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Abstract. An algorithm for objectively calculating the hyperparameter for the
class of linearized one step EIT image reconstruction algorithms is proposed
and compared to existing strategies. EIT is an ill-conditioned problem in which
regularization is used to calculate a stable and accurate solution by incorporating
some form of prior knowledge into the solution. A hyperparameter is used to
control the balance between conformance to data and conformance to the prior.
A remaining challenge is to develop and validate methods of objectively selecting
the hyperparameter. In this paper evaluate an compare and evaluate five different
strategies for hyperparameter selection. We propose a calibration based method of
objective hyperparameter selection, called BestRes, that leads to repeatable and
stable image reconstructions that are indistinguishable from heuristic selections.
Results indicate: 1) heuristic selections of hyperparameter are inconsistent among
experts, 2) Generalized Cross-Validation approaches produce under-regularized
solutions, 3) L-Curve approaches are unreliable for EIT, and 4) BestRes produces
good solutions comparable to expert selections. Additionally, we show that it is
possible to reliably detect an inverse crime based on analysis of these parameters.
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1. Introduction

EIT attempts to calculate a stable and accurate image of the conductivity or
conductivity change within a medium from electrical measurements made on the
medium boundary. The image reconstruction problem is essentially underdetermined
and characterized by a system matrix with large condition number. Image
reconstructions obtained through näıve methods such as least squares are unstable
and dominated by noise. The problem has been overcome through the use of
various regularization methods which produce useful solutions by imposing additional
conditions (priors), such as image smoothness, on the problem (Vauhkonen et al. 1997).
The balance between solution conformance to the measured data and conformance to
the prior is controlled by a scalar hyperparameter often labelled λ.

A difficulty with experimental and clinical EIT reconstruction algorithms is the
tendency of algorithms to rely on subjective methods to select a hyperparameter.
The absence of objective hyperparameter selection methods results in several issues
which hinder experimental and clinical use of the technique: 1) users of EIT for
clinical applications are uncomfortable using “fiddle” adjustments to modify images,
2) comparisons of EIT reconstruction algorithms can be subjective due to the necessity
of manual tuning of hyperparameter values, 3) experimental work is not repeatable
if disparate researchers cannot objectively recreate the hyperparamater values used
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in the work of others, and 4) meta-algorithms, such as detection of electrode errors
(Asfaw & Adler 2005), require a method to fix these values.

In order to address this issue, we investigate existing hyperparameter selection
methods and propose a new calibration based method called BestRes (Best
Resolution). By “calibration” we mean that a procedure is defined to select a value for
a given EIT system and measurement configuration, rather than for each image or data
set. We define a configuration as the combination of current injection pattern, Finite
Element Mesh (FEM), assumed prior conductivity (σ0 ) and regularization prior.
Hyperparameter selection methods are then compared for several one-step linearized
EIT reconstruction algorithms.

2. Methods

We consider EIT difference imaging, which is widely understood to improve
reconstructed image stability in the presence of problems such as unknown
contact impedance, inaccurate electrode positions, nonlinearity, and the use of 2D
approximations for 3D electrical fields (Barber & Brown 1988b) (Lionheart 2004).
Initially, we address the class of normalized one-step linearized reconstruction
algorithms that calculate the proportional change in a finite element conductivity
distribution, x = (σ2 − σ1)/σ1, due to a proportional change in difference signal,
z = (v2 − v1)/v1, over a time interval (t1, t2) . Since we do not know σ1, x is
interpreted as the proportional change in conductivity with respect to the unknown
initial conductivity x = ∆σ/σ0. For small changes around a background conductivity
the relationship between x and z may be linearized as

z = Hx + n (1)

where H is the Jacobian or sensitivity matrix and n is the measurement system noise,
assumed to be uncorrelated additive white Gaussian (AWGN). Each element i, j, of

H is calculated as Hij = ∂zi

∂xj

∣

∣

∣

σ0

and relates a small change in the ith proportional

difference measurement to a small change in the proportional conductivity of jth

element. H is a function of the finite element mesh (FEM), the current injection
pattern, and the background conductivity, σ0 . We use a homogenous background
with σ0 = 1 for each of the elements. Normalizing the signal requires that we also
normalize the sensitivity matrix, by dividing its columns by vref which is a vector
of reference voltages obtained by solving the forward problem over a homogenous
domain.

2.1. Regularization

In order to overcome the ill conditioning of H we solve (1) using the following
regularized inverse

x̂ = (HTWH + λR)−1HTWz = Bz (2)

where x̂ is an estimate of the true proportional change in conductivity distribution,
R is a regularization matrix, λ is a scalar hyperparameter that controls the amount
of regularization, and W models the system noise. Since noise is uncorrelated in the
system, W is a diagonal matrix; Wi,i = 1/σ2

i where σ2
i is the noise variance for

measurement i. W can also be modified to account for variable gain settings on each
tomograph channel. However, for this work we assume that all measurements have
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equal noise variance, thus W becomes a multiple of the identity matrix. With R = I

(labelled RTik) equation (2) is the 0th order Tikhonov algorithm. With R = diag(H)
(labelled Rdiag(H) equation (2) is the regularization matrix used in the NOSER
algorithm of (Cheney et al. 1991). (Adler & Guardo 1996) modelled R as a spatially
invariant Gaussian high pass filter (labelled RHPF) with a cut-off frequency selected so
the spatial period is a given fraction of the medium diameter. RHPF reconstructions
appear reasonable for cut-off frequencies corresponding to 5%, 10% and 20% diameter.
A 16 electrode EIT system, using adjacent measurements not at current injection sites,
yields 208 measurements of which 104 are independent. We consider λHPF for 10%
because it appears better justified in terms of available measurements, in that 10% is
roughly 1

/√
104.

All three of these priors are smoothing filters, however the Gaussian HPF has
the advantage of being mesh size independent in that it is a function of the mesh
inter-element correlations. The Tikhonov and NOSER are ad hoc priors that do not
consider correlations between solution mesh elements. While several other one-step
regularized inverse algorithms exist for EIT (Barber & Brown 1988a), (Kotre 1994),
(Cohen-Bacrie et al. 1997), in this paper we consider equation (2) with the Tikhonov,
NOSER, and Gaussian HPF regularization matrices as a representative sample with
which to compare hyperparameter selection strategies.

The rest of this paper is organized as follows. First, some existing hyperparameter
strategies are discussed. A calibration strategy to objectively calculate an optimal
hyperparameter for a given configuration is then described. Next, the effectiveness
of each strategy for linearized one-step EIT is compared with respect to heuristic
selection. Finally, observations of this work are discussed and we conclude with a
recommendation of the BestRes hyperparameter selection method.

3. Hyperparameter Selection Methods

The goal of hyperparameter selection is to produce a “good” reconstruction.
Intuitively hyperparameter selection should produce solutions that preserve as much
of the measured data as possible by applying the least amount of a priori information
required to obtain a useful reconstruction.

3.1. Heuristic Selection

The most common method of hyperparameter selection is Heuristic Selection in which
researchers examine sets of reconstructions generated over a range of hyperparameter
values and select the best image. This method is subjective and not repeatable. To
our knowledge no research has specifically evaluated the performance of objective
hyperparameter selection for one step solutions.

In this work, heuristic selection was performed by 5 graduate students who were
asked to participate in an experiment evaluating human performance in choosing
regularization parameters. A web site was set up in which 5 independent data sets were
used to generate sequences of reconstructions. Each sequence showed reconstructions
as a function of the 77 different values of the hyperparameter. Each web page, such
as the example of figure 1(a), showed the same conductivity change solution using 8
visual styles (subimages).

Each pair of images is shown as a 2D false colour representation of the conductivity
change image and an associated 3D version where the z dimension represents
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(a) λ = 0.00071036, NF = 8.3048 (b) λ = 3.736, NF = 0.3026

Figure 1. Two web pages from the heuristic selection experiment. Images
generated from tank data using RHPF prior with different hyperparameter values

conductivity change. The left half of the page shows the reconstruction as a decrease
in conductivity while the right side shows the inverse of the image (we reverse the
reference and data frames) so that the reconstruction appears to be a conductivity
increase. The top row uses relative colour and z-axis scaling, thus each subimage in
the 77 page sequence uses the full range of colours. For the 3D representation the
conductivity is scaled to fill the entire z-axis. The bottom row uses an absolute colour
and z-axis scaling thus each subimage of the 77 page sequence uses the same colour
and vertical axis extent. Consequently highly smoothed images (large hyperparameter
values), such as figure 1(b) have little color variation and reduced vertical extent
compared to images reconstructed with lower hyperparameter values such as figure
1(a). Students were instructed to choose the best image based on the following
definition: the image which shows the best resolution for the contrasing region(s)
without excessive contamination by noise.

The same set of students was asked to repeat the experiment four months later.
Students were instructed not to look at their earlier results as the aim of the second
experiment was to evaluate repeatability. Full details of the experiment are available
in (Graham 2005)

3.2. L-Curve

Perhaps the most well known method of hyperparameter selection after heuristic
selection is the L-Curve method (Hansen 1992). This method plots the semi-norm
of the regularized solution, log10 |Rx̂|, versus the norm of the corresponding residual
vector, log10 |Hx̂ − z|, parametrically over λ. The resulting plot, such as figure 2(a),
will often have an “L” shape where the optimal value for λ is located at the point of
maximum curvature. Hansen describes a method for caluclating this “corner” of the
L-curve in (Hansen 1997). We call this value λLC . There are cases where the L-Curve
may fail. Figure 2(b) is an L-Curve that does not have a “corner”.
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(a) L-Curve for RTik, 576 element mesh,
Tank data, λGCV did not converge
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Figure 2. Example L-Curves.

3.3. Generalized Cross-Validation

Generalized cross-validation (GCV) is based on the principle that if any arbitrary
element of the data, z, is left out, then the corresponding regularized solution should
predict the missing element (Hansen 1997). Its advantage is that no prior knowledge
about the error norm is required. This leads to choosing a regularization parameter
which minimizes the GCV function

GCV (λ) =
‖Hx̂− z‖2

trace (I − HB)
2 (3)

where B, z and x̂ are as in equations 1 and 2. This method has often been used for
the Tikhonov prior. In this work we use it for all three priors.

3.4. Fixed Noise Figure (NF)

The Fixed NF Method is based on a Noise Figure calculation introduced by (Adler &
Guardo 1996) where NF is defined as the ratio of signal to noise ratio (SNR) in the
measurements to SNR in the image:

NF =
SNRin

SNRout
=

(

mean[zc]
√

var[n]

)/(

mean[Bzc]
√

var[Bn]

)

(4)

The signal used in this definition is zc = Hxc , where xc is a small contrast in the
centre of the medium. The user selects a NF value and the corresponding λ is found
using a bisection search technique. The Fixed NF Method substitutes the manual
selection of λ with the manual selection of a NF, which the algorithm then maps to a
hyperparameter value; the value for NF = 1 is labelled λNF=1. As shown in figure 3,
for a given configuration, log(NF ) is nearly linearly inversely proportionally to log(λ)
throughout the extent where λ yields good solutions.

Experience has shown that noise figures in the range 0.5 to 2 consistently lead
to good reconstructions regardless of configuration or data source (simulated or
measured) while the associated λ value can range over several orders of magnitude
dependent on configuration. The 18 configurations used in this work, λ ranged over 3
orders of magnitude for NF = 1. The advantage of the Fixed NF method is that the
suitable NF range is not configuration dependent while λ is.
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Figure 3. Plot showing linear relationship between log(λ) and log(NF). Solid
lines are simulated data on 256 element mesh, dashed lines are tank data on 576
element mesh. Priors are: Rdiag(H) (black), RHPF ) (blue), RTik) (red)

3.5. Calibration Based Hyperparameter Selection Method

3.5.1. aside - Figure of Merit An objective selection method requires a quantitative
figure of merit to measure the quality of the reconstructed image. (Wheeler et al. 2002)
reviewed several figures of merit for EIT that have been proposed in the literature The
primary figure of merit used in this work is Resolution which we calculate in terms
of Blur Radius (BR). We define Blur Radius as BR = rz/r0 =

√

Az/A0 where r0

and A0 are the radius and area respectively of the entire 2D medium and rz and Az

are the radius and area of the reconstructed contrast containing half the magnitude
of the reconstructed image (Adler & Guardo 1996). BR calculates the area fraction
of the elements that contain 50% of the total image amplitude. We call this the half
amplitude (HA) set. Figure 4(a) shows the evolution of the HA set in response to
increasing λ for an impulse contrast. Figure 4(b) shows the corresponding impedance
change images, here represented with 3D visualization. With insufficient λ the image
is dominated by noise and the HA set is composed of spatially disjoint elements. As λ
is increased, noise is filtered through the smoothing action of the prior, image energy
starts to concentrate, and the HA set starts to cluster. The point at which the HA set
is comprised of adjacent elements is termed the “onset of stability” (OS). Excessive
regularization blurs the image and expands the now contiguous HA set. A Resolution
Curve (plot of Resolution vs λ) such as figure 5(b) shows a rapid increase in resolution
(decreasing BR) to a minimum value that occurs after the onset of stability, followed
by a slower increase in BR as filtering starts to blur the image. For an impulse contrast
the minimum point of the Resolution curve indicates the best resolution. This value
can be considered optimal with respect to both Resolution and stability (slope of curve
is low indicating small change in signal for a small change in λ) for the given data set.

3.5.2. BestRes Method The Resolution curve of figure 5(b) suggests the following
hyperparameter selection strategy, which we refer to as the “BestRes” Method.

(i) Image an impulse contrast

(a) The preferred method is to use imaging equipment to collect a frame of
reference data from a homogenous medium. Then collect a data frame
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λ=0.0008 λ=0.0302 λ=0.0616 λ=6.3822

(a) Evolution of HA set (dark triangles) with increasing λ

λ=0.0008 λ=0.0302
λ=0.0616

λ=6.3822

Vertical Axis indicates relative change in conductivity

(b) Evolution of proportional conductivity change image with increasing λ

Figure 4. Sample Reconstructions of impulse phantom, tank data with RHPF

on 576 element mesh.
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(b) Resolution Curve (Blur Radius vs log10(λ))

Figure 5. Points indicate original heuristic selections, crosses indicate second
set of heuristic selections.

by imaging an impulse contrast using a physical phantom located halfway
between the centre and boundary of medium (r/2).

(b) If equipment is not available the method can use simulated data. Again
simulate a reference frame using a homogenous medium. Simulate a data



Objective Selection of Hyperparameter for EIT 8

frame by changing the conductivity of a single mesh element located at r/2.
Using real data has the potential to produce a hyperparameter for the
given configuration that is tailored to the equipment. In practice the
reconstructions obtained using this seemingly more accurate method are not
qualitatively improved over those that are generated using simulated data.

(ii) Reconstruct a series of images as a function of the hyperparameter and plot the
associated Resolution curve as in Figure 5(b).

(iii) Determine λBestRes as the point for maximum resolution - minimum BR. This
value of λ is then used for all subsequent reconstructions using simulated or real
data.

If using simulated data then representative noise should be included. We suggest
producing several Resolution curves (we used 50) each with a different instance of the
representative noise level. Each curve will produce a value of λBestRes. The mean of
this set of λBestRes is the output of the BestRes method.

4. Results

4.1. Data Sources

Three sources of test data were used to compare the hyperparameter selection
methods:

(i) simulated data, generated using a 2D finite element mesh with 1968 elements
using the point electrode model. Data for the reference frame was generated
using a homogenous background conductivity with σ0 = 1. The data frame
was generated by reducing the conductivity of a single FEM element (0.05% of
medium area) located halfway along the radius of the tank (r/2) by 15%.

(ii) simulated data obtained by adding Gaussian noise to set #1. Noise variance was
0.05% of maximum signal value, and

(iii) tank data using a Goe-MF II type tomography system (Viasys Healthcare,
Höchberg, FRG). The reference frame of the tank data was generated using
a homogenous saline solution in a 30cm diameter tank. The data frame was
generated using a 2cm diameter non-conductive impulse phantom located at r/2.

Both simulated and tank data used 16 electrodes equispaced in a plane driven with the
adjacent current drive protocol. Measurements involving one or more of the driving
electrodes were discarded giving 208 measurements per data frame.

The three data sets were used to reconstruct images using 18 configurations
(6 meshes, 3 regularization matrices). The 6 meshes have 64, 256, 492, 576, 1024,
and 1968 elements. Reconstructions of simulated data using the 1968 element
mesh constituted an inverse crime (Wirgin 2004), which we discuss later. The
hyperparameter selection methods are compared using the L-Curve and Resolution
Curves of figures 5. Hyperparamater values selected form each of the methods are
shown on both curves. Associated reconstructions are shown in figure 6.

4.2. Heuristic Results

The points on figures 5 indicate the first set of hyperparameters selected (indirectly)
by heuristic selection. The associated reconstructions are found in figure 6. Heuristic
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selections varied and were not confined to the minimum region of the Resolution
Curve or knee of the L-Curve: no clear preference was shown among images
reconstructed using λ from the minimum region of the Resolution Curve. The crosses
on figures 5 indicate the hyperparameter values selected by the same experts when the
experiment was repeated 4 months later. Results indicate that Heuristic selections of
hyperparameter are inconsistent among experts and unrepeatable. Heuristic selections
are subject to many biases including the colour scheme used in images, whether
impedance changes are shown from a 2D or 3D perspective, the a priori expectation
of the expert concerning noise levels, desired image properties, and other unknown
individual idiosyncrasies. The heuristic results suggests that there is no single
preferred value of λ, rather there is a preferred region of λ over which reconstructions
are not subjectively distinguishable.

(a) Lowest Heuristic Selection (b) λLC

(c) λGCV (d) λBestRes and Highest Heuristic
Selection

Figure 6. Example Reconstructions, Black Bordered triangles are elements of
the Half Amplitude Set

4.3. L-Curve Results

Although most L-Curves from this data were able to indicate an optimal tradeoff
region, not all curves had a pronounced enough corner to allow unambiguous selection
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of λ. In the six Tikhonov configurations the L-Curve always indicated a clear point
of maximum curvature. However there were some configurations, such as figure 2(b),
where the L-Curve did not exhibit a corner from which a hyperparameter could be
calculated. In general the L-Curve indicated a lower value for λ then the Fixed
NF and BestRes methods. As a result L-Curve derived images were comparitively
noisier. In several instances λLC occurred much earlier than the onset of stability.
We make the observation that L-Curves for the NOSER and Gaussian HPF priors are
shallower than classic L-Curves discussed in the general inverse problems field such
as (Hansen 1992). This is illustrated in figure 7 which compares the relatively sharp
corner of the Tikhonov L-Curve to the shallower curves for the Gaussian HPF and
NOSER priors.

The L-Curve method also requires the generation of an L-curve for each set of
data. We feel it is preferable to be able to calculate a single hyperparameter value
suitable for continuous use with a specific configuration which can be done with the
BestRes and Fixed NF methods.
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Figure 7. L-Curves for different priors on same mesh (576 element, Tank Data)

4.4. GCV

It has been noted (Tenorio 2001) that that the GCV method often calculates very small
values of λ leading to solutions that are severly under-regularized. As illustrated in
figure 8, the GCV function can also be very shallow making it difficult to isolate a
clear minimum. In some cases the GCV curve was monotocically increasing, and thus
did not have a minimum. For example, the GCV curve for a reconstruction using tank
data on the 576 element mesh with the Tikhonov prior failed to exhibit a minimum.
Overall the GCV criterion was unreliable in calculating hyperparameters for linearized
one-step EIT reconstructions.

4.5. BestRes Results

For both tank and simulated data using all 18 configurations the Resolution Curve
exhibited a distinct minimum point at which λBestRes could be calculated and
subsequently used to obtain a “good” reconstruction. It appears that Resolution
is a useful figure of merit for EIT reconstructions.



Objective Selection of Hyperparameter for EIT 11

log10(λ)

G
C

V

GCV(λdiag(H))

GCV(λHPF )

Local Minima

10−6 10−4 10−2 100 102
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 8. GCV Curves for Tank Data reconstructed on the 576 element mesh

4.6. Fixed NF Results

With both the tank and simulated data λNF=1 was consistently located in the minimal
region of the Resolution Curve. Moreover λNF=1 always fell within the boundaries of
the hyperparameters selected by the experts (i.e. it was as consistent as the experts).
Fixed NF with NF = 1 always calculated a hyperparamater that resulted in a good
reconstruction.

5. Discussion

This paper has investigated the performance of various hyperparameter selection
methods including the BestRes method herein introduced. In the course of these
studies it became clear that several other aspects of EIT image reconstruction are
related to hyperparameter selection. In this section we discuss the effects of noise
level, radial position of contrasts, and normalization on hyperparameter selection. We
also touch on applicability to non-linear reconstructions and inverse crimes.

5.1. Noise and Radial Position

We further explored the behaviour of the Fixed NF and BestRes methods by
performing two additional experiments. Simulated data was generated with increasing
amounts of AWGN noise for various radial positions of the generating impulse contrast.
Figure 9(a) shows λBestRes as a function of increasing noise. Hyperparameter values
for all methods except Fixed NF increased as noise level increased resulting in greater
noise suppression through increased smoothing. The maximum noise levels used in
this work are much larger than found in practice but were used to understand trends.
Figure 9(b) shows the effect of λ as a function of radial position of the generating
contrast. The noise in this plot is fixed at 0.50%. The best resolution is achieved for
contrasts located at 25% of radial distance from the centre. Although λ continues to
increase as the radial position increases past 90%, the corresponding resolution starts
to decrease due to blurring caused by proximity to the edge.

Since Fixed NF is not a function of the data, hyperparameters selected with Fixed
NF do not change with noise. Consideration of data noise will in general require more
smoothing (therefore larger λ values). However at realistic noise levels λNF=1 falls
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Figure 9. Hyperparameter trends, 256 element mesh, Gaussian HPF Prior

within the minimum region of the Resolution Curve, is indistinguishable from heuristic
selections, and consistently results in good reconstructions.

5.1.1. Normalization Although primarily concerned with proportional (normalized)
difference imaging we also investigated the performance of the Fixed NF method using
simple (non-normalized) difference algorithms. The simple difference problem is solved
using equation 2 with x defined as x = σ2 − σ1 and z defined as z = v2 − v1. (H is
also modified in that its columns are not divided by vref as in section 2). Similar to
the proportional difference algorithm the Fixed NF method was able to consistently
calculate a hyperparameter located in the minimum region of the associated Resolution
Curve.

Comment on Normalization Normalization has some advantages. 1) By normalizing
the data, one does not need to know what value of current was injected in obtaining the
boundary data. Thus when the forward problem is solved one is free to use whatever
value of injected current makes sense numerically for the algorithm (usually ±1). 2)
The authors of (Metherall et al. 1996) justify normalization with the argument that a
normalized sensitivity matrix is less sensitive to the boundary shape of the object and
the position of the electrodes, which is a substantial problem in clinical applications.
3) Some EIT systems change the gain settings for each electrode depending on the
amplitude of signal expected. Normalization can compensate for these cases as well
as instances where the calibrated gain settings are not exact.

Normalization of the sensitivity matrix does not change the spectrum of singular
values of HTH. Although the condition number of HTH may improve by an order of
magnitude or more the relative change is not significant. For the meshes used in this
work the condition number of HTH improved by a factor of about 10. In other work
involving non-circular meshes we have seen changes from as low as 1.5 to as high as
1000. In some cases (non-homogenous background conductivity) the condition number
increased, so it is not possible to state that, as a rule, normalization always improves
the condition number of HTH

5.1.2. Non-Linear Reconstructions We investigated the use of Fixed NF method for
use with an iterative static reconstruction algorithm. In this experiment we used Fixed
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NF to calculate a single hyperparameter that was used for each iteration. Running
the algorithm to convergence indicated that the λNF=1 was located in the minimum
region of the Resolution Curve. It may also possible to use the Fixed NF method to
calculate a new hyperparameter for each step of the iterative algorithm.

5.1.3. Inverse Crime The act of employing the same model to generate as well as to
invert simulated data is known as an inverse crime (Wirgin 2004). Consequently,
using our simulated data, created using the 1968 element mesh, to reconstruct
images over the 1968 element mesh constitute an inverse crime. Such reconstructions
had noticeably better resolution than was achieved with other meshes and, as
shown in figures 10(a) and 10(b), exhibited λBestRes and λLC corresponding to an
uncharacteristicly high NF. This suggests a method to detect inverse crimes: Using the
suspect FEM, and associated data, construct a Resolution Curve or L-Curve with the
simulated data and calculate the NF corresponding to λBestRes or λLC . If the NF≫3
(for example, figure 10 had NF > 7) it is likely that the reconstruction algorithm
is committing an inverse crime. The method was validated by the observation that
reconstructions over the 1968 element mesh using tank data did not exhibit the large
NF bias. One explanation for these results is that the optimal hyperparameter for
the inverse crime case is significantly lower than that generally required, since the
geometry matching between forward and inverse solutions is giving a regularizing
effect.
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Figure 10. Curves for Inverse Crime Detection. Solutions for reconstructions of
simulated data over the generating mesh.

6. Conclusion

This paper proposes a new method of objective hyperparameter selection for use in
one-step image reconstructions and compares it to some existing methods including
heuristic selection. We present the following observations:

(i) Heuristic selections of hyperparameter are inconsistent among experts and
unrepeatable. This suggests that there is no single preferred value of λ; rather
there is a preferred region of λ over which reconstructions are not subjectively
distinguishable. Moreover, it was not possible for observers to differentiate
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reconstructions based on heuristic hyperparameter selections from those produced
from the objective methods.

(ii) The GCV method is unreliable for the class of algorithms used in this work.

(iii) The L-Curve is, in general, shallow for EIT applications and is not reliable for
all configurations (doesn’t indicate a hyperparameter). When the method does
work it provides a lower hyperparameter value than the Fixed NF and BestRes
methods.

(iv) With NF = 1, the Fixed NF Method calculates a hyperparameter that falls in
the minimum region of the Resolution Curve. At low noise levels λNF=1 is very
close to λBestRes. As AWGN is added to the simulated data λBestRes increases
while λNF=1 remains constant. However at the noise level found in our EIT
equipment a NF of 1 produces good reconstructions that are close to the optimal
reconstructions achieved with BestRes method.

(v) The Fixed NF Method provides a configuration independent method to select λ
that is repeatable and is more consistent than expert selection. One could use the
Fixed NF method with NF = 1 to calculate a minimum hyperparameter value for
any configuration. This method is repeatable and in applications with realistic
noise levels will produce consistent stable reconstructions that are as good as
heuristic selection.

(vi) Hyperparameters taken from the minimum region of the Resolution Curve
(BestRes method) always produce good solutions that are comparable to, but
more consistent than expert selections. Moreover λBestRes is optimal in terms of
our figure of merit.

For the class of regularized reconstruction algorithms used in this work both the Fixed
NF and BestRes methods provide objective methods to select a good value for λ. The
values were indistinguishable from those selected by human experts. Both methods
were developed using simulated data but shown to be applicable (validated) using
Tank data.

We recommend using the BestRes method to calculate the hyperparameter for
a specific configuration. The BestRes method works well using simulated data,
additionally it can be tailored to compensate for realistic noise if impulse data can
be obtained from the target equipment. In either case this hyperparameter is then
associated with the configuration for all subsequent work using the configuration.

Although these methods do not solve the problem of obtaining an optimal
hyperparameter value, they do provide a rationale and method for objectively and
automatically selecting λ. Using the BestRes method with imaging equipment
provides a sound engineering method for manufactures or researchers to obtain a
configuration dependent hyperparameter that is optimal in terms of resolution. This
allows end users to perform impedance imaging without the necessity of having to
manually tweak parameters.
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