
Imaging of conductivity changes and electrode

movement in EIT

Manuchehr Soleimani1, Camille Gómez-Laberge2 and Andy
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Abstract. Electrical Impedance Tomography (EIT) attempts to reconstruct the

internal impedance distribution in a medium from electrical measurements at

electrodes on the medium surface. One key difficulty with EIT measurements is due

to the position uncertainty of the electrodes, especially for medical applications, in

which the body surface moves during breathing and posture change. In this paper,

we develop a new approach which directly reconstructs both electrode movements

and internal conductivity changes for difference EIT. The reconstruction problem is

formulated in terms of a regularized inverse, using an augmented Jacobian, sensitive to

impedance change and electrode movement. A reconstruction prior term is computed

to impose a smoothness constraint on both the spatial distribution of impedance

change and electrode movement. A one-step regularized imaging algorithm is then

implemented based on the augmented Jacobian and smoothness constraint. Images

were reconstructed using the algorithm of this paper with data from simulated 2D

and 3D conductivity changes and electrode movements, and from saline phantom

measurements. Results showed good reconstruction of the actual electrode movements,

as well as a dramatic reduction in image artefacts compared to images from the

standard algorithm, which did not account for electrode movement.

Keywords: Electrical Impedance Tomography, regularization, image reconstruction,

electrode movement.

1. Introduction

Electrical Impedance Tomography (EIT) attempts to reconstruct the internal impedance

distribution in a medium from electrical measurements at electrodes on the medium

surface. Since EIT is non-invasive, minimally cumbersome in terms of instrumentation,

and potentially relatively inexpensive, it presents significant interest for medical

and industrial applications for measuring or monitoring movement of conductivity

contrasting substances. Medical applications of EIT include the monitoring of breathing

and heart activity in the chest (Frerichs, 2000). Since the beginnings of EIT research,

it has been recognized that electrode position uncertainty is a key source of errors and
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artefacts in EIT images (Barber and Brown, 1988). In order to partially address this

issue, EIT difference imaging has been used to reconstruct changes in the impedance

distribution due to changes in measurements. Barber and Brown (1988) showed that

difference imaging is much less sensitive to electrode position uncertainty when the

electrodes do not move between measurements. Unfortunately, it is clear that, for

many applications of EIT, the electrodes do move. In medical applications, electrode

movement due to chest expansion during breathing and to changes in posture has a

significant affect on measurements (Harris et al 1988, Adler et al 1996b, Zhang and

Patterson 2005, Coulombe et al 2005).

Ideally, in a situation where electrodes move, it would be possible to calculate

both the impedance distribution and the electrode locations. Lionheart (1998) showed

that, for isotropic conductivity distributions in three dimensions, such a calculation is

theoretically possible. Several groups have proposed algorithms to reconstruct electrode

locations or boundary shape (Kiber et al 1990, Blott et al 1998, and Kolehmainen

et al 2006). These approaches model the boundary shape in two dimensions, and

iteratively fit the model parameters to the data. This paper develops a new algorithm

to reconstruct both electrode movements and impedance changes from difference EIT

data. The reconstruction problem is formulated in terms of a regularized inverse, in

which an augmented Jacobian, sensitive to impedance change and electrode position, is

computed. Results are shown for simulation and saline phantom data.

2. Methods

In this section, we develop a reconstruction algorithm to calculate both the impedance

change and electrode movement for difference EIT. The algorithm is based on a finite

element model (FEM) of a conductive medium discretized into nN elements onto which

nE electrodes are attached on the FEM boundary. A current injection and measurement

protocol is applied to obtain nM measurements, referred to as a data frame. In

our simulations and phantom experiments, an adjacent stimulation protocol is used,

excluding measurements at stimulation electrodes. For a single ring of electrodes,

nE = 16, yielding nM = 208 measurements per frame, while in three dimensions with

two rings, nE = 32, yielding nM = 928.

2.1. System model

For difference EIT, frames vt1 and vt2 (size nE×1) are acquired at times t1 and t2,

respectively. Based on these frames, the difference data (vt2 − vt1) are calculated and

represented by a vector z of size nM×1. Using this notation, we have nN FEM elements

with conductivities σt1 and σt2 taken at times t1 and t2.

Difference EIT assumes that the difference measurements are a function only of the

conductivity change between frames; thus ∆σ = σt2 − σt1 . We use both point electrode

models (in two dimensions) and the complete electrode model (in three dimensions). In
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each case, the electrodes are represented by one or more nodes on the FEM boundary.

The movement of an electrode j between difference frames is described by the vector

~rj = (xj,t1 − xj,t2 , yj,t1 − yj,t2, zj,t1 − zj,t2), where (xj , yj, zj) represents the average nodal

co-ordinates of an electrode j at given measurement frame. If an electrode is modelled

by several nodes (using the complete electrode model), all nodes are assumed to move

identically. For large movements, such a modification of the FEM will produce artefacts

due to the distorted shape of the simplices. However, for this algorithm, only small

deformations of the FEM model are considered. Based on the difference measurements,

z, we attempt to reconstruct an image x̂ of size (nN + 3nE)×1, which represents the

conductivity variations and the electrode movements between frames. The first nN

entries represent the conductivity variation ∆σ for each element. The remaining 3nE

entries are the electrode movements, ~r, for each electrode. In two dimensions there are

two cartesian axes, and x̂ has size (nN + 2nE)×1.

2.2. Forward calculations

We represent the forward solution as the computation of difference measurements z from

the conductivity change and electrode movement, x, by the EIT difference operator F ,

based on the FEM, relative to an assumed homogeneous distribution σh at t1. That is,

z = F (x)|σh
(1)

The image reconstruction is formulated by a regularized maximum a posteriori

framework using Gaussian priors (Adler and Guardo, 1996). The reconstructed image

is

x̂ = arg min
x

(z − F (x))t
Σ−1

n (z − F (x)) + (x − x∞)t
Σ−1

x (x − x∞) (2)

where x∞ represents the expected value of element conductivity changes and electrode

motion. We assume that the conductivity changes and electrode motion may be equally

positive or negative, and set x∞ = 0 for our calculations in this paper. The matrices Σx

and Σn are the a priori estimates of the image (augmented by electrode movement data)

and measurement noise covariance matrices, such that each element [Σx]i,j represents

cov(xi,xj).

We do not calculate these covariances directly, but rather develop matrices W and

R to represent Σ−1

n and Σ−1

x . Given an average measurement noise amplitude σn, W

is defined as
1

σ2
n

W = Σ−1

n (3)

where Wi,i represents the inverse of the relative noise power for measurement i. To

simplify our analysis, the all measurements are considered to have equal noise, giving

W = I. A more sophisticated model would be necessary if a specific EIT system varies

the gain, and thus the noise level, in each channel.

The upper nN×nN part of Σ−1

x represents the covariance between finite element

conductivity changes, while the lower nDnE×nDnE part represents the covariance
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between electrode movements, where nD is the model dimension (2D or 3D). We assume

that there is no correlation between electrode movement and conductivity changes.

For specific applications of EIT, such as for lung imaging, one would expect electrode

movement and conductivity changes to be correlated. However, to impose such prior

information on the algorithm may introduce artefacts into reconstructed images when

such correlations do not hold. Based on these assumptions, we model the image

covariance as

Σ−1

x =
1

σ2
c

Rc +
1

σ2
m

Rm (4)

where σc and σm represent the a priori amplitude of conductivity change and electrode

movement, respectively. Rc is the regularization matrix for conductivity change, and

is non-zero in the upper nN×nN values. Similarly, Rm is the regularization matrix for

electrode movement, and is non-zero in the lower nDnE×nDnE elements.

In order to model the expected smoothness of real conductivity change patterns,

Rc should be a spatial high pass filter (Adler and Guardo, 1996). We model the inter-

element correlations using a discrete Laplacian filter, so that the diagonal elements

[Rc]i,i = nD + 1. The off-diagonal elements [Rc]i,j are set to −1 if finite elements i and

j are adjacent (i.e. share at least nD nodes), and are otherwise set to zero. Within

the electrode movement model Rm, it is again reasonable to expect a non-zero inter-

element correlation, as adjacent electrodes may be expected to move similarly. In a

similar way to the conductivity change parameters, we model inter-element correlations

using a discrete Laplacian, so that the diagonal elements [Rm]i,i = 2.1. The off-diagonal

elements [Rm]i,j are set to −1 for adjacent electrodes i and j, and if not are set to zero.

We choose [Rm]i,i = 2.1 rather than 2 in order to impose a non-zero penalty for global

movement of all electrodes.

Parameters σc and σm model the expected magnitude of the conductivity changes

and electrode movements, and may have dramatically different values, since they are

measured in different units. We define µ = σc/σm as the model hyperparameter to

represent the compromise between model fidelity to conductivity changes or movements.

In order to estimate a range for µ, we note that for medical applications of EIT, such

as breathing, conductivity changes on the order of the magnitude of 1.0 × σh may be

expected, while electrode movements may be 5% of the medium diameter. Thus, we

estimate values of µ = 1/0.05 = 20, to be reasonable. Figures 1 illustrates the effect of

variations in µ.

2.3. Inverse calculations

The inverse calculations are modified to account for electrode movement. The movement

portion of the Jacobian is calculated using a perturbation method, where the i, jth

element of the Jacobian J represents the ratio of a change in measurement i for a small

change in finite element j.

Ji,j =
Fi(xj + ∆xj)

∆xj

(5)
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where ∆xj is chosen to be sufficiently large to avoid numerical errors, but small enough

that it accurately approximates the Jacobian. In order to validate the choice of ∆xj, we

evaluated the change in J as a function of ∆x. For calculations with double precision

arithmetic, the relative variation in J is less than 10−6 for ∆x = 10−6. Based on the

calculated Jacobian, we use the linear approximation, F (x) = Jx. Thus (2) may be

interpreted as a one step linear inverse solution (Cheney et al 1990) for the conductivity

and electrode movement x̂ based on data z

x̂ =

(

Jt 1

σ2
n

WJ +
1

σ2
c

Rc +
1

σ2
m

Rm

)

−1

Jt 1

σ2
n

Wz. (6)

We define R = Rc + µ2Rm, and rewrite (6) as (using W = I),

x̂ =
(

JtJ + λ2R
)

−1

JTz. (7)

where λ2 is the global regularization hyperparameter, such that λ = σn/σc. Elements

in the lower part of R are now scaled by σ2

c/σ
2

m = µ2. Thus, R is represented by

Ri,j =



























nD + 1 if i = j and i ≤ nN

−1 if (element i is adjacent to j) and (i ≤ nN )

2.1µ2 if i = j and i > nN

−µ2 if (electrode i is adjacent to j) and (i > nN)

0 otherwise.

(8)

2.4. Standard method

In order to compare our results to those calculated without compensation for electrode

movement, we develop a reconstruction model based solely on the conductivity change

part of J and R. This corresponds to a one step EIT reconstruction similar to that of

Cheney (1990) or Adler and Guardo (1996). In our results we refer to this technique as

the standard method.

2.5. Artefact amplitude measure

Images reconstructed with compensation for electrode movement appear to show

reduced reconstruction artefacts in comparison with the standard method. To measure

this effect, we define an measure of reconstruction artefact amplitude (AAM) as follows.

A reconstruction artefact is defined to be an element of non-zero conductivity change

in elements which we know (from the physical or simulation model) to have zero

conductivity change. AAM, is defined to be

AAM =

√

∑

i∈L Aix
2

i
∑

i∈L Ai

(9)

where Ai is the area (in 2D) or volume (in 3D) of each element, and L is the set of

elements selected. For simulated results, L includes all elements which do not overlap

with any contrast element in the forward model. For measured phantom data, L is

defined to include elements in the two rings of finite elements closest to the boundary.
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2.6. Experimental data

Test data were calculated both by numerical simulation and experimentation using

a saline tank phantom. Numerical simulations were conducted using planar and

volumetric FEM models with 576 elements in two dimensions and 828 elements in three

dimensions using the EIDORS software (Adler and Lionheart, 2006). The 2D simulation

model differs from that used to reconstruct images to avoid the inverse crime.

Saline phantom data were acquired from a 30 cm diameter and 30 cm tall plastic

cylindrical phantom filled with 0.9% saline solution to the 20 cm mark. Sixteen stainless

steel electrodes were placed, equally spaced, around the circumference at a vertical

position of 10 cm above the base of the tank. EIT data were acquired using the Goe-MF

II EIT system (Viasys Healthcare, Höchberg, Germany) using an adjacent stimulation

and measurement pattern. Homogeneous data zh were first acquired, and subsequently,

small non-conductive spherical objects of 2 cm radius were introduced in the plane of

the electrodes at various positions along the x and y axes. Electrode movement was

simulated by applying an elliptical deformation to the phantom such that the diameter

of the top of the phantom on the x-axis was reduced by 5 cm. The electrode channel

impedances were tested to be between 200 and 400 Ohms according to the system’s

calibration test. These values are within the system’s acceptable limits.

3. Results

This algorithm was implemented in Matlab (v.7 SP2) and tested using a 2.60 GHz AMD

Opteron based computer under Linux. The calculation of the complete reconstruction

of the three dimensional problem took 25.2 sec. while the computation of a single-step

inverse required approximately 10 ms. This approach would thus be appropriate for

real-time EIT imaging. The software developed has been contributed to the EIDORS

project (Adler and Lionheart, 2006).

Simulated 2D data were generated using the circular model shown in the top

left part of figure 1. vt1 was calculated for a homogeneous circular medium; vt2 was

calculated for a medium with two small inhomogeneities of conductivity 1.2 × σh and

0.8×σh, where the boundary was distorted into an elliptical shape, with a 1% elongation

vertically and a 1% compression horizontally. Noise was added to measurements to give

a signal-to-noise ratio (SNR) of 20 dB, with the signal defined as ‖z‖2. The top right

part of figure 1 is an image reconstructed from these data using the standard method

with λ = 10−2. The images reconstructed using the standard method show a large

level of artefacts around the medium boundary, as well as an incorrect position for

the reconstructed contrasts, which appear to be “pushed” in the direction of boundary

movement. Images reconstructed using the proposed algorithm (figure 1 bottom row)

show dramatically reduced artefacts, as well as more accurate positioning of contrasts.

When µ is small, the penalty for movements is low, and the algorithm is able to make

arbitrary electrode movements to satisfy the conductivity change constraints (bottom
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left of figure 1 shows µ = 1). Using a more reasonable value, µ = 20, the image (bottom

right) shows reasonable reconstructed movement and conductivity change.

Reconstructed images for phantom data are shown in figure 2. The phantom was

compressed along the x-axis by 5 cm at the top of the tank. Since electrodes were

placed at 1/3 of the tank height, each electrode moved by 6.7% of the tank radius.

The constrasts were reconstructed at the correct locations, in both the proposed and

standard algorithms, although artefacts in the standard method (left) are significantly

larger.

In order to test this method on volumetric reconstructions, simulations were

calculated using the 828 element mesh of figure 3. Difference data were calculated
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Figure 1. Simulated images of reconstructed conductivity and electrode movement.

Arrows indicate each electrode’s movement, and are scaled by 20×. Top left : FEM

(576 element mesh) for 2D simulation of conductivity change and electrode movement

from an elliptical deformation of 1% of medium diameter. Noise of 20 dB SNR is

added to simulated data. Top right : Reconstructed image (256 element mesh) using

the standard method with λ = 10−2 (Artefact amplitude AAM = 0.0616). Bottom

left : Reconstructed image including electrode movement with λ = 10−2 and µ = 1

(AAM = 0.0116). Bottom right : Reconstructed image including electrode movement

using λ = 10−2 and µ = 20 (AAM = 0.0135).
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Figure 2. Reconstructed images (256 element mesh) for phantom data with two non-

conductive objects: one on the positive x-axis, the other on the negative y-axis. Arrows

indicate each electrode’s movement, and are scaled by 10×. Left : Reconstructed image

with standard method using λ = 10−2 (AAM = 0.134). Right : Reconstructed image

including electrode movement using λ = 10−2 and µ = 10 (AAM = 0.0273).

due to the introduction of conductive and non-conductive contrasts, and a complex

3D distortion in the x and y axes. Images reconstructed from this mesh are shown

in figure 4, using the standard method and the proposed algorithm. As in the case

of 2D reconstructions, the proposed algorithm is able to calculate reasonably accurate

electrode movements, and is also able to significantly reduce the level of reconstruction

artefacts do to electrode movement.

4. Discussion

One of the main challenges in applications of EIT is compensating for image artefacts

due to uncertainty of electrode position. This paper proposes an algorithm, based on our

previous work (Soleimani et al 2003, 2004) to reconstruct both the conductivity change

and electrode movement from difference EIT data. This method was tested on simulated

and experimental phantom data in planar and volumetric media, and showed an ability

to accurately reconstruct images in all cases. The direction of electrode movement was

correctly calculated for both simulated and experimental data. Additionally, if only

the conductivity change portion of the image is of interest, then this algorithm allows

reconstruction of images with dramatically reduced artefacts in the presence of electrode

movement.

From very early days in EIT research, it has been observed that electrode movement

is a significant source of errors and artefacts in images. This is a particularly difficult

issue in static EIT imaging, as illustrated by Barber and Brown (1988) who showed

that difference imaging is relatively immune to electrode position errors which do not

vary between measurements. Gersing et al (1996) measured the effect of changes in
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Figure 3. Volumetric model with a geometrical distortion applied (exaggerated 10

times to clarify the geometry). The mesh has 828 tetrahedral elements and two rings

of 16 electrodes. Blue and red regions indicate contrasts being less conductive and

more conductive, respectively, than the surrounding medium.

medium geometry on EIT measurements, and Kolehmainen et al (1997) simulated the

effect of errors in the boundary model for static imaging using an elliptical deformation

of a circular boundary, and showed significant errors for boundary model deformations

of 1%. Another approach has been to measure the electrode positions, using a system

such as that of Molebny et al (1996).

For EIT images of the thorax, the primary causes of electrode movement are due to

posture changes and breathing. The effect of postural changes on EIT measurements has

been studied by Harris et al (1988), Lozano et al (1995), and Coulombe et al (2005). In

each case, participants were asked to assume different postures and significant differences

in EIT images were observed. Interestingly, Harris et al (1998) suggest that this result

may be due to changes in distribution of ventilation with posture; however, we feel it is

more likely that electrode movement is the most significant effect (as shown by recent

stimulation studies, such as Zhang and Patterson, 2005). Electrode movement with

breathing is caused by the expansion of the rib cage (Frerichs, 2000). Simulation studies

of the this effect have been conducted by Adler et al (1996b) and Zhang and Patterson

(2005). Finite element models of the chest were constructed and EIT measurements
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Figure 4. Reconstructed images and electrode movement from simulated volumetric

data with 20 dB SNR noise, using hyperparameters λ = 3 × 10−3 and µ = 20. Each

column shows three horizontal slices of the reconstructed image on a 828 element mesh

(top: z = 0.167; middle: z = 0.500; bottom: z = 0.833). Electrodes are indicated by a

dot at the centre of the electrode position. Arrows indicate each electrode’s movement,

and are scaled by 10×. Left : Simulated inhomogeneities and electrode movements.

Middle: Reconstructed image using the standard algorithm (AAM = 0.0708). Right :

Reconstructed image including electrode movement (AAM = 0.0190).

simulated due to changes in lung conductivity and electrode movement with breathing.

Both studies reported a broad central image artefact whose amplitude was proportional

to the EIT image due to the conductivity change.

Several groups have attempted to model the boundary shape from EIT

measurements. This possibility was first observed by Breckon and Pidcock (1988), who

suggested fitting a Fourier series approximation to the boundary shape. Kiber et al

(1990) showed a way to estimate the shape of the boundary from electrical data using a

two-dimensional model, and reported good results for an elliptical tank and some success

on data from a thorax. Blott et al (1998), and Kolehmainen et al (2006) developed

algorithms to compensate for electrode position variations, based on a perturbation of

the Jacobian similar to that presented here. A regularized expression was developed
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and iteratively solved based on the conductivity changes and electrode movements.

This work differs from ours in that the electrode movements are not directly modelled

as spatial coordinates, and the relative choice of regularization hyperparameters for

movement and conductivity terms appears to be heuristic. Additionally, only two-

dimensional simulations are presented.

An important theoretical result was given by Lionheart (1998), who showed that if

the boundary shape is wrong (in a three-dimensional problem) there will not generally be

an isotropic conductivity which fits the measured boundary data. Thus, in theory, both

impedance and boundary shape can be calculated from EIT data. For two-dimensional

models, isotropic conductivity and boundary shape can be recovered up to a conformal

mapping relation. The applicability of this result to this study is limited by the fact

that we consider difference EIT data, and a limited number of electrodes, rather than

complete boundary data.

Many researchers have considered the problem of reconstructing the shape of targets

in a medium with a fixed boundary (Han and Prosperetti 1999, Heikkinen et al 2002,

Kolehmainen et al 2001, Tossavainen et al 2004, Vauhkonen et al 1998). Techniques

to model internal boundaries are probably more advanced than those to model the

medium boundary and electrode positions. For example, Kolehmainen et al (2001)

formulates the inverse problem in terms of state space estimation and computes the

parameters using the extended Kalman filter. Such techniques, which consider the

temporal characteristics of the data, are almost certainly applicable to the medium

boundary problem considered here.

In addition to electrode movement, changes of electrode contact impedance are a

significant issue in EIT applications, especially for monitoring applications (Lozano et

al 1997). While we do not address this issue in this paper, it is interesting to note

the approach taken by Heikkinen et al (2002) to address simultaneous reconstruction of

the impedance distribution and electrode contact impedances. Similar to the approach

taken here, a composite Jacobian is calculated, based on changes in both parameters.

One potentially useful advancement would be a development of the approach proposed

here to also consider electrode impedance in this way. Additionally, it may be possible

to reconstruct the overall distortion of the boundary as well as the movement of

the electrodes. In this study, we include phantom experiments to test our proposed

algorithm. Electrode movements are a difficult problem to simulate and we felt that

a demonstration of experimental results is necessary to ensure our method is not only

applicable to simulated data.

One limitation of our study is the use of fixed electrode models, in which all nodes

for each electrode translate uniformly, without distortion or rotation. However, real

electrode displacements are far more complex. The electrode will turn as it moves,

the skin under it will buckle, and the electrode itself may deform. It is possible that

the difference noted between reconstructions from simulations and from phantom data

reflects some of this difference.

In conclusion, we have developed an algorithm to reconstruct conductivity change
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and electrode movement in EIT. Results show good reconstructions for both simulated

and phantom measurements. The electrode movement is faithfully reconstructed, and

the conductivity change shows dramatically less artefacts than for standard methods.

One key advantage is that, once pre-calculations are done, it requires little additional

computational time over standard methods. We anticipate that these techniques may

be useful to increase the accuracy and reliability of EIT in clinical and experimental

applications.
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