SPARSE MATRIX IMPLEMENTATION IN OCTAVE
David Batemai Andy Adlef

1 Centre de Recherche, Motorola
Les Algorithmes, Commune de St Aubin

91193 Gif-Sur-Yvette, FRANCE
email: David.Bateman@motorola.com

1 School of Information Technology and Engineering (SITE)
University of Ottawa
161 Louis Pasteur
Ottawa, Ontario, Canada, K1N 6N5
email: adler@site.uottawa.ca

ABSTRACT given and their implications discussed. Furthermore, the
method of using sparse matrices wilctave oct-filess dis-
cussed.

In order to motivate this use of sparse matrices, con-

This paper discusses the implementation of the sparse ma
trix support with Octave It address the algorithms that

have been used, their implementation, including ex"’lmplessiderthe image of an automobile crash simulation as shown

of using sparse matrices in scripts and in dynamically lthke _in Figure 1. This image is generated based on ideas of DIF-

COd.e' The octa\{e sparse functions the compared.w!th thelrFCrash [4] — a software package for the stability analysis
equivalent functions wittMatlab, and benchmark timings

of crash simulations. Physical bifurcations in automobile
are calculated. design and numerical instabilities in simulation packages
often cause extremely sensitive dependencies of simalatio
1. INTRODUCTION results on even the smallest model changes. Here, a pro-
totypic extension of DIFFCrash uses octave’s sparse matrix
The size of mathematical problems that can be treated at anyunctions (and large computers with lots of memory) to pro-
particular time is generally limited by the available corbpu duce these results.
ing resources. Both the speed of the computer and its avail-
able memory place limitations on the problem size.
There are many classes of mathematical problems which
give rise to maFrices, where a large number of the elementsznl' Storage of Sparse Matrices
are zero. In this case it makes sense to have a special ma-
trix type to handle this class of problems where only the It is not strictly speaking necessary for the user to under-
non-zero elements of the matrix are stored. Not only doesstand how sparse matrices are stored. However, such an
this reduce the amount of memory to store the matrix, but understanding will help to get an understanding of the size
it also means that operations on this type of matrix can takeof sparse matrices. Understanding the storage technique is
advantage of the a-priori knowledge of the positions of the also necessary for those users wishing to create their own
non-zero elements to accelerate their calculations. A ma-oct-files
trix type that stores only the non-zero elements is generall There are many different means of storing sparse matrix
called sparse. data. What all of the methods have in common is that they
This article address the implementation of sparse ma-attempt to reduce the complexity and storage given a-priori
trices withinOctavel[1, 2], including their storage, creation, knowledge of the particular class of problems that will be
fundamental algorithms used, theirimplementations aad th solved. A good summary of the available techniques for
basic operations and functions implemented for sparse ma-storing sparse matrices is given by Saad [5]. With full ma-
trices. Benchmarking dDctaves implementation of sparse trices, knowledge of the point of an element of the matrix
operations compared to their equivalenthiatlab [3] are within the matrix is implied by its position in the computers

2. BASICS

[oNeN
OON
[oNeoNe)
A WO

The non-zero elements of this matrix are

[a—
—_

—_
= DN
NN NI

1
2
3
4

—~ o~~~
w N
W

This will be stored as three vectatglz, ridx anddata,
representing the column indexing, row indexing and data re-
spectively. The contents of these three vectors for theabov
matrix will be
Fig. 1. Image of automobile crash simulation, blue regions
indicate rigid-body behaviour. Image courtesy of BMW and

Fraunhofer Institute SCAI. cde = 0,1,2,2,4]
ridv = [0,0,1,2]
data = [1,2,3,4]

memory. However, this is not the case for sparse matrices, Note that this is the representation of these elements

and so the positions of the non-zero elements of the matrixith the first row and column assumed to start at zero, while
must equally be stored. in Octaveitself the row and column indexing starts at one.

An obvious way to do this is by storing the elements of \yith the above representation, the number of elements in
the matrix as triplets, with two elements being their positi et column is given by:idz(i + 1) — cidx(i).

in the array (rows and column) and the third being the data

itself. This is conceptually easy to grasp, but requiresemor gy, he noted that compressed row formats are equally
storage than is strictly needed. _ possible. However,in the context of mixed operations be-
The storage technique used within Octave is the cOm-yeen mixed sparse and dense matrices, it makes sense that
pressed column format. In this format the position of each e glements of the sparse matrices are in the same order as
elementin arow and the data are stored as previously. HOW-the qense matrice©ctavestores dense matrices in column

ever, if we assume that all elements in the same column ar&p5ior ordering, and so sparse matrices are equally stored in
stored adjacentin the computers memory, then we only needis manner

to store information on the number of non-zero elements in A further constraint on the sparse matrix storage used
each column, rather than their positions. Thus assummgby Octaveis that all elements in the column are stored in

that the matrix has maore non-zero elements than there arelncreasing order of their row index, which makes certain
columns in the matrix, we win in terms of the amount of operations faster. However, it imposes the need to sort the
memory used. ,) elements on the creation of sparse matrices. Having un-
In fact, the column index cgntalns one more element ordered elements is potentially an advantage in that it sake
than the number of columns, with the first element always operations such as concatenating two sparse matrices to-

beélng ;er%. Thhe _ad_vantage Of_ t:ns IS afsmEIlc?tmn |n|the gether easier and faster, however it adds complexity and
code, in that their is no special case for the first or last speed problems elsewhere.

columns. A short example, demonstrating this in C is.

Although Octaveuses a compressed column format, it

for (j = 0; j < nc; j++)
for (i = cidx (j); i < cidx(j+1); i++)
printf ("Element (%i,%i) is %dn”,
ridx (i), j, data(i));

2.2. Creating Sparse Matrices

There are several means to create sparse matrices

A clear understanding might be had by considering an e Returned from a functianThere are many functions
example of how the above applies to an example matrix. that directly return sparse matrices. These inclsygle
Consider the matrix eye sprand spdiag etc.

e Constructed from matrices or vector§he function creates am-by-c sparse matrix with a random distribu-
sparseallows a sparse matrix to be constructed from tion of 2 elements per row. The elements of the vectors do
three vectors representing the row, column and data.not need to be sorted in any particular ordeCagavewill
Alternatively, the functiorspconveruses a three col- sort them prior to storing the data. However, pre-sortirg th
umn matrix format to allow easy importation of data data will make the creation of the sparse matrix faster.

from elsewhere. The functionspconvertakes a three or four column real
matrix. The first two columns represent the row and column
¢ Created and then filledThe functionsparseor spal- index, respectively, and the third and four columns, thé rea
loc can be used to create an empty matrix that is then and imaginary parts of the sparse matrix. The matrix can
filled by the user contain zero elements and the elements can be sorted in any

order. Adding zero elements is a convenient way to define

e From a user binary programThe user can directly the size of the sparse matrix. For example

create the sparse matrix within ant-file
s = spconvert ([1 2 3 4; 1 3 4 4; 12 3 0])

Compressed Column Sparse (rows=4,

There are several functions that return specific sparse =\ <_, nnz=3)

matrices. For example the sparse identity matrix is often (1 1) —> 1
needed. It therefore has its own function to create it as (2 , 3) > 2
speyén) or speyér, ¢), which creates am-by-n or r-by- (3, 4)—> 3

c sparse identity matrix. . N o
Another typical sparse matrix that is often needed is ~ An example of creating and filling a matrix might be

a random distribution of random elements. The functions | - 5:

sprandand sprandnperform this for uniform and normal 7z = ¢ & k:

random distributions of elements. They have exactly the s = spalloc (r, ¢, nz)

same calling convention, whesprandr, ¢, d), creates an for j = 1:c
r-by-c sparse matrix with a density of filled elementsdof idx = randperm (r);
Other functions of interest that directly creates a sparse S (:, j) = [zeros(r— k, 1);
matrices, arespdiagor its generalizatiorspdiags that can rand (k, 1)] (idx);
take the definition of the diagonals of the matrix and create €n9for
the sparse matrix that corresponds to this. For example It should be noted, that due to the way that ©etave
s = spdiag (sparse(randn(1,n)}1); assignment functions are written that the assignment will

reallocate the memory used by the sparse matrix at each it-
creates a sparge + 1)-by-(n + 1) sparse matrix with eration of the above loop. Therefore thpallocfunction
a single diagonal defined. ignores thenz argument and does not preassign the mem-
The recommended way for the user to create a sparseory for the matrix. Therefore, code using the above struc-
matrix, is to create two vectors containing the row and col- ture should be vectorized to minimize the number of assign-
umn index of the data and a third vector of the same size ments and reduce the number of memory allocations.
containing the data to be stored. For example The above problem can be avoideddat-files How-
function x = foo (r.) ever, the construction of a sparse matrix frpmmfi_leis
X _ ! more complex than can be discussed in this brief introduc-
ldx = randperm (r); . tion, and you are referred to section 6, to have a full descrip
X = ([zeros(r—2,1); rand(2,1)])(idx); ’ !

endfunction tion of the techniques involved.

(r:|i _ [[]] 2.3. SparseFunctionsin Octave
d = [I; An important consideration in the use of the sparse func-
o tions ofOctaveis that many of the internal functions Gfc-
fOI’d] _1'E . tave such agliag, can not accept sparse matrices as an in-
. tmp_ N _foo (r. i) o , put. The sparse implementationQrttavetherefore uses the
idx = find (dtmp != 0.); . . -
rio= [ri;oidx]: d|_spatchf_unct|0n to oyerload the norm@ctavefunctlon_s
ci = [ci; jxones(length(idx),1)]; with equivalent functions that work with sparse matrices.
d = [d; dtmp(idx)]; However, at any time the sparse matrix specific version of
endfor the function can be used by explicitly calling its function

s = sparse (ri, ci, d, r, c); name.

The table below lists all of the sparse functionsOx- speye(3) + 0

tavetogether (with possible future extensions thatarecur- 1 0 O
rently unimplemented, listed last). Note that in this sfieci 01 0
sparse forms of the functions are typically the same as the 0 0 1
general versions with spprefix. In the table below, and the returns a full matrix as can be seen. Additionally all
r.est of this article the SpeCiﬁC sparse versions of the func- sparse functions test the amount of memory Occupied by the
tions are used. sparse matrix to see if the amount of storage used is larger
than the amount used by the full equivalent. Therefpe
e Generate sparse matricepallog spdiagsspeyesp- eye(2) * 1will return a full matrix as the memory used is
rand, sprandn sprandsym smaller for the full version than the sparse version.

As all of the mixed operators and functions between full
and sparse matrices exist, in general this does not cause any
problems. However, one area where it does cause a problem
is where a sparse matrix is promoted to a full matrix, where
subsequent operations would re-sparsify the matrix. Such
cases are rare, but can be artificially created, for example

e Graph Theoryetree etreeplof gplot, treeplot (tree- (fliplr(speye(3)) + speye(3)) - speye(Gives a full matrix

e Sparse matrix conversiofull, sparse spconvertsp-
find

e Manipulate sparse matricéssparse nnz nonzeros
nzmaxspfun sponesspy,

layout) when it should give a sparse one. In general, where such
cases occur, they impose only a small memory penalty.
e Sparse matrix reorderingcolamd colamd colperm There is however one known case where this behavior
csymamgdsymamdrandperm dmperm (symrcm) of Octavés sparse matrices will cause a problem. That is
in the handling of thespdiagfunction. Whethespdiagre-
e Linear algebra:matrix typg spcho) spcholinv sp- turns a sparse or full matrix depends on the type of its input

chol2iny, spdet spiny, spkron splchol splu, spgr, (con- arguments. So
dest, eigs, normest, sprank, svds, spaugment) a = diag (sparse ([1.2.3]).—1):
* lterative techniquesluinc, (bicg, bicgstab, cholinc, should return a sparse matrix. To ensure this actually

cgs, gmres, Isqr, minres, pcg, pcr, gmr, symmiq) happens, theparsegunction, and other functions based on it
like speyealways returns a sparse matrix, even if the mem-

* Miscellaneous:spparms symbfact spstats spprod ory used will be larger than its full representation.

spcumsumsSpsUM spsumsgspmin spmax spatan2
spdiag 2.5. Finding out Information about Sparse Matrices

In addition all of the standar@ctavemapper functions There are a number of functions that allow information con-
(ie. basic math functions that take a single argument) suchcerning sparse matrices to be obtained. The most basic of

asabs etc can accept sparse matrices. The reader is referredhese isssparsethat identifies whether a particul@ctave
to the documentation supplied with these functions within object is in fact a sparse matrix.

Octaveitself for further details. Another very basic function isnzthat returns the num-
ber of non-zero entries there are in a sparse matrix, while
2.4. Sparse Return Types the functionnzmaxreturns the amount of storage allocated

to the sparse matrix. Note th@ctavetends to crop unused

The two basic reasons to use sparse matrices are to reducamemory at the first opportunity for sparse objects. There are
the memory usage and to not have to do calculations on zerssome cases of user created sparse objects where the value re-
elements. The two are closely related and the computationturned bynzmaawill not be the same asnz but in general
time might be proportional to the number of non-zero ele- they will give the same result. The functispstatseturns
ments or a power of the number of non-zero elements de-some basic statistics on the columns of a sparse matrix in-
pending on the operator or function involved. cluding the number of elements, the mean and the variance

Therefore, there is a certain density of non-zero ele- of each column.
ments of a matrix where it no longer makes sense to store When solving linear equations involving sparse matrices
it as a sparse matrix, but rather as a full matrix. For this Octavedetermines the means to solve the equation based
reason operators and functions that have a high probabilityon the type of the matrix as discussed in sectio®8tave
of returning a full matrix will always return one. For exam- probes the matrix type when the diy)(or Idiv (\) opera-
ple adding a scalar constant to a sparse matrix will almosttor is first used with the matrix and then caches the type.
always make it a full matrix, and so the example However thanatrix_typefunction can be used to determine

the type of the sparse matrix prior to use of the div or Idiv
operators. For example

a = tril (sprandn(1024, 1024, 0.02)+1)
+ speye (1024);

matrix_type (a);

ans = Lower

show thatOctavecorrectly determines the matrix type
for lower triangular matricesmatrix_typecan also be used
to force the type of a matrix to be a particular type. For
example

a = matrixtype (tril (sprandn (1024,
1024, 0.02), —1) + speye(1024), ’'Lower’);

This allows the cost of determining the matrix type to be Fig. 2. Simple use of theplot command as discussed in
avoided. However, incorrectly defining the matrix type will Section 2.5

result in incorrect results from solutions of linear eqoas,
and so it is entirely the responsibility of the user to cotlsec
identify the matrix type

'_I'here are several graphical means pf finding out infor- 26. Mathematical Consider ations
mation about sparse matrices. The first isthgcommand,
which displays the structure of the non-zero elements of the The attempt has been made to make sparse matrices behave
matrix, as can be seen in Figure 4. More advanced graphicain exactly the same manner as their full counterparts. How-
information can be obtained with theeplot etreeplotand ever, there are certain differences between full and sparse
gplotcommands. behavior and with the sparse implementations in other soft-

One use of sparse matrices is in graph theory, where thevare tools.
interconnections between nodes is represented as an adja- Firstly, the./ and.” operators must be used with care.
cency matrix [6]. That is, if thé-th node in a graph is con- ~ Consider what the examples
nected to thg-th node. Then théj-th node (and in the case

of undirected graphs thg-th node) of the sparse adjacency

matrix is non-zero. If each node is then associated with a s speye(4);
set of co-ordinates, then tigplot command can be used to al 5.12;
graphically display the interconnections between nodes. a2 s/\s;
As a trivial example of the use afplot, consider the a3 s/ —2;
example ad 5.)2:
A = sparse([2.,6,1,3,2,4,3,5,4,6,1,5], ad 2./s;
(1,1,2,2,3,3,4,4,5,5,6,6],1,6,6); ab s./s;

xy = [0,4,8,6,4,2;5,0,5,7,5,7]";

gplot(A,xy) will give. The first example of raised to the power of
2 causes no problems. Howewveraised element-wise to

which creates an adjacency matAxwhere node 1 is jtself involves a a large number of terfis” 0 which is 1.
connected to nodes 2 and 6, node 2 with nodes 1 and 3, etcTherefores 2 sis a full matrix.

The co-ordinates of the nodes is given in thby-2 matrix Likewises / -2 involves terms terms lik8 . -2 which
Xy. The output of thgplotcommand can be seen in Figure 2 js infinity, and sos /* -2 is equally a full matrix.

The dependences between the nodes of a Cholesky fac- For the./ operators ./ 2has no problems, b ./ sin-
torization can be calculated in linear time without explici volves a large number of infinity terms as well and is equally
needing to calculate the Cholesky factorization bydhree a full matrix. The case 0§ ./ sinvolves terms likeO ./ O
command. This command returns the elimination tree of which is aNaN and so this is equally a full matrix with the
the matrix and can be displayed grapically by the commandzero elements of filled with NaN values. The above be-
treeplot(etree(A) Ais symmetric otreeplot(etree(A+A")) havior is consistent with full matrices, but is not consisgte
otherwise. with sparse implementations Matlab [7]. If the user re-

quires the same behavior asMatlabthen for example for
the case o2 ./ sthen appropriate code is

function z = f(x), z = 2 ./ x; endfunction
spfun (@f, s);

and the other examples above can be implemented sim-
ilarly.

A particular problem of sparse matrices comes about 30 [
due to the fact that as the zeros are not stored, the sign-2° [
bit of these zeros is equally not stored. In certain cases the20 |

/

V

.,,,
i

N
N
N
%
\;‘z
N
\/
&g
NS
AN
K]
N
0
A
]
//,;‘

Y

b
B,
N
i

\

%
A
/

g\»
X
%
(Y
I\
QN
WV
lvj.%
,'{
7

[

%

WA vy

LAY
i . .. LA A
sign-bit of zero is important [8]. For example 15 r ?;314}‘12:1
a=0 ./ [-1,1; 1, —-1]; c rzé«z’z/z,;;;/
b=1./a i NSRS OS2

—Inf Inf or I NN ""7)&?,2‘,‘4 15

Inf —Inf L 7

c =1 ./ sparse (a)

Inf Inf 15

Inf Inf

To correct this behavior would mean that zero elements
with a negative sign-bit would need to be stored in the ma-
trix to ensure that their sign-bit was respected. This is not 45
done at this time, for reasons of efficiency, and so the user !
is warned that calculations where the sign-bit of zero is im-
portant must not be done using sparse matrices. Fig. 3. Geometry of FEM model of phantom ball model

. In_general any function or o_pera_ltor used on a sparse Ma+om EIDORS project [9, 10]
trix will result in a sparse matrix with the same or a larger
number of non-zero elements than the original matrix. This
is particularly true for the important case of sparse matrix
factorizations. The usual way to address this is to reorder
the matrix, such that its factorization is sparser than #ue f
torization of the original matrix. That is the factorizatiof
LU = PSQ has sparser term andU than the equivalent 200 P~
factorizationLU = S. :

Several functions are available to reorder depending on w00 L
the type of the matrix to be factorized. If the matrix is sym-
metric positive-definite, thesymamdor csymamdshould
be used. Otherwiseolamdor ccolamdshould be used. For 00
completeness the reordering functioc@permand rand-
permare also available. L

As an example, consider the ball model which is given 2% [
as an example in the EIDORS project [9, 10], as shown in s
Figure 3. The structure of the original matrix derived from 4400 L
this problem can be seen with the commapgl(A) as seen
in Figure 4.

The standard LU factorization of this matrix, with row 1200
pivoting can be obtained by the same command that woulc
be used for a full matrix. This can be visualized with the ., g . F ot - R
command]l, u, p] = lu(A); spy(l+u); as seen in Figure 5. 0 200 400 600 800 1000 1200 1400
The original matrix had 17825 non-zero terms, while this
LU factorization has 531544 non-zero terms, which is a sig- _)
nificant level of fill in of the factorization and represents a Fi9-4. Structure of the sparse matrix derived from EIDORS
large overhead in working with this matrix. phantom ball model [9, 10]

The appropriate sparsity preserving permutation of the
original matrix is given bycolamdand the factorization us-

0

ey
Mo,

[

L ;'

800 %

1000 £ % N

1200

RN

Si

1400 |~ vy —_— 1400

0 200 400 0 800 1000 1200 1400

(o2
o

200

|
Ml

o]

1200

T
a
L S—

B
My,

- R S L - —IHN | |‘l|_u.

P TEEE
Lo, 4y

t
il

1000 1200 1400

Fig. 5. Structure of the un-permuted LU factorization of Fig. 6. Structure of the permuted LU factorization of El-
EIDORS ball problem DORS ball problem

ing this reordering can be visualized using the command
= colamd(A); [I, u, p] = lu(A(:,q)); spy(I+u). This gives
212044 non-zero terms which is a significant improvement.

Furthermore, the underlying factorization software up-
dates its estimate of the optimal sparsity preserving rerd
ing of the matrix during the factorization, so can return an
even sparser factorization. In the case of the LU factoriza-
tion this might be obtained with a fourth return argument as
[, u, p, q] = lu(A); spy(l+u). This factorization has 143491
non-zero terms, and its structure can be seen in Figure 6.

Finally, Octaveimplicitly reorders the matrix when us-
ing the div (/) and Idiv (\) operators, and so no the user
does not need to explicitly reorder the matrix to maximize
performance.

3. LINEAR ALGEBRA ON SPARSE MATRICES

Octaveincludes a polymorphic solver for sparse matrices,
where the exact solver used to factorize the matrix, depends
on the properties of the sparse matrix itself. Generallg, th
cost of determining the matrix type is small relative to the
cost of factorizing the matrix itself, but in any case the ma-
trix type is cached once it is calculated, so that it is not re-
determined each time it is used in a linear equation.

Linear equations are solved using the following selec-
tion tree

1. if the matrix is diagonal, solve directly and goto 8

2. If the matrix is a permuted diagonal, solve directly
taking into account the permutations. Go to 8

3. If the matrix is square, banded and if the band den-
sity is less than that given bgpparms ("bandden”)
continue, else go to 4.

(a) If the matrix is tridiagonal and the right-hand
side is not sparse continue, else go to 3b.

i. If the matrix is hermitian, with a positive
real diagonal, attempt Cholesky factoriza-
tion usingLapackxPTSV.

ii. If the above failed, or the matrix is not her-
mitian, use Gaussian elimination with piv-
oting usingLapackxGTSV, and go to 8.

(b) If the matrix is hermitian with a positive real di-
agonal, attempt a Cholesky factorization using
LapackxPBTRF.

(c) if the above failed or the matrix is not hermi-
tian with a positive real diagonal use Gaussian
elimination with pivoting usingLapack xGB-
TRF, and go to 8.

4. If the matrix is upper or lower triangular perform a
sparse forward or backward substitution, and go to 8

5. If the matrix is a upper triangular matrix with col-
umn permutations or lower triangular matrix with row

permutations, perform a sparse forward or backward
substitution, and go to 8

. If the matrix is square hermitian with a real positive
diagonal, attempt a sparse Cholesky factorization us-
ing CHOLMOD.

. If the sparse Cholesky factorization failed or the ma-
trix is not hermitian, and the matrix is square, perform
LU factorization using UMFPACK.

. If the matrix is not square, or any of the previous
solvers flags a singular or near singular matrix, find
a minimum norm solution using CXSPARSE.

The band density is defined as the number of non-zero
values in the band divided by the number of values in the
band. The banded matrix solvers can be entirely disabled
by usingspparmdo setbanddeno 1 (i.e.spparms ("band-
den”, 1)).

The QR solver factorizes the problem with a Dulmage-
Mendhelsohn [13], to seperate the problem into blocks that
can be treated as over-determined, multiple well deterchine

should be treated as indicative of the speed a user might ex-
pect.

That being said we attempt to examine the speed of
several fundamental operators for use with sparse matrices
These being the addition (+), multiplication (*) and left-
devision {) operators. The basic test code used to perform
these tests is given by

0;

time =
n 0;
while (time < tmin ||
clear a, b;
a sprand (order,
cputime ();
a OP a;
time + cputime ()— t;
n+ 1,

n < nrun)

order, density);

.o~
II3 1nn

e

S o

end
time

time / n;

wherenrunwas 5,tminwas 1 second an@dP was either
+, or *. The left-division operator poses particular prabke
for benchmarking that will be discussed later.

Although thecputimefunction only has a resolution of

blocks, and a final over-determined block. For matrices with 0.01 seconds, running the command multiple times and lim-
blocks of strongly connectted nodes this is a big win as LU ited by the minimum run time ofmin seconds allows this
decomposition can be used for many blocks. It also sig- precision to be extended. Running the above code for var-
nificantly improves the chance of finding a solution to ill- ious matrix orders and densities results in the summary of
conditioned problems rather than just returning a vector of execution times as seen in Table 1.

NaN's. The results for the small low density problems in Ta-
All of the solvers above, can calculate an estimate of the ble 1 are interesting (cf. Matrix order of 500, with denstie
condition number. This can be used to detect numerical sta-lower than 1e-03), as they seem to indicate that there is a

bility problems in the solution and force a minimum norm small incompressible execution time for bdwatlab and
solution to be used. However, for narrow banded, triangular Octave This is probably due to the overhead associated
or diagonal matrices, the cost of calculating the condition with the parsing of the language and the calling of the un-
number is significant, and can in fact exceed the cost of fac-derlying function responsible for the operator. On the test
toring the matrix. Therefore the condition number is not machine this time was approximately 208 for Octavefor
calculated in these case, and octave relies on simplier techboth operators, while foMatlab this appears to be 70 and
niques to detect sinular matrices or the underlying LAPACK 40 us for the * and + operators respectively. So in this class

code in the case of banded matrices.

The user can force the type of the matrix with tha-
trix_typefunction. This overcomes the cost of discovering
the type of the matrix. However, it should be noted incor-
rectly identifying the type of the matrix will lead to un-
predictable results, and soatrix typeshould be used with
care.

4. BENCHMARKING OF OCTAVE SPARSE
MATRIX IMPLEMENTATION

Itis a truism that all benchmarks should be treated with.care
The speed of a software package is determined by a larg
number of factors, including the particular problem trelate

and the configuration of the machine on which the bench-

marks were run. Therefore the benchmarks presented hergime

e

of problemaMatlab outperform®Octavefor both operators.
However, when the matrix order or density increases it can
be seen thaDctavesignificantly out-performdatlab for
both operators.

When considering the left-division operator, we can not
use randomly created matrices. The reason is that the fill-
in, or rather the potential to reduce the fill-in with appriepr
ate matrix re-ordering, during matrix factorization is eiet
mined by the structure of the matriximposed by the problem
it represents. As random matrices have no structure, factor
ization of random matrices results in extremely large Isvel
of matrix fill-in, even with matrix re-ordering. Therefors,
benchmark the left-division\) operator, we have selected a
number of test matrices that are publicly available [14Y an
modify the benchmark code as

0;

Order | Den- Execution Time for Operator (sec)
sity Matlab Octave
+ * + *
500 1le-02 || 0.00049| 0.00250| 0.00039| 0.00170
500 | 1e-03| 0.00008| 0.00009| 0.00022| 0.00026
500 1le-04 || 0.00005| 0.00007| 0.00020| 0.00024
500 1le-05| 0.00004| 0.00007| 0.00021| 0.00015
500 | 1e-06| 0.00006| 0.00007 | 0.00020| 0.00021
1000 | 1e-02 || 0.00179| 0.02273| 0.00092| 0.00990
1000 | 1e-03 || 0.00021 | 0.00027 | 0.00029| 0.00042
1000 | 1e-04 | 0.00011| 0.00013| 0.00023| 0.00026
1000 | 1e-05|| 0.00012| 0.00011| 0.00028| 0.00023
1000 | 1e-06 || 0.00012| 0.00010| 0.00021| 0.00022
2000 | 1le-02 || 0.00714 | 0.23000| 0.00412| 0.07049
2000 | 1e-03 || 0.00058| 0.00165| 0.00055| 0.00135
2000 | 1e-04 || 0.00032| 0.00026 | 0.00026 | 0.00033
2000 | 1le-05 || 0.00019| 0.00020| 0.00022| 0.00026
2000 | 1e-06 || 0.00018| 0.00018| 0.00024 | 0.00023
5000 | 1e-02 || 0.05100| 3.63200| 0.02652| 0.95326
5000 | 1e-03 || 0.00526 | 0.03000| 0.00257 | 0.01896
5000 | 1e-04 || 0.00076| 0.00083| 0.00049| 0.00074
5000 | 1e-05 || 0.00051| 0.00051| 0.00031| 0.00043
5000 | 1le-06 || 0.00048 | 0.00055| 0.00028| 0.00026
10000 | 1le-02 | 0.22200| 24.2700| 0.10878| 6.55060
10000 | 1e-03| 0.02000| 0.30000| 0.01022| 0.18597
10000 | 1e-04 || 0.00201| 0.00269| 0.00120| 0.00252
10000 | 1e-05| 0.00094| 0.00094| 0.00047| 0.00074
10000 | 1le-06 | 0.00110| 0.00098| 0.00039| 0.00055
20000 | 1e-03 || 0.08286 | 2.65000| 0.04374| 1.71874
20000 | 1e-04 || 0.00944 | 0.01923| 0.00490| 0.01500
20000 | 1e-05|| 0.00250(0.00258 | 0.00092| 0.00149
20000 | 1e-06 || 0.00189 | 0.00161| 0.00058| 0.00121
50000 | 1e-04 || 0.05500(0.39400| 0.02794| 0.28076
50000 | 1e-05 || 0.00823| 0.00877| 0.00406| 0.00767
50000 | 1e-06 || 0.00543| 0.00610| 0.00154| 0.00332
Table 1. Benchmark of basic operators tdatlab R14sp2

againstOctave2.9.5, on a Pentium 4M 1.6GHz machine
with 1GB of memory.

n = 0;
while (time < tmin ||
clear a, b;
load test.mat % Get matrix ’'a’
ones (order ,1);
cputime ();

n < nrun)

x

1 5 Inomn

b a\ Xx;
ime = time + cputime ()— t;
n n+ 1;

end

time = time / n;

All the the matrices in the University of Florida Sparse
Matrix [14] that met the following criteria were used

e Has real or complex data available, and not just the
structure,

e Has between 10,000 and 1,000,000 non-zero element,
e Has equal number of rows and columns,

e The solution did not require more than 1GB of mem-
ory, to avoid issues with memory.

When comparing the benchmarks for the left-division
operator it must be considered that the matrices in the col-
lection used represent an arbitrary sampling of the avigilab
sparse matrix problems. It is therefore difficult to trea th
data in aggregate, and so we present the raw data below so
that the reader might compare the benchmark for a particu-
lar matrix class that interests them.

The performance of thilatlab andOctaveleft-division
operators is affected by thepparmsfunction. In particu-
lar the density of terms in a banded matrix that is needed to
force the solver to use the LAPACK banded solvers rather
than the generic solvers is determined by the comnsgad
parms(’bandden’,val)The default density of 0.5 was used
for bothMatlabandOctave

Five classes of problems were represented in the matri-
ces treated. These are

e Banded positive definite and factorized with the LA-
PACK xPBTRF function,

e General banded matrix and factorized with the LA-
PACK xGBTRF function,

o Positive definite and treated by the Cholesky solvers
of MatlabandOctave

e Sparse LU decomposition with UMFPACK, and

e Singular matrices that were treated via QR decompo-
sition.

Also, it should be noted that the LAPACK solvers, and PACK was used the speed Mftlab exceeded the speed of

dense BLAS kernels of the UMFPACK and CHOLMOD

Octave while in 267 of the cases the speed@ftaveex-

solvers were accelerated using the ATLAS [15] versions of ceeded the speed bfatlab, with the mean speed @ictave
the LAPACK and BLAS functions. The exact manner in being 12% above that dflatlab.

which the ATLAS library is compiled might have an affect

Finally, there are significant differences between the re-

on the performance, and therefore the benchmarks mightsults forOctaveandMatlab for singular matrices. The ma-

measure the relative performance of the different versidns
ATLAS rather than the performance GfctaveandMatlab.
To avoid this issuectavewas forced to use th#&latlab
ATLAS libraries with the use of the Unix LOIPRELOAD
command.

For the banded problems bofictaveand Matlab per-
form similarly, with only minor differences, probably due
to the fact that the same ATLAS library was usebllat-
lab is slightly faster for problems with very short run times,
probably for similar reasons as for small multiplicatiomsla
additions.

One class of problems where the spee@ofavesignif-
icantly exceeds that dflatlab are the positive definite ma-

jor difference is thaMatlab uses Given'’s rotations whereas
Octaveuses Householder reflections. Given’s rotations of
Matlab allow row reordering to be performed to reduce the
amount of work to below that of a Householder transforma-
tion. However, the underlying code used @ctaveuses
Householder transformation to allow the eventual use of
multi-frontal techniques to the QR factorization, and se th
option is not available t@ctavecurrently.
FurthermoreQOctaveuses a Dulmage-Mendelsohn fac-
torization of the matrix to allow the problems to be solved
as a combination of over-determined, well-determined and
under-determined parts. The advantage of this is the po-
tential for significantly better performance and more sta-

trices that are not solved with the LAPACK banded solvers ble results for over-determined problems. However, it is
(XPTSV or xPBTRF). This is due in large part to the use of possible that the Dulmage-Mehdelsohn factorization iden-

CHOLMOD [11]. Octaves performance might be further
improved with the use of METIS [16] for the graph par-
titioning in conjuntion with CHOLMOD. As CHOLMOD

will become the sparse Cholesky solver in future versions

of Matlab? this situation is a temporary advantage @x-
tave The worst case for this is th&ndrews/Andrewma-
trix, where Matlab did not complete the solution due to a
lack of memory. OncéMatlab uses CHOLMOD, it might

be expected that in this case as well similar speeds might be

expected.

tifies no useful structure. A case where this occurs is the
GHS.indef/dtoamatrix where 3 times the computation time
of a straight QR solution is needed.

The Dulmage-Mendelsohn solver can be bypassed with
code like

[c.r] = ar(a,b);
X = r\c;

It should be noted that botBctaveandMatlab use ac-
celerated algorithms for the left-division operator faatr-

The differences in the problems solved via LU decom- gular, permuted triangular and tridiagonal matrices, as di
position using UMFPACK are harder to explain. There are cussed in section 3, and that these cases are not treated in th

a couple of very large discrepancies in the results, @With
tave winning in some cases (cfHollinger/g7jac100 and
Matlabin others (cfZhao/Zhao®.

Both Octaveand Matlab use recent versions of UMF-
PACK, with Octaveusing a slightly newer version to allow

the use of C99 compatible complex numbers where the real

matrices from the University of Florida collection usedéer
These are trivial cases, but important in that they shoutd no
be solved with generic code.

5. USE OF OCTAVE SPARSE MATRICESIN REAL
LIFE EXAMPLE

and imaginary parts are stored together. There are however
no changes between the versions of UMFPACK used thata common application for sparse matrices is in the solution

would explain any performance differenceSctavehas a

of Finite Element Models. Finite element models allow nu-

slight advantage when the arguments are complex, due it isyerical solution of partial differential equations that ot

use of C99 compatible complex as it is this format that is pave closed form solutions, typically because of the com-
used internally to UMFPACK. Another possible source of plex shape of the domain.

differences is that UMFPACK calls internally a column re-

ordering routine, an@ctaveuses this functionality Perhaps

In order to motivate this application, we consider the
boundary value Laplace equation. This system can model

Matlab attempts to independently guess an initial column gq1ar potential fields, such as heat or electrical potentia
reordering. In any case, in 11 of the cases where UMF- Given a mediunt) with boundaryd<. At all points on

1Tim Davis has stated “CHOLMOD will become x3A in a future
release oMatlab when A is symmetric and positive definite or Hermitian,
with a speedup of 5 (for small matrices) to 40 (for big onespehding on
the matrix”

the 012 the boundary conditions are known, and we wish to
calculate the potential ift. Boundary conditions may spec-
ify the potential (Dirichlet boundary condition), its noain
derivative across the boundary (Neumann boundary condi-

Matrix Order NNZ st Execution Time Matrix Order NNZ st Execution Time
for Operator (sec) for Operator (sec)
Matlab Octave Matlab Octave
Bai/dw1024 2048 10114 8 0.05000 0.03585 HB/nos3 960 15844 7 0.04417 0.01050
Boeing/bcsstm38 8032 10485 9 0.04333 0.02490 Bai/rbsa480 480 17088 8 0.05000 0.02905
Zitney/extrl 2837 10967 8 0.03846 0.02052 Bai/rbsh480 480 17088 8 0.04545 0.02575
vanHeukelum/cage8 1015 11003 8 0.07714 0.05039 Hollinger/g7jac010 2880 18229 8 0.18000 0.13538
FIDAP/ex32 1159 11047 8 0.04333 0.02354 Hollinger/g7jac010sc 2880 18229 8 0.15600 0.13778
Sandia/addedcop.05 1813 11097 8 0.03000 0.01693 Mallya/lhr01 1477 18427 8 0.05667 0.02982
Sandia/addedcop.04 1813 11107 8 0.02889 0.01680 HB/bcsstk09 1083 18437 7 0.05778 0.02012
Sandia/addedcop.03 1813 11148 8 0.03059 0.01690 FIDAP/ex21 656 18964 8 0.03846 0.02390
Sandia/addedcop.01 1813 11156 8 0.02941 0.01670 Wang/wang1l 2903 19093 8 0.23400 0.14818
Sandia/initadderl 1813 11156 8 0.02889 0.01667 Wang/wang2 2903 19093 8 0.22800 0.14798
Sandia/addedcop.06 1813 11224 8 0.02833 0.01693 Brethour/coaterl 1348 19457 9 0.19000 0.07413
Sandia/addedcop.07 1813 11226 8 0.02889 0.01670 HB/bcsstm12 1473 19659 7 0.07000 0.01037
Sandia/addedcop.10 1813 11232 8 0.03000 0.01670 Hamm/add32 4960 19848 8 0.06500 0.03869
Sandia/addedcop.09 1813 11239 8 0.02889 0.01706 Bai/olm5000 5000 19996 4d 0.00463 0.00546
Sandia/addedcop.08 1813 11242 8 0.03118 0.01696 Gset/G57 5000 20000 8 0.15800 0.09332
Sandia/addedcop11 1813 11243 8 0.02889 0.01693 HB/sherman3 5005 20033 8 0.12200 0.07285
Sandia/addedcop13 1813 11245 8 0.02889 0.01751 Shyy/shyy41 4720 20042 8 0.08833 0.05149
Sandia/addedcop19 1813 11245 8 0.02889 0.01693 Bai/rw5151 5151 20199 8 0.21600 0.13078
Sandia/addedcop44 1813 11245 8 0.02889 0.01713 Oberwolfach/t3de 20360 20360 4c 0.00105 0.00327
Sandia/addedcop.02 1813 11246 8 0.03059 0.01769 Boeing/bcsstm35 30237 20619 9 0.09333 0.05429
Sandia/addedcop.12 1813 11246 8 0.02889 0.01606 Grund/bayer08 3008 20698 8 0.09667 0.05766
Sandia/addedcop.14 1813 11246 8 0.02889 0.01683 Grund/bayer05 3268 20712 8 0.02125 0.00998
Sandia/addedcop.15 1813 11246 8 0.02833 0.01676 Grund/bayer06 3008 20715 8 0.10000 0.05799
Sandia/addedcop16 1813 11246 8 0.02778 0.01683 HB/sherman5 3312 20793 8 0.09333 0.05259
Sandia/addedcop17 1813 11246 8 0.02889 0.01727 Wang/swangl 3169 20841 8 0.08500 0.04817
Sandia/addedcop.18 1813 11246 8 0.02889 0.01703 Wang/swang2 3169 20841 8 0.08500 0.04808
Sandia/addedcop.20 1813 11246 8 0.02889 0.01680 Grund/bayer07 3268 20963 8 0.01923 0.01010
Sandia/addedcop21 1813 11246 8 0.02778 0.01686 HB/bcsstm13 2003 21181 9 0.10200 0.06949
Sandia/addedcop.22 1813 11246 8 0.03000 0.01700 Bomhof/circuit2 4510 21199 8 0.04250 0.02395
Sandia/addedcop.23 1813 11246 8 0.03059 0.01690 Boeing/bcsstk34 588 21418 7 0.09333 0.01539
Sandia/addedcop.24 1813 11246 8 0.02889 0.01727 TOKAMAK/utm1700b 1700 21509 8 0.08143 0.05009
Sandia/addedcop.25 1813 11246 8 0.03000 0.01693 HB/bcsstk10 1086 22070 7 0.11800 0.00826
Sandia/addedcop.26 1813 11246 8 0.03000 0.01700 HB/bcsstm10 1086 22092 8 0.14000 0.02008
Sandia/addedcop.27 1813 11246 8 0.02889 0.01713 Hamrle/Hamrle2 5952 22162 8 0.11000 0.06299
Sandia/addedcop28 1813 11246 8 0.02889 0.01680 FIDAP/ex33 1733 22189 7 0.06875 0.01205
Sandia/addedcop29 1813 11246 8 0.02789 0.01680 HB/saylr4 3564 22316 8 0.18000 0.11338
Sandia/addedcop.30 1813 11246 8 0.02889 0.01680 FIDAP/ex22 839 22460 8 0.04154 0.02234
Sandia/addedcop31 1813 11246 8 0.02889 0.01693 Zitney/hydrl 5308 22680 8 0.09000 0.04972
Sandia/addedcop32 1813 11246 8 0.02941 0.01693 HB/sherman2 1080 23094 8 0.08500 0.05379
Sandia/addedcop.33 1813 11246 8 0.02833 0.01710 Gset/G40 2000 23532 8 1.05000 0.90126
Sandia/addedcop.34 1813 11246 8 0.02833 0.01690 Gset/G39 2000 23556 8 1.03400 0.82907
Sandia/addedcop.35 1813 11246 8 0.02889 0.01693 Gset/G42 2000 23558 8 1.06200 0.85347
Sandia/addedcop.36 1813 11246 8 0.02889 0.01683 Gset/G41 2000 23570 8 0.99200 0.83307
Sandia/addedcop.37 1813 11246 8 0.03000 0.01693 FIDAP/ex29 2870 23754 8 0.08143 0.04754
Sandia/addedcop.38 1813 11246 8 0.02737 0.01703 Boeing/bcsstm34 588 24270 8 0.05556 0.06349
Sandia/addedcop.39 1813 11246 8 0.02778 0.01789 FIDAP/ex25 848 24369 8 0.05000 0.02679
Sandia/addedcop40 1813 11246 8 0.02889 0.01738 HB/mcfe 765 24382 8 0.06500 0.03473
Sandia/addedcop41 1813 11246 8 0.02941 0.01686 Gset/G56 5000 24996 9 4.56000 5.42238
Sandia/addedcop42 1813 11246 8 0.03059 0.01693 Shen/shermanACa 3432 25220 8 0.14200 0.11558
Sandia/addedcop43 1813 11246 8 0.03118 0.01696 Grund/meg4 5860 25258 8 0.09667 0.05359
Sandia/addedcop45 1813 11246 8 0.02941 0.01713 HB/Ins 3937 3937 25407 8 0.18800 0.12218
Sandia/addedcop46 1813 11246 8 0.02889 0.01700 HB/Insp3937 3937 25407 8 0.19800 0.12238
Sandia/addedcop47 1813 11246 8 0.02833 0.01713 Boeing/msc01050 1050 26198 7 0.09167 0.01307
Sandia/addedcop48 1813 11246 8 0.02889 0.01703 HB/bcsstk21 3600 26600 7 0.10800 0.03778
Sandia/addedcop49 1813 11246 8 0.02941 0.01713 Bai/qc324 324 26730 4d 0.02125 0.02182
Sandia/addedcop50 1813 11246 8 0.02889 0.01670 FIDAP/ex2 441 26839 8 0.02889 0.01900
Sandia/addedcop51 1813 11246 8 0.02889 0.01670 Gset/G62 7000 28000 8 0.24600 0.15178
Sandia/addedcop52 1813 11246 8 0.02833 0.01673 Hohn/fd12 7500 28462 8 0.21600 0.14018
Sandia/addedcop53 1813 11246 8 0.02889 0.01693 Grund/bayer03 6747 29195 8 0.12600 0.07170
Sandia/addedcop54 1813 11246 8 0.02833 0.01683 Bai/rdb5000 5000 29600 8 0.18400 0.11418
Sandia/addedcop55 1813 11246 8 0.02889 0.01693 DRIVCAV/cavity06 1182 29675 8 0.05667 0.03111
Sandia/addedcop56 1813 11246 8 0.02889 0.01686 DRIVCAV/cavity08 1182 29675 8 0.05778 0.02982
Sandia/addedcop57 1813 11246 8 0.02941 0.01673 Lucifora/celll 7055 30082 8 0.20000 0.11298
Sandia/addedcop58 1813 11246 8 0.02889 0.01686 Lucifora/cell2 7055 30082 8 0.20000 0.11338
Sandia/addedcop59 1813 11246 8 0.02833 0.01686 HB/bcsstk26 1922 30336 7 0.13600 0.01638
Sandia/addedcop.60 1813 11246 8 0.03000 0.01690 FIDAP/ex4 1601 31849 8 0.09333 0.05009
Sandia/addedcop61 1813 11246 8 0.02889 0.01696 Gset/G65 8000 32000 8 0.28600 0.18157
Sandia/addedcop62 1813 11246 8 0.02889 0.01676 HB/plat1919 1919 32399 7 0.12800 0.02359
Sandia/addedcop63 1813 11246 8 0.02889 0.01686 DRIVCAV/cavity05 1182 32632 8 0.06500 0.03433
Sandia/addedcop64 1813 11246 8 0.02889 0.01686 Rajat/rajat03 7602 32653 8 0.16800 0.09932
Sandia/addedcop65 1813 11246 8 0.02889 0.01683 DRIVCAV/cavity07 1182 32702 8 0.05778 0.03206
Sandia/addedcop.66 1813 11246 8 0.02889 0.01696 DRIVCAV/cavity09 1182 32702 8 0.06111 0.03206
Sandia/addedcop.67 1813 11246 8 0.02833 0.01670 Grund/polilarge 15575 33033 8 0.04333 0.02625
Sandia/addedcop.68 1813 11246 8 0.02889 0.01686 HB/gemat12 4929 33044 8 0.09167 0.05109
Sandia/addedcop.69 1813 11246 8 0.02941 0.01676 HB/gemat11 4929 33108 8 0.09333 0.05099
HB/watt1 1856 11360 8 0.06000 0.03649 Hollinger/jan99jac020 6774 33744 8 0.24200 0.15978
HB/watt2 1856 11550 8 0.07000 0.04015 Hollinger/jan99jac020sc | 6774 33744 8 0.24800 0.16877
Grund/bayer09 3083 11767 8 0.03714 0.01969 HB/bcsstk11 1473 34241 7 0.11000 0.01710
Bai/rdb2048 2048 12032 8 0.05889 0.03486 HB/bcsstk12 1473 34241 7 0.11200 0.01716
Rajat/rajat12 1879 12818 8 0.03125 0.01726 Gset/G61 7000 34296 9 11.28600 13.77691
HB/bcsstk08 1074 12960 7 0.05556 0.01723 Boeing/msc00726 726 34518 7 0.19200 0.05269
MathWorks/Pd 8081 13036 8 0.01786 0.00994 Bombhof/circuitl 2624 35823 8 0.11200 0.05309
Hamm/add20 2395 13151 8 0.04500 0.02485 Gset/G66 9000 36000 8 0.33000 0.21097
Zitney/radfrl 1048 13299 8 0.02684 0.01375 Mallya/lhr02 2954 36875 8 0.11800 0.06399
HB/orsregl 2205 14133 8 0.10000 0.05932 Oberwolfach/t2dah 4257 37465 8 0.13800 0.09099
Sandia/addetrans01 1814 14579 8 0.03643 0.02104 FIDAP/ex27 974 37652 8 0.07143 0.03814
Sandia/addetrans02 1814 14579 8 0.03400 0.02000 Gset/G10 800 38352 8 0.53800 0.42993
Bai/pde2961 2961 14585 8 0.07000 0.03807 Gset/G6 800 38352 8 0.53600 0.42454
HB/bcsstm25 15439 15439 4c 0.00075 0.00248 Gset/G7 800 38352 8 0.54600 0.44433
Boeing/bcsstm37 25503 15525 9 0.06875 0.02833 Gset/G8 800 38352 8 0.60000 0.42714

Table 2. Benchmark of left-division operator dlatlab R14sp2 againdgDctave2.9.5, on a Pentium 4M 1.6GHz machine
with 1GB of memory.} The solver used for the problem, as given in section 3

Matrix Order NNZ st Execution Time Matrix Order NNZ st Execution Time
for Operator (sec) for Operator (sec)
Matlab Octave Matlab Octave
Gset/G9 800 38352 8 0.61400 0.42054 Zitney/rdist1 4134 94408 8 0.16600 0.08565
Boeing/nasal824 1824 39208 8 0.21000 0.06166 Averous/epbl 14734 95053 8 0.56600 0.34515
Nasa/nasal824 1824 39208 7 0.16000 0.02590 GHS.indef/linverse 11999 95977 4d 0.01378 0.01686
Gset/G27 2000 39980 8 2.88000 2.85177 IBM _Austin/coupled 11341 97193 8 0.44000 0.23836
Gset/G28 2000 39980 8 3.33200 3.14972 Langemyr/comsol 1500 97645 8 0.15200 0.08449
Gset/G29 2000 39980 8 2.76000 3.07973 Boeing/msc04515 4515 97707 7 0.53200 0.07527
Gset/G30 2000 39980 8 3.07600 3.08493 FIDAP/ex15 6867 98671 7 0.32800 0.07899
Gset/G31 2000 39980 8 3.58000 3.06333 Hamm/memplus 17758 99147 8 0.74200 0.38054
Gset/G67 10000 40000 8 0.38200 0.25376 FIDAP/ex9 3363 99471 7 0.21800 0.04690
HB/mbeause 496 41063 9 0.20000 0.20537 Nasa/nasa4704 4704 104756 7 0.65000 0.10938
vanHeukelum/cage9 3534 41594 8 0.89800 0.69909 Boeing/crystm01 4875 105339 7 0.62800 0.11798
Bai/dw4096 8192 41746 8 0.34400 0.89946 Hollinger/mark3jac040 18289 106803 8 14.30200 7.98099
TOKAMAK/utm3060 3060 42211 8 0.17000 0.13018 Hollinger/mark3jac040sc 18289 106803 8 68.61400 8.17816
Hollinger/g7jac020 5850 42568 8 0.65800 0.55212 Hollinger/g7jac040 11790 107383 8 22.41200 3.04114
Hollinger/g7jac020sc 5850 42568 8 0.67800 0.56011 Hollinger/g7jac040sc 11790 107383 8 23.25000 3.05234
Alemdar/Alemdar 6245 42581 8 0.31400 0.23416 Hollinger/jan99jac060 20614 111903 8 6.11600 1.06424
FIDAP/ex23 1409 42760 8 0.08500 0.04745 Hollinger/jan99jac060sc 20614 111903 8 6.38000 1.09163
Hohn/fd15 11532 44206 8 0.39200 0.26476 HB/bcsstk15 3948 117816 7 7.43600 0.27576
Boeing/msc01440 1440 44998 7 0.17600 0.03992 Pothen/bodyy4 17546 121550 7 3.64800 0.22437
HB/bcsstk23 3134 45178 7 1.09800 0.22817 Okunbor/aft01 8205 125567 9 1.91600 0.31035
FIDAP/ex7 1633 46626 8 0.15600 0.08449 Okunbor/aft02 8184 127762 8 3.32000 0.54072
Boeing/bcsstm39 46772 46772 4c 0.00269 0.00723 GHS.indef/aug3dcap 35543 128115 8 12.09600 7.07892
FIDAP/ex24 2283 47901 8 0.11800 0.07086 Pothen/bodyy5 18589 128853 7 0.78400 0.24776
Bomhof/circuit3 12127 48137 8 0.15200 0.08749 Simon/raefsky6 3402 130371 8 0.01667 0.03353
Rajat/rajat13 7598 48762 8 0.11400 0.06874 SchenkISEl/ight3 10938 130500 8 0.66000 0.44173
FIDAP/ex6 1651 49062 9 0.15400 0.08899 DRIVCAV/cavityl7 4562 131735 8 0.32400 0.18137
GHS.indef/tuma2 12992 49365 8 0.48000 0.33155 DRIVCAV/cavity19 4562 131735 8 0.32400 0.18177
HB/mbeacxc 496 49920 9 0.24400 0.29795 DRIVCAV/cavity21 4562 131735 8 0.32600 0.18097
HB/mbeaflw 496 49920 9 0.26000 0.29715 DRIVCAV/cavity23 4562 131735 8 0.32600 0.18137
FIDAP/ex3 1821 52685 7 0.11200 0.02291 DRIVCAV/cavity25 4562 131735 8 0.32600 0.18157
Hollinger/mark3jac020 9129 52883 8 1.68600 1.53417 Pothen/bodyy6 19366 134208 7 0.78800 0.26776
Hollinger/mark3jac020sc [9129 52883 8 1.73200 1.57276 DRIVCAV/cavity16 4562 137887 8 0.32400 0.17857
FIDAP/ex36 3079 53099 8 0.13800 0.07727 DRIVCAV/cavity18 4562 138040 8 0.33000 0.18337
Shen/shermanACd 6136 53329 8 0.40000 0.21697 DRIVCAV/cavity20 4562 138040 8 0.33000 0.18337
GHSindefincvxqp9 16554 54040 8 0.53400 0.35535 DRIVCAV/cavity22 4562 138040 8 0.33000 0.18337
FIDAP/ex10 2410 54840 7 0.11200 0.01973 DRIVCAV/cavity24 4562 138040 8 0.33000 0.18377
HB/bcsstk27 1224 56126 7 0.14200 0.01996 DRIVCAV/cavity26 4562 138040 8 0.32800 0.18337
HB/bcsstm27 1224 56126 8 0.19400 0.08242 GHS.indef/stokes64 12546 140034 9 2.61000 1.72634
Zitney/rdist2 3198 56834 8 0.10000 0.04981 GHSindef/stokes64s 12546 140034 8 1.25600 0.97105
FIDAP/ex10hs 2548 57308 7 0.14400 0.02171 Cote/mplate 5962 142190 8 40.58600 42.15619
Grund/megl 2904 58142 8 0.09333 0.04549 Shen/shermanACh 18510 145149 8 0.78200 0.53212
Gset/G59 5000 59140 8 11.19600 10.23964 Hollinger/g7jac050sc 14760 145157 8 6.51400 6.19726
GHS.indef/sit100 10262 61046 8 1.49000 1.36959 HB/bcsstk18 11948 149090 7 2.42600 0.32115
Zitney/rdist3a 2398 61896 8 0.10000 0.05229 GHS.indef/bloweya 30004 150009 8 1.96200 0.85407
Grund/bayer02 13935 63307 8 0.31200 0.18137 vanHeukelum/cage10 11397 150645 8 33.07600 29.87406
Hohn/fd18 16428 63406 8 0.61800 0.45653 Hollinger/jan99jac080 27534 151063 8 1.85400 1.49017
HB/bcsstk14 1806 63454 7 0.24600 0.03861 Hollinger/jan99jac080sc 27534 151063 8 2.07400 1.63735
Liuwenzhuo/powersim 15838 64424 8 0.19200 0.12058 Mallya/lhr07 7337 154660 8 0.52600 0.28616
FIDAP/ex14 3251 65875 8 0.31600 0.24336 Mallya/lhr07c 7337 156508 8 0.51600 0.27816
Brunetiere/thermal 3456 66528 8 0.17800 0.10398 HB/bcsstk24 3562 159910 7 0.97600 0.10058
FIDAP/ex37 3565 67591 8 0.13800 0.08127 Hollinger/mark3jac060 27449 160723 8 17.15400 16.08276
FIDAP/ex20 2203 67830 8 0.15800 0.16557 Hollinger/mark3jac060sc 27449 160723 8 18.11400 16.52869
GHS.indef/dtoc 24993 69972 9 0.09500 5.36218 Zhao/Zhaol 33861 166453 8 6.74400 5.26940
GHS.indef/aug3d 24300 69984 9 0.09667 64.24463 Zhao/Zhao2 33861 166453 8 9.35200 159.26146
Gaertner/nopoly 10774 70842 8 0.44800 0.16218 Simon/raefsky5 6316 167178 8 0.18400 0.04908
Grund/bayer10 13436 71594 8 0.34800 0.20257 GHS.indef/bratu3d 27792 173796 8 36.78000 45.28932
DRIVCAV/cavity11l 2597 71601 8 0.16800 0.09015 Nasa/nasa2910 2910 174296 7 0.62800 0.08749
DRIVCAV/cavity13 2597 71601 8 0.16800 0.08982 Averous/epb2 25228 175027 8 1.64800 1.02364
DRIVCAV/cavityl5 2597 71601 8 0.16600 0.08999 Oberwolfach/t2dala 11445 176117 8 0.62800 0.39514
FIDAP/ex18 5773 71701 8 0.22200 0.13758 Oberwolfach/t2dale 11445 176117 7 0.80800 0.18037
Nasa/nasa2146 2146 72250 7 0.23000 0.04572 Wang/wang3 26064 177168 8 15.15800 11.87799
Cannizzo/sts4098 4098 72356 7 0.39800 0.06010 Wang/wang4 26068 177196 8 14.13600 11.04592
Hollinger/jan99jac040 13694 72734 8 0.71600 0.57891 GHS.indef/brainpc2 27607 179395 8 2.68000 1.11383
Hollinger/jan99jac040sc | 13694 72734 8 0.77800 0.60211 Hollinger/g7jac060 17730 183325 8 10.86600 9.09742
GHS.indef/ncvxgpl 12111 73963 8 17.04400 18.67276 Hollinger/g7jac060sc 17730 183325 8 9.77600 8.89745
FIDAP/ex26 2163 74464 8 0.26400 0.14978 Hollinger/jan99jac100 34454 190224 8 2.93600 2.18767
FIDAP/ex13 2568 75628 7 0.15600 0.03250 Hollinger/jan99jac100sc 34454 190224 8 2.97400 2.25206
DRIVCAV/cavity10 2597 76171 8 0.17200 0.09032 Sandia/mulidcop.03 25187 193216 8 0.90600 0.49852
DRIVCAV/cavity12 2597 76258 8 0.17200 0.09165 Sandia/mulidcop01 25187 193276 8 1.15400 0.64150
DRIVCAV/cavity14 2597 76258 8 0.17200 0.09149 Sandia/mulidcop.02 25187 193276 8 0.93800 0.50692
GHS.indef/aug2d 29008 76832 9 0.11400 6.86396 GHS psdef/obstclae 40000 197608 7 1.42800 0.49213
FIDAP/ex28 2603 77031 8 0.16800 0.09832 GHS psdef/torsionl 40000 197608 7 1.45800 0.49013
FIDAP/ex12 3973 79077 9 0.34200 GHS psdef/jnlbrngl 40000 199200 7 1.57600 0.48233
Gaertner/pesa 11738 79566 8 0.35400 0.20497 GHS.psdef/minsurfo 40806 203622 7 1.61200 0.50152
GHS.indef/aug2dc 30200 80000 9 0.11800 7.55005 GHS.indef/mario001 38434 204912 8 1.82400 1.20382
Mallya/lhr04 4101 81057 8 0.26400 0.13998 SchenkIBMSDS/2D.27628bjtcai 27628 206670 8 1.73400 1.25181
Mallya/lhrO4c 4101 82682 8 0.27000 0.14638 Brethour/coater2 9540 207308 9 4.70200 13.37617
Gset/G64 7000 82918 8 26.86200 27.66939 Hollinger/mark3jac080 36609 214643 8 35.83200 33.37233
TOKAMAK/utm5940 5940 83842 8 0.42400 0.33275 Hollinger/mark3jac080sc 36609 214643 8 34.32800 32.84181
HB/bcsstk13 2003 83883 7 0.78600 0.12238 HB/bcsstk28 4410 219024 7 1.57000 0.12458
Garon/garonl 3175 84723 8 0.26400 0.14938 ATandT/onetone2 36057 222596 8 1.05600 0.69449
Norris/fvl 9604 85264 7 0.38000 0.11138 FIDAP/ex35 19716 227872 8 0.75400 0.48453
Grund/bayer04 20545 85537 9 0.64800 0.37454 Mallya/lhr10 10672 228395 8 0.78800 0.44173
Norris/fv2 9801 87025 7 0.51000 0.11518 Hollinger/jan99jac120 41374 229385 8 3.56400 3.27050
Norris/fv3 9801 87025 7 0.52400 0.11498 Hollinger/jan99jac120sc 41374 229385 8 3.80200 3.36849
GHS.indef/tumal 22967 87760 8 1.15000 0.93586 GHS.indef/spmsrtls 29995 229947 4d 0.04167 0.04316
HB/orani678 2529 90158 8 0.15400 0.08242 Mallya/lhr11l 10964 231806 9 1.31800 1.41498
FIDAP/ex8 3096 90841 8 0.30600 0.17917 Mallya/lhri0c 10672 232633 8 0.71400 0.43193
FIDAP/ex31 3909 91223 8 0.32400 0.17777 Mallya/lhrilc 10964 233741 8 0.80600 0.46233
Gaertner/big 13209 91465 8 0.44400 0.28516 SchenkISEI/nmos3 18588 237130 8 1.76200 1.25961

Table 3. Benchmark of left-division operator dlatlab R14sp2 againdgDctave2.9.5, on a Pentium 4M 1.6GHz machine
with 1GB of memory.; The solver used for the problem, as given in section 3.

Matrix Order NNZ st Execution Time Matrix Order NNZ st Execution Time
for Operator (sec) for Operator (sec)
| Matlab | Octave]| | Matlab | Octave |
HB/bcsstk25 15439 252241 7 4.33800 0.64130 Nemeth/nemeth12 9506 446818 4d 1.26000 0.12823
GHSindef/a5esind| 60008 255004 8 6.65000 2.84177 FIDAP/ex40 7740 456188 8 10.35600 1.55876
FIDAP/ex19 12005 259577 8 0.54000 0.31515 Bai/af23560 23560 460598 8 5.89000 4.56431
Hollinger/g7jac080 23670 259648 8 18.99200 18.32181 Bai/qc2534 2534 463360 4d 0.91600 0.93286
Hollinger/g7jac080sc 23670 259648 8 18.56000 18.23663 Averous/epb3 84617 463625 8 3.63400 2.49002
Hollinger/mark3jac100 45769 268563 8 36.84000 35.18085 GHS psdef/wathen100 30401 471601 7 3.16800 0.58271
Hollinger/mark3jac100sc 45769 268563 8 35.15400 33.50571 Nemeth/nemeth13 9506 474472 4d 0.13400 0.12898
Grund/bayer01 57735 275094 8 1.41000 0.85467 GHS.indef/c-59 41282 480536 8 14.85000 20.50428
Hohn/sinc12 7500 283992 8 22.16000 21.10159 SchenkIBMSDS/20.54019highK 54019 486129 8 5.37800 3.79222
SchenkIBMSDS/3D.28984Tetra 28984 285092 9 69.97200 231.32383 Hollinger/g7jac140 41490 488633 8 46.23200 45.04975
HB/bcsstk16 4884 290378 7 3.80600 0.36494 Hollinger/g7jac140sc 41490 488633 8 42.14800 42.86328
Simon/raefsky1 3242 293409 8 2.09000 1.61095 Norris/lung2 109460 492564 8 1.65200 1.12763
Simon/raefsky2 3242 293551 8 1.93600 1.55796 Nemeth/nemeth14 9506 496144 4d 0.10600 0.14248
GHS.indef/dixmaanl 60000 299998 8 43.68600 2.24486 Oberwolfach/t3dia 20360 509866 8 38.20000 70.31051
Cote/vibrobox 12328 301700 9 65.21000 628.86960 GHS psdef/gridgena 48962 512084 7 5.88000 1.10463
FEMLAB/waveguide3D 21036 303468 8 7.07400 6.10327 Hamm/hcircuit 105676 513072 8 2.47333 1.55656
Mallya/lhr14 14270 305750 9 1.82400 2.11008 SchenkIBMNA/c-67 57975 530229 8 4.88333 2.67899
Bombhofcircuit4 80209 307604 8 6.63400 3.35369 SchenkIBMSDS/3D.514483D 51448 537038 8 35.05333 30.47137
Mallya/lhrl4c 14270 307858 8 1.03000 0.62830 SchenkIBMSDS/ibmmatrix-2 51448 537038 8 35.02667 30.68494
Boeing/crystk01 4875 315891 8 4.25400 0.92006 Nemeth/nemeth15 9506 539802 4d 0.14250 0.17264
Boeing/bcsstm36 23052 320606 9 1.76000 1.40079 HB/psmigr2 3140 540022 8 15.96000 15.07951
Hollinger/mark3jac120 54929 322483 8 56.95800 58.56690 HB/psmigtl 3140 543160 8 13.55333 11.82780
Hollinger/mark3jac120sc 54929 322483 8 54.82000 49.60506 HB/psmigt3 3140 543160 8 13.55667 11.81980
Boeing/crystm02 13965 322905 7 7.49000 1.15942 Hohn/sinc15 11532 551184 8 74.47667 76.96890
Goodwin/goodwin 7320 324772 8 1.10400 1.82432 GHS.indef/c-58 37595 552551 8 18.32333 17.36596
Shyy/shyy161 76480 329762 8 3.04600 1.86832 Shen/e40r0100 17281 553562 8 2.46333 1.90291
Graham/graham1 9035 335472 8 3.63400 1.21661 GHSsindef/c-62ghs 41731 559339 8 118.40667 191.48309
ATandT/onetonel 36057 335552 8 4.42400 4.15777 GHS.indef/klsan 67759 559774 9 62.08000 203.85401
Hollinger/g7jac100 29610 335972 8 129.29400 26.32780 Hollinger/g7jac160 47430 564952 8 54.45333 54.55504
Hollinger/g7jac100sc 29610 335972 8 23.99000 24.64405 Hollinger/g7jac160sc 47430 564952 8 52.34667 50.83061
Oberwolfach/gyram 17361 340431 7 1.74600 0.20337 GHS psdef/wathen120 36441 565761 7 3.65333 0.72822
GHS.indef/a2nnsnsl| 80016 347222 8 11.87000 5.25320 GHS.indef/c-68 64810 565996 8 64.63667 105.85824
GHS.indef/ncvxbgpl 50000 349968 8 14.00200 57.09932 Boeing/crystm03 24696 583770 7 15.32667 2.95222
GHS psdef/cvxbgpl 50000 349968 7 288.96000 1.81272 Nemeth/nemeth16 9506 587012 4d 0.15000 0.17631
FEMLAB/poisson3Da 13514 352762 8 9.34600 7.84581 Mulvey/finan512 74752 596992 7 60.97333 1.66041
GHS.indef/aOnsdsil 80016 355034 8 11.69200 5.56075 GHS.indef/c-69 67458 623914 8 20.12000 21.79102
Boeing/bcsstk38 8032 355460 7 4.43000 0.31395 Nemeth/nemeth17 9506 629620 4d 0.15750 0.17564
Garon/garon2 13535 373235 8 1.72400 1.19242 GHS.indef/blockqgpl 60012 640033 8 19.80667 7.89080
Hamm/bcircuit 68902 375558 8 1.68000 1.46478 Hollinger/g7jac180 53370 641290 8 69.42000 73.73179
Hollinger/mark3jac140 64089 376395 8 117.82000 117.09100 Hollinger/g7jac180sc 53370 641290 8 64.18667 67.95934
Hollinger/mark3jac140sc 64089 376395 8 221.90400 112.53149 GHS.indef/c-70 68924 658986 8 21.58000 22.26295
Cunningham/k3plates 11107 378927 8 0.93400 0.60891 Norris/heart2 2339 680341 8 1.47667 1.05984
Mallya/lhr17 17576 379761 9 2.02800 2.72539 Norris/heart3 2339 680341 8 1.46333 1.05284
Sanghavi/ecl32 51993 380415 8 328.74800 282.02393 Nemeth/nemeth18 9506 695234 4d 0.21333 0.18231
Mallya/lhri7c 17576 381975 8 1.29800 0.81428 GHS.indef/c-72 84064 707546 8 17.22667 19.39872
Nemeth/nemeth02 9506 394808 8 0.54600 0.32155 SchenkIBMNA/c-64 51035 707985 8 7.26667 4.05572
Nemeth/nemeth03 9506 394808 8 0.58000 0.32115 ACUSIM/PresPoisson 14822 715804 7 7.04667 1.13183
Nemeth/nemeth04 9506 394808 8 0.54800 0.34095 Hollinger/g7jac200 59310 717620 8 81.66000 82.95206
Nemeth/nemeth05 9506 394808 8 0.58200 0.32015 Hollinger/g7jac200sc 59310 717620 8 76.65333 78.69804
Nemeth/nemeth06 9506 394808 8 0.57800 0.33935 Nemeth/nemeth01 9506 725054 4d 0.24000 0.22097
Nemeth/nemeth07 9506 394812 8 0.58200 0.33715 GHS.indef/olesnik0 88263 744216 8 42.14000 42.00061
Nemeth/nemeth08 9506 394816 8 0.58000 0.33455 Mallya/lhr34 35152 746972 9 3.12333 4.82847
Nemeth/nemeth09 9506 395506 8 0.57400 0.32995 GHS.indef/copter2 55476 759952 8 37.76333 197.47398
Nemeth/nemeth10 9506 401448 8 0.56400 0.32135 Andrews/Andrews 60000 760154 7 NC 60.61812
GHSindef/c-55 32780 403450 8 55.78800 72.13503 Mallya/lhr34c 35152 764014 8 3.39000 1.81506
Nemeth/nemeth11 9506 408264 4d 0.56600 0.12723 Nemeth/nemeth19 9506 818302 4d 0.28333 0.20064
Hollinger/g7jac120 35550 412306 8 188.60800 50.74469 FEMLAB/sme3Da 12504 874887 8 2.57667 217434
Hollinger/g7jac120sc 35550 412306 8 46.90000 49.04154 SchenkIBMSDS/matrix-new3 125329 893984 8 65.39000 58.33580
GHS.indef/ncvxgp5 62500 424966 8 537.44800 337.53729 Kim/kim1 38415 933195 8 15.63333 13.86589
GHS.indef/helm3d01 32226 428444 8 25.22600 60.50040 Hohn/sinc18 16428 948696 8 580.02000 221.20670
HB/bcsstk17 10974 428650 7 5.04200 0.41694 Hamm/scircuit 170998 958936 8 6.67000 6.49701
GHS.indef/c-63 44234 434704 8 9.09400 10.47781 Boeing/crystk02 13965 968583 8 36.66333 12.20081
GHS.indef/cont-201 80595 438795 8 70.84000 11.44966 Nemeth/nemeth20 9506 971870 4d 0.27000 0.24696
SchenkIBMNA/c-66 49989 444853 8 51.27200 4.57051 GHS.indef/cont-300 180895 988195 8 35.95333 34.57574

Table 4. Benchmark of left-division operator dlatlab R14sp2 againdgDctave2.9.5, on a Pentium 4M 1.6GHz machine
with 1GB of memory.; The solver used for the problem, as given in section 3.

tion), or a weighted sum of the potential and its derivative conductivity distribution inQ2 as constant on each simplex

(Cauchy boundary condition).

(represented by the vectoonduct i vi t y). Based on the

In a thermal model, we want to calculate the temper- finite element geometry, we first calculate a system (or-stiff

ature inQ2 and know the boundary temperature (Dirichlet
condition) or heat flux (from which we can calculate the
Neumann condition by dividing by the thermal conductiv-
ity at the boundary). Similarly, in an electrical model, we
want to calculate the voltage i and know the boundary
voltage (Dirichlet) or current (Neumann condition after-di
ing by the electrical conductivity). In an electrical mogdeél

is common for much of the boundary to be electrically iso-
lated; this is a Neumann boundary condition with the cur-
rent equal to zero.

The simplest finite element models will divide into
simplexes (triangles in 2D, pyramids in 3D). A 3D exam-
ple is shown in Figure 3, and represents a cylindrical liquid
filled tank with a small non-conductive ball [9, 10]. This
is model is designed to reflect an application of electrical

impedance tomography, where current patterns are applied

to such a tank in order to image the internal conductivity
distribution. In order to describe the FEM geometry, we
have a matrix of verticesodes and simplice®! ens.

The following example creates a simple rectangular 2D
electrically conductive medium with 10 V and 20 V im-

posed on opposite sides (Dirichlet boundary conditions).

All other edges are electrically isolated.

nodey= [1;1.2;1.5;1.8;2kones(1,11);
node.x= ones(5,1%[1,1.05,1.1,1.2,

1.3,1.5,1.7,1.8,1.9,1.95,2];
nodes= [nodex (:), nodey (:)];

[h,w]= size (nodex);
elems= [];
for idx= 1:w1
widx= (idx —1)xh;
elems= [elems;
widx+[(1:h—=1);(2:h);h+(1:h-1)]";
widx+[(2:h);h+(2:h);h+(1:h-1)]" 1];
endfor

E= size(elems,1); # No. of simplices
N= size(nodes,1l); # No. of vertices
D= size(elems ,2); # dimensions+1

This creates & x2 matrixnodes and aF x 3 matrix
el ens with values, which define finite element triangles:

nodes (1:7,:)’
1.00 1.00 1.00 1.00 1.00 1.05 1.05
1.00 1.20 1.50 1.80 2.00 1.00 1.20

elems(1:7,:)’
1 2 3 4 2 3 4
2 3 4 5 7 8 9
6 7 8 9 6 7 8

Using a first order FEM, we approximate the electrical

ness) matrix for each simplex (represented3as 3 ele-
ments on the diagonal of the element-wise system matrix
SE. Based orSE and aN x DE' connectivity matrixC, rep-
resenting the connections between simplices and vectices,
the global connectivity matri$ is calculated.

Element conductivity
conductivity= [1xones(1,16),
2xones (1,48), %4ones(1,16)];

Connectivity matrix
C = sparse ((1:BE), reshape (elems’,
D«E, 1), 1, DxE, N);

Calculate system matrix

Siidx = floor ([0:D«+E—1]'/D) % D = .
ones (1,D) + ones(¥E,1)x(1:D) ;
Sjidx = [1:D«E]’*ones(1,D);
Sdata = zeros (EE,D);
dfact = factorial (D-1);
for j=1:E
a = inv([ones(D,1), ...
nodes (elems(j,:),)1]):
const = conductivity(j)* 2 /

dfact / abs(det(a));
Sdata(D>(j —1)+(1:D) ,:) =
a(2:D,:)’ x a(2:D,:);

const x

endfor

Element-wise system matrix
SE= sparse (Siidx , Sjidx , Sdata);
Global system matrix

S= C'x+ SE *C;

The system matrix acts like the conductivifyn Ohm’s

law SV = I. Based on the Dirichlet and Neumann bound-
ary conditions, we are able to solve for the voltages at each
vertexV.

Dirichlet boundary conditions

D_nodes=[1:5, 51:55];

D_value=[10<ones(1,5), 28ones(1,5)];

V= zeros(N,1);

V(D_nodes) = Dvalue;

idx = 1:N; # vertices without Dirichlet
boundary condns

idx(D_nodes) = [];

Neumann boundary conditions. Note that
N_value must be normalized by the

boundary length and element conductivity
N_nodes =[];

N_value =[];

Q = zeros(N,1);

Q(N_nodes) = Nvalue;

e SparseBoolMatrix - boolean sparse matrix class

All of these classes inherit from th&parse<T> tem-
plate class, and so all have similar capabilities and usage.
The SparsecT> class was based owray<T> class, and
so users familiar wittOctaves array classes will be com-
fortable with the use of the sparse classes.

The sparse classes will not be entirely described in this
section, due to their similar with the existing array classe
However, there are a few differences due the different na-
ture of sparse objects, and these will be described. Firstly
although itis fundamentally possible to have N-dimensiona
sparse objects, thectavesparse classes do not allow them
at this time. So all operations of the sparse classes must be
2-dimensional. This means that in f&parseMatrixs sim-
ilar to Octavés Matrix class rather than itSDArray class.

Fig. 7. Example finite element model the showing triangu- _
lar elements. The height of each vertex corresponds to theb.1. Differencesbetween the Array and Sparse Classes

solution value The number of elements in a sparse matrix is considered to

be the number of non-zero elements rather than the product
of the dimensions. Therefore

SparseMatrix sm;
V(idx) = S(idx,idx) \ (Q(idx) —
S(idx ,D.nodes) = V(D_nodes)); int nel = sm.nelem ();

returns the number of non-zero elements. If the user re-
ally requires the number of elements in the matrix, inclgdin
the non-zero elements, they should ueenelrather than
nelem Note that for very large matrices, where the product
of the two dimensions is larger than the representation of

Finally, in order to display the solution, we show each
solved voltage value in the z-axis for each simplex vertex in
Figure 7.

elemx = elems(:,[1,2,3,1])";

Xz:zm: = ;zzg:gz gzgggz E::zmx ' ;g ' j' E; the anoctaveidx_type thennumelcan overflow. An exam-
y = X, , , : -
velems = reshape (V(elemx). 4, E): ple is speye(1e6yvhich will create a matrix with a million

plot3 (xelems,yelems ,velems, k') rows and columns, but only a million non-zero elements.

print ('grid.eps’); _Ther_efore th_e number of rows by the n_umber of coIL_Jmns
in this case is more than two hundred times the maximum
value that can be represented by an unsigned int on a 32-

6. USING SPARSE MATRICESIN OCT-FILES bit platform. The use ofiumelshould therefore be avoided
useless it is known it won’t overflow.
An oct-fileis a means of writing af©ctavefunction in a Extreme care must be taken with the elem method and

compilable language like C++, rather than as a script file. the () operator, which perform basically the same function.
This can result in a significant acceleration in the code. It The reason is that if a sparse object is non-const, ®en
is not the purpose of this section to discuss how to write tavewill assume that a request for a zero element in a sparse

anoct-file, or discuss what they are. Users wishing to find matrix is in fact a request to create this element so it can be
out more aboubct-filesthemselves are referred to the arti- filled. Therefore a piece of code like

cles by Cristophe Spiel [17] and Paul Thomas [18]. Users
who are not familiar withoct-filesare urged to read these o
references to fully understand this section. The examples for (int j

SparseMatrix sm;

0; j < nc; j++)

discussed here assume that doé-fileis written entirely in for (int i 0; i < nr; i++)

C++. stdiicerr<< ” (7 << i << ",)”
There are three classes of sparse objects that are of in- << j << ") " << sm(i,)

terest to the user. << std::endl;

is a great way of turning the sparse matrix into a dense
one, and a very slow way at that since it reallocates the
e SparseComplexMatrix - Complex sparse matrix class sparse object at each zero element in the matrix.

e SparseMatrix - double precision sparse matrix class

An easy way of preventing the above from happeningis As previously mentioned, the values of the sparse matrix
to create a temporary constant version of the sparse matrixare stored in increasing column-major ordering. Although
Note that only the container for the sparse matrix will be the data passed by the user does not need to respect this
copied, while the actual representation of the data will be requirement, the pre-sorting the data significantly spegds
shared between the two versions of the sparse matrix. Sahe creation of the sparse matrix.
this is not a costly operation. For example, the above would ~ The disadvantage of this technique of creating a sparse

become matrix is that there is a brief time where two copies of the
. , data exists. Therefore for extremely memory constrained
SparseMatrix sm;
problems this might not be the right technique to create the
const SparseMatrix tmp (sm); sparse matrix. . o
for (int j = 0:; j < nc; j++) The alternative is to first create the sparse matrix with
for (int i = 0; i < nr; i++) the desired number of non-zero elements and then later fill
std::cerr<< " (" << i << """ those elements in. The easiest way to do this is
1 ” : ” t H , H)
ii gtjé'gndl'<< mp(i. 1) int nz =4, nr =3, nc = 4,
o ' SparseMatrix sm (nr, nc, nz);
Finally, as the sparse types aren't just represented as a sm(0,0) = 1; sm(0,1) = 2
contiguous block of memory, tHertran_vecmethod of the sm(1,3) = 3; sm(2,3) = 4;

Array<T> class is not available. It is however replaced by
three separate methoddx, cidx anddata, that access the
raw compressed column format that tBetavesparse ma-
trices are stored in. Additionally, these methods can bd use

That creates the same matrix as previously. Again, al-
though it is not strictly necessary, it is significantly fasif
the sparse matrix is created in this manner that the elements
) = A are added in column-major ordering. The reason for this is
in a manner similar t@lem to allow the matrix to be ac- 4t if the elements are inserted at the end of the current lis
cessed or filled. However, in that case it is up to the USer ot o\ elements then no element in the matrix needs to
to respect the sparse matrix compressed column format disy o moved to allow the new element to be inserted. only the
cussed previous. column indexes need to be updated.

There are a few further points to note about this tech-

6.2. Creating SpareMatricesin Oct-Files nique of creating a sparse matrix. Firstly, it is not illegal

create a sparse matrix with fewer elements than are actually
The user has several alternatives in how to create a sparsg,serted in the matrix. Therefore

matrix. They can first create the data as three vectors repre-

senting the row and column indexes and the data, and from int nz = 4, nr = 3, nc = 4;
those create the matrix. Or alternatively, they can create a SparseMatrix sm (nr, nc, 0);
sparse matrix with the appropriate amount of space and then S™M(0.0) = sm(0,1) = 2;

fill in the values. Both techniques have their advantages and sm(1,3) = 3; sm(2,3) = 4

disadvantages. is perfectly legal, but will be very slow. The reason is
An example of how to create a small sparse matrix with that as each new element is added to the sparse matrix the

the first technique might be seen the example space allocated to it is increased by reallocating the mem-
int nz =4, nr =3, nc = 4: ory. This is an expensi\{e operation, that.wiII significantly_
ColumnVector ridx (nz); _slow thIS means of creating a sparse m_atnx. Furthermore, it
ColumnVector cidx (nz); is notillegal to create a sparse matrix with too much storage
ColumnVector data (nz); so havingnz above equaling 6 is also legal. The disadvan-

tage is that the matrix occupies more memory than strictly

ridx (0) = 0; ridx (1) = 0; needed.
ridx(2) = 1; ridx(3) = 2; It is not always easy to know the number of non-zero
cidx (0) = 0; cidx(1) = 1; elements prior to filling a matrix. For this reason the ad-
cidx(2) = 3; cidx(3) = 3; ditional storage for the sparse matrix can be removed af-
data(0) = 1; data(1) = 2; ter its creation with thenaybecompressunction. Further-
data(2) = 3; data(3) = 4;

more, maybecompressan deallocate the unused storage,
SparseMatrix sm(data, ridx, cidx, nr, nc): but it can equally remove zero elements fr(_)m the matrix.
The removal of zero elements from the matrix is controlled
which creates the matrix given in section 2.1. Note that by setting the argument of theaybecompresgunction to
the compressed matrix format is not used at the time of thebe 'true’. However, the cost of removing the zeros is high
creation of the matrix itself, however it is used internally because it implies resorting the elements. Therefore,sf po

sible it is better is the user doesn’t add the zeros in the first
place. An example of the use wfaybecompresss

int nz =6, nr 3, nc 4;
SparseMatrix sml (nr, nc, nz);
sm1(0,0) = 1; sm1(0,1) = 2;
sm1l(1,3) = 3; sm1(2,3) = 4;

/!l No zero elements were added
sml. maybecompress ();

SparseMatrix sm2 (nr, nc, nz);
sm2(0,0) = 1; sm2(0,1) = 2;
sm2(0,2) = 0; sm2(1,2) = O;
sm2(1,3) = 3; sm2(2,3) = 4;

d

D

/! Zero elements were add
sm2.maybecompress (true);

Themaybecompress$unction should be avoided if pos-
sible, as it will slow the creation of the matrices.

A third means of creating a sparse matrix is to work di-
rectly with the data in compressed row format. An example
of this technique might be

octavevalue arg;

[/l Assume we know the max no nz
int nz = 6, nr = 3, nc 4
SparseMatrix sm (nr, nc, nz);

Matrix m = arg.matrixvalue ();
int ii = 0;
sm.cidx (0) = O0;
for (int j = 1; j < nc; j++)
{
for (int i = 0; i < nr; i++)
{
double tmp = foo (m(i,j));
if (tmp !'= 0.)
{
sm.data(ii) = tmp;
sm.ridx(ii) = i;
ii++;
}
sm.cidx(j+1) = ii;
}
/!l Don’t know a-priori the final no of nz.

sm.maybecompress ();

which is probably the most efficient means of creating
the sparse matrix.

Finally, it might sometimes arise that the amount of stor-
age initially created is insufficient to completely store th
sparse matrix. Therefore, the methctangecapacityex-

ists to reallocate the sparse memory. The above example

would then be modified as

octavevalue arg;

/!l Assume we know the max no nz
int nz 6, nr 3, nc 4:
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrixvalue ();

int ii = 0;
sm.cidx (0) = O0;
for (int j = 1; j < nc; j++)
{
for (int i = 0; i < nr; i++4)
{
double tmp = foo (m(i,j));
if (tmp !'= 0.)
{
if (ii == nz)
{
/I Add 2 more elements
nz += 2;
sm.changecapacity (nz);
}
sm.data(ii) = tmp;
sm.ridx(ii) = i;
ii++;
}
}
sm.cidx(j+1) = ii;
}
[/l Don’t know a-priori the final no of nz.

sm.maybecompress ();

Note that both increasing and decreasing the number of
non-zero elements in a sparse matrix is expensive, as it in-
volves memory reallocation. Also as parts of the matrix,
though not its entirety, exist as the old and new copy at the
same time, additional memory is needed. Therefore, if pos-
sible this should be avoided.

6.3. Using Sparse Matricesin Oct-Files

Most of the same operators and functions on sparse matrices
that are available from th@ctaveare equally available with
oct-files The basic means of extracting a sparse matrix from
anoctavevalueand returning them as actavevalug can

be seen in the following example

octavevalue_list retval;

SparseMatrix sm =
args (0).sparsematrix_value ();
SparseComplexMatrix scm
args (1l).sparsecomplexmatrix_value ();
SparseBoolMatrix sbm
args (2).sparsebool_matrix_value ();

sbm;
scm;

retval (2)
retval (1)

retval (0) = sm;

The conversion to an octave-value is automatically han-

dled by the sparsectavevalueconstructors, and so no spe-

cial

care is needed.

7. CONCLUSION

(6]

[7]

This paper has presented the implementation of sparse ma-
trices with recent versions of Octave. Their storage, cre-
ation, fundamental algorithms used, their implementation

and basic operations were also discussed. Important con- [

siderations for the use of sparse matrices were discussed in
clude efficient manners to create and use them as well as the
return types of several operatoons.

Furthermore, the Octave sparse matrix implementation

in Octaveversion 2.9.5 was compared agaiistlab ver-
sion R14sp2 for the fundamental addition, multiplication
adn left-division operators. It was found th@ttaveout-
performedMatlabin most cases, with the exceptions often
being for smaller, lower density problems. The efficiency
of the basidctavesparse matrix implementation has there-
fore been demonstrated.

Furthermore, we discussed the use of @wavesparse

9]

10]

matrix type in the context of a real finite element model. [11]
The case of a boundary value Laplace equation, treating the

cas

e of a 2D electrically conductive strip.
Finally, we discussed the use @fctaveés sparse ma-

trices from withinOctavés dynamically loadabl®ct-files

The passing, means of creating, manipulating and returning
sparse matrices withi@ctavewere discussed. The differ-
ences withéctavés Array<T> were discussed.

[1]

(2]

(3]

[4]

8. REFERENCES

John Eaton, “Octave - A high-level inter-
active language for numerical computations,”
http://www.octave.org.

John Eaton, “Ten years of Octave - Recent develop-
ments and plans for the future,” iRroceedings of
the 2nd International Workshop on Distributed Statis-
tical Computing Vienna, Austria, March 2003, num-
ber ISSN 1609-395X.

Mathworks, Getting Started with MATLAB The
Mathworks, Natick NA, 7 edition, 2005.

Clemens-August Thole and Liquan Mel, “Reasons for
scatter in crash simulation results,”" NAFEMS Work-
shop on Use of Stochastics in FEM Analydigies-
baden, Germany, May 2003.

(12]

(13]

(14]

(15]

(16]

[5] Youcef Saad, “SPARSKIT: A basic tool kit for sparse [17]

matrix computation,” Tech. Rep. version 2, Computer

Science Department, University of Minnesota, Min-
neapolis, MN 55455, June 1994.

J. A. Bondy and U. S. R. Murty,Graph theory with
applications MacMillan, 1972.

John R. Gilbert, Cleve Moler, and Robert Schreiber,
“Sparse matrices in MATLAB: Design and implemen-
tation,” SIAM Journal on Matrix Analysis and Appli-
cations vol. 13, no. 1, pp. 333-356, 1992.

8] William Kahan, Branch Cuts for Complex Elemen-

tary Functions, or Much Ado About Nothing’s Sign
Bit, chapter 7, The State of the Artin Numerical Anal-
ysis. Clarendon Press, Oxford, 1987.

Andy Adler, William Lionheart, and Nick Poly-
dorides, “EIDORS - Electrical impedance tomog-
raphy and diffuse optical tomography reconstruction
software,” http://eidors3d.sourceforge.net/.

Andy Adler and William R B Lionheart, “Uses and
abuses of eidors: An extensible software base for
EIT,” Physiological Measuremer2006, in press.

Tim Davis, “CHOLMOD, a sparse cholesky factor-
ization and modification packagefCM Trans. Math.
Software 2006, in preparation.

Tim Davis, “UMFPACK - an unsymmetric-pattern
multifrontal method with a column pre-ordering strat-
egy,” ACM Trans. Math. Softwarevol. 30, no. 2, pp.
196-199, 2004.

Cleve Ashcraft and Joseph W. H. Liu, “Applications
of Dulmage-Mendelsohn decomposition and network
flow to graph bisection improvement,” Tech. Rep. CS-
96-05, Dept. of Computer Science, York University,
North York, Ontario, Canada, 1996.

Tim Davis, “University of florida sparse matrix col-
lection,” NA Digest vol. 97, no. 23, June 1997,
http://www.cise.ufl.edu/research/sparse/matrices.

R. Clint Whaley and Jack J. Dongarra, “Automatically
tuned linear algebra software,” Tech. Rep. UT-CS-97-
366, 1997.

G. Karypis and V. Kumar, “"Metis: A software pack-
age for partitioning unstructured graphs, partition-
ing meshes, and computing fill-reducing orderings of
sparse matrices,” http://wwwusers.cs.umn.edu/ karyp-
is/metis/metis.html, 1998.

Cristophe Spiel, “Del Coda al Fine - pushing Octave’s
limits,” http://octave.sourceforge.net/coda/coda. pdf

[18] Paul Thomas, “Dal Segno al Coda - the
Octave dynamically linked function cookbook,”
http://perso.wanadoo.fr/prthomas/intro.html.

