are
scaled by 10×. Left : Simulated inhomogeneities and electrode movements. Middle: Reconstructed image using the
standard algorithm (AAM = 0.0708). Right : Reconstructed image using the proposed algorithm (AAM = 0.0190).

tivity and movement priors. It is also capable of calcu-
lating electrode movements during measurement and has
demonstrated these results in 2D and 3D simulation. As
such, compensation for boundary motion and calculation
of electrode position uncertainty could make a significant
improvement of in vivo EIT imaging accuracy.
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