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Abstract

This paper presents a regularized modification to the weighted vari-
able step-size affine projection algorithm (APA). The regularization
overcomes the ill-conditioning introduced by both the forgetting pro-
cess and the increasing size of the input matrix. The algorithm was
tested by trials with colorized input signals and different parameter
combinations. Simulations illustrate that the proposed algorithm is
superior in terms of convergence speed and misadjustment compared
with existing algorithms.
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1 Introduction

Adaptive signal processing algorithms have been widely
used in numerous applications, such as noise cancelation,
system identification and data feature extraction. These al-
gorithms are designed to minimize a performance cost func-
tion. The Least Mean Squares (LMS ) algorithm [1], based
on minimizing Mean Squared Error (MSE), is a common al-
gorithm of this type. The Normalized Least Mean Square
(NLMS ) algorithm is one of the most widely used adap-
tive filters because of its computational simplicity. How-
ever, colored input signals can deteriorate the convergence
rate of LMS type algorithms [1]. To address this prob-
lem, the Affine Projection Algorithm (APA), a generalized
form of NMLS, was proposed by Ozeki et al. [2] using
affine subspace projections. Shin et al.[3] provided a uni-
fied treatment of the transient performance of the APA
family. Sankaran et al.[4] analyzed convergence behaviors
of APA class.

In conventional LMS , NLMS , and APA algorithms, a
fixed step size µ governs the tradeoff between the conver-
gence rate and the misadjustment. To realize both fast
convergence and low steady-state deviation, a variable step
(VS ) is necessary[5][6][7]. Harris et al.[5] used a feedback
coefficient based on the sign of the gradient of the squared
error; Mader et al.[6] proposed an optimum step size for
NLMS. Shin et al.[7] proposed a criterion to measure the
adaptation states and developed a variable step-size APA
based on this criterion. In [8], Dai et al. proposed a
weighted method for the variable step size affine projec-
tion algorithm, which processes the projection matrix with
a forgetting factor to better estimate weights deviation.

The method in [8] improves convergence performance
compared with existing schemes. However, as the input

matrix size is increased, especially when the forgetting pro-
cess is introduced, the matrix becomes ill-conditioned, and
the projected error estimate becomes worse. In this paper,
we address this ill-conditioning by introducing a regular-
ization term to the weighted projection matrix of [8]. This
modification gives further improvement and robustness to
the previous method.

2 Methods

2.1 Optimal Variable Step-Size APA

The input vector, xi, and the desired scalar output, di,
are related by

di = xiw◦ + vi

The subscript i is the time index corresponding to the ith

sampling instant; w◦ is an unknown L × 1 column vector
to be estimated; x is a 1 × L row vector; v is a zero mean
Gaussian independent noise sequence, such that x and v
are independent.

The Affine Projection Algorithm (APA)[2] updates
weights via

wi = wi−1 + µU∗
i (UiU

∗
i )−1 ei (1)

where

Ui =




xi

xi−1

. . .
xi−K+1


 di =




di

di−1

. . .
di−K+1


 wi =




w0,i

wi,i

. . .
wL−1,i


 and the

error signal is ei = di − Uiwi−1. xi is the input vector at
the ith sampling instant. d is the desired signal; µ is the
step size; K is the APA order or signal window width, L is
filter order, and ∗ is the conjugate transpose operator.

Shin et al.[7] proposed the optimal variable step-size APA
(VS-APA) in which (1) can be written as

w̃i = w̃i−1 − µU∗
i (UiU

∗
i )−1 ei (2)

where w̃i = w◦ − wi.

pi � U∗
i (UiU

∗
i )−1

Uiw̃i−1 (3)

which is the projection of w̃i−1 onto �(U∗
i ), the range space

of U∗
i . Based on the definition of p,

E [pi] = E
[
U∗

i (UiU
∗
i )−1 ei

]
(4)



Shin et al.[7] select the optium adaptive filter as the min-
imizer of ‖pi‖. For this case, pi is estimated as follows:

p̂i = αp̂i−1 + (1 − α)pi (5)

for a smoothing factor α, 0 ≤ α < 1. Then the variable
step-size APA becomes

wi = wi−1 + µiU
∗
i (UiU

∗
i )−1 ei (6)

where

µi = µmax
‖p̂i‖2

‖p̂i‖2 + C
(7)

for a positive constant, C is related to σ2
vTr{E[(UiU

∗
i )−1]},

which can be approximated as K/SNR. When ‖p̂i‖2 is
large, wi is far from w◦ and µi is close to µmax; when
‖p̂i‖2 is small, wi approaches w◦ and µi is close to zero.

2.2 Optimal Variable Step Size APA with
Forgetting Factor

Previously, we introduced a forgetting factor into the
pseudo-inverse projection matrix, resulting in a marked
convergence enhancement [8]. The input matrix at time
i can be described as:

Ui[k + 1, l + 1] = xi−k−l (8)
k = 0, 1, . . . ,K − 1; l = 0, 1, . . . , L − 1;

By introducing a forgetting factor λ, 0 < λ ≤ 1,

U ′
i [k + 1, l + 1] = xi−k−lλ

k+l = λkxi−k−lλ
l. (9)

In matrix notation, we represent this as

U ′
i = Λ(K)UiΛ(L) (10)

where Λ(m) is an m × m diagonal matrix with[
Λ(m)

]
j,j

= λj−1 j = 1, 2, . . . ,m

then (4) becomes

p′
i = U ′∗

i (U ′
iU

′∗
i )−1 ei (11)

The newly generated projection matrix in (10) is time-
dependent; the latest data are more significant in the
pseudo-inverse matrix by which the error vector is pro-
jected.

The proposed variable step size APA with forgetting fac-
tor (VS-APA-FF ) is:

wi = wi−1 + µiU
∗
i (UiU

∗
i )−1 ei

µi = µmax
‖p̂′

i‖2

‖p̂′
i‖2 + C

(12)

p̂′
i = αp̂′

i−1 + (1 − α)p′
i 0 ≤ α < 1

Note that Ui is only replaced by U ′
i during the error eval-

uation phase (11), not during the weights updating phase

because of instability which has been observed in some sim-
ulations of replacing Ui by U ′

i for both. This phenomenon
is most possibly due to the ill-conditioning of the input
matrix Ui caused by forgetting process.

A special case of this algorithm is the variable step size
NLMS with forgetting factor (VS-NLMS-FF) obtained by
setting K = 1. For this case, the input matrix Ui is a row
vector and the forgetting factor processing is implemented
only in the row direction.

U ′
i = UiΛ(L) (13)

2.3 Regularization of the Ill-Conditioned
Projection Matrix

In (11) of the previously proposed algorithm, (U ′
iU

′∗
i ) is

potentially ill-conditioned with small singular values. Using
the singular value decomposition (SVD), U ′ can be decom-
posed as:

U ′ = RΣV ∗ (14)

where R and V are K×K and L×L unitary matrices, re-
spectively. Σ is a K×L matrix with nonnegative diagonal
elements of singular values σi, The ill-conditionness of U is
characterized by its condition number,

cond U = σmax/σmin = σ1/σK (15)

from (10), the SVD of the weighted input matrix U ′ is:

U ′ = Λ(K)UΛ(L) = Λ(K)[RΣV ∗]Λ(L)

= R(Λ(K)ΣΛ(L))V ∗ (16)
= RΣ′V ∗

where Σ′ is a K × L matrix with all zero entities except
[Σ′]j,j = λ2(j−1)σj , j = 1, 2, . . . ,K. The condition number
of the weighted input matrix U ′ is:

cond U ′ = σ1/[λ2(K−1)σK ] = λ2(1−K) cond U

which illustrates the increasing condition number due to
decrease in λ and increase in K. Because of this ill-
conditioning, the estimated p′ may not be a true evalu-
ation of the error signal. Even if the error signal is stable,
the projected p′ could be unstable. Thus the V S-APA and
V S-APA-FF algorithms adopt a smoothing function, in the
form of (5), to alleviate this problem with the cost loss of er-
ror signal fidelity, which sacrifices convergence speed and/or
misadjustment.

We propose to address this problem using a Tikhonov
regularization approach, under which (11) becomes:

p′
i = U ′∗

i (U ′
iU

′∗
i + δ2I)−1ei. (17)

where I is the identity matrix, and δ is a hyperparame-
ter to control the amount of regularization. The modified
algorithm becomes:

wi = wi−1 + µiU
∗
i (UiU

∗
i )−1 ei

µi = µmax
‖p̂′

i‖2

‖p̂′
i‖2 + C

(18)



Note that the smoothing function is no longer needed since
the regularization process accomplishes this function.

3 Simulation Results

The performance of the proposed algorithm is illustrated
by simulations of a system identification model[4]. The sys-
tem to be simulated is represented by a moving average
model with L taps. The adaptive filter has the same num-
ber of taps. The goal of the adaptive processing is to esti-
mate system parameters by optimizing the adaptive filter
parameters iteratively using the proposed algorithm. Two
colorized Gaussian noises are used as input signals. The
input signal colorizations are obtained by filtering a white
Gaussian random noise(zero mean, unit variance) through
a 1st order filter, G1(z) = 1/(1 − 0.9z−1) or a 4th order
filter

G2(z) =
1 + 0.9z−1 + 0.6z−2 + 0.81z−3 − 0.329z−4

1 + z−1 + 0.21z−2

The measurement noise vi is added to yi (yi = xiw◦) and
the SNR of the measurement signal is calculated by

SNR = 10log10(
E[y2

i ]
E[v2

i ]
)

The simulation results are obtained by averaging 100 in-
dependent trials, with a smoothing factor α = 0.99 for
VS-APA and VS-APA-FF . The convergence is evaluated
by Mean Square Deviation (MSD) which is calculated by
E(‖w̃i‖2) = E(‖w◦ −wi‖2). Figure 1 gives a VS-APA-FF
example, illustrating effects of different forgetting factors
on optimization performance. For this case, λ = 0.7 is
the optimal value for the best convergence. Empirically,
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Figure 1. MSD vs. iteration number for VS-APA-FF for
effect of different forgetting factors λ. (L=16, K=4,
SNR=30dB, G2 colorization)

we obtained recommended forgetting factors for VS-APA-
FF (Table I) on various cases. (Note that when λ = 1,
the VS-APA-FF becomes the original VS-APA. Therefore,
VS-APA is a special case of VS-APA-FF ).

From Table I we conclude:
• the optimal value of forgetting factor increases with the
increment of the APA order K. VS-APA-FF outperforms
VS-APA for small K and is gradually beaten by VS-APA
when K increases (e.g.K = 4, 8, G1 colorization, SNR =
30dB) due to increasing ill-conditioning.
• VS-APA-FF is good at low noise conditions compared
to VS-APA. In other words, the advantage of VS-APA-FF
over VS-APA becomes less significant with increased noise
level.
• noise color affects adaptation performance. (This applies
for all APA class)

TABLE I

Recommended values of forgetting factor λ for VS-APA-FF. (L=16)

K C

λ
G1 G2

SNR SNR SNR SNR
=30dB =40dB =30dB =40dB

1 0.0001 0.8 0.4 0.5 0.1
2 0.001 0.9 0.8 0.5 0.3
4 0.01 1 0.9 0.7 0.6
8 0.15 1 0.9 0.8 0.8

Using experimental conditions described previously, and
λ = 0.5, δ = 1, simulation comparisons between VS-
APA, VS-APA-FF , and the regularized version VS-APA-
FF-REGU porposed here, are illustrated by figure 2 (noise
G2) and figure 3 (noise G1). For some cases, VS-APA-
FF converges quickly but with high misadjustment (Fig-
ure 2(b),2(c)), while VS-APA-FF-REGU converges more
slowly but with much lower misadjustment. When the up-
date matrix of VS-APA-FF becomes severly ill-conditioned
(Figure 2(a)3(a)3(b)3(c)) and behaves even worse than VS-
APA, the VS-APA-FF-REGU can still converge quickly
and with low misadjustment. Therefore we conclude that
VS-APA-FF-REGU is a good complement for VS-APA-
FF , when the forgetting processed input matrix is close to
singular.

4 Conclusions

This paper presents a new variable step size APA algo-
rithm, VS-APA-FF-REGU, with a projection matrix pro-
cessed with a forgetting factor and using a regularization
term. The ill-conditioning of the projection matrix becomes
significant when the size of input matrix is large, especially
when the forgetting process is introduced. The Tikhonov
regularization is used to overcome the ill-conditionness of
the forgetting processed input matrix. The proposed al-
gorithm is more stable and converges better than previous
algoriths.



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−50

−45

−40

−35

−30

−25

−20

−15

−10

Iterations

M
S

D
(d

B
)

taps=16 K=8 trials=100 C=0.15 λ=0.5 δ=1

VS−APA
VS−APA−FF
VS−APA−FF−REGU

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−50

−45

−40

−35

−30

−25

−20

−15

Iterations

M
S

D
(d

B
)

taps=32 K=12 trials=100 C=0.2 λ=0.5 δ=1

VS−APA
VS−APA−FF
VS−APA−FF−REGU

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−45

−40

−35

−30

−25

−20

−15

Iterations

M
S

D
(d

B
)

taps=32 K=16 trials=100 C=0.3 λ=0.5 δ=1

VS−APA
VS−APA−FF
VS−APA−FF−REGU

(c)

Figure 2. Comparisons among VS-APA, VS-APA-FF,
and VS-APA-FF-REGU, G2 colorization. λ = 0.5.
(a) K=8, taps=16, C=0.15; (b) K=12, taps=32,
C=0.2; (c)K=16, taps=32, C=0.3

In the weighted and regularized variable step size APA,
choosing a proper regularization parameter δ is essential.
An empirical δ is adopted in this paper. The strategy of
deciding the optimal value of δ for various situations will
be of importance for further algorithm updating.
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