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Abstract 
  
Multi-sensor monitoring devices that use skin surface or 
implanted sensors are susceptible to changes in temperature, 
sweat, and movement, such that the measured data cannot be used. 
This paper presents an automatic approach to detect such 
erroneous sensors. It is based on the assumption that valid 
measurements are related by a reconstruction model, while 
measurements from erroneous sensors are unrelated. The method 
estimates the data at each sensor based on the measurements from 
all other sensors, and compares it to the measurements. The 
sensor-data match is tested using ANOVA to detect the presence of 
an erroneous sensor. The method was tested on simulated and 
experimental data of Electrical Impedance Tomography (EIT) and 
showed consistent identification of erroneous electrodes. 
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I. INTRODUCTION 

Health care systems worldwide are under pressure to 
deliver a better and more efficient service. One approach to 
help deliver such services is technology to enable home and 
mobile care; several studies have shown that such care 
improves the patient's quality of life and outcomes, while 
reducing cost. A key technological component required to 
enable such care is non-invasive portable biomedical 
monitoring devices. Such technology enables continuous 
measurement of parameters as heart and lung activity, blood 
chemical concentrations, and blood pressure levels.  
 

While a growing market provides great incentive for the 
researchers and companies in the field, there are difficult 
challenges associated with design of these devices. The 
monitoring devices typically use skin surface or implanted 
sensors to measure the electrical and optical properties of the 
body. These sensors are susceptible to changes in 
temperature, sweat, and movement with exercise and 
breathing. For example, it has been shown that electrodes on 
the body surface give false readings due to electronic 
interference [4], patient movement, or sweat and peripheral 
edema [6], especially in long term monitoring applications 
[5].  
 

One common technique is the development of heuristic 
measures to verify the goodness of data. One approach is 
detection based on identification of unusually large changes 
in the measurements. Its disadvantage is the difficulty of 
defining an appropriate threshold for unusual measurements 

that can be applied across different devices. This paper 
develops and approach based on explicitly modeling the 
sensor and device characteristics and using the 
interrelationships to ascertain the goodness of measurements. 

II. PROPOSED APPROACH 

The paper develops a method to calculate a measure of 
sensor reliability. It identifies sensors subject to data errors or 
variability, and calculates a measure of the reliability of each 
sensor's data. Essentially this work inverses the detection 
criterion: rather than looking for errors, our approach looks 
for good data, defined by its consistency with other sensor 
measurements and prior models of sensor behavior.  

1. System Model 

The system model of a multi-sensor device is expressed 
as: 
 

                                         Hxz =                                     (1)                 
 

where H is the linearized observation of model, z is a vector 
representation of measurements from all sensors, and x is the 
vector of system model parameters. 
 
When the characteristics of the system model are known, the 
observation model can be determined from the system model, 
by correlation calculations from test data or from Finite 
Element Models (FEM). In cases where the system model is 
unknown, we hypothesize that the observation model may be 
determined using techniques such as Independent Component 
Analysis (ICA) [9]. Based on the system model, we calculate 
a reconstruction model (inverse of the system model) 
expressed as: 
 
                                      Rzx̂ =                                         (2) 

 
where R the reconstruction model, and x̂  is the estimate of 
the system model. 
 
The reconstruction model (R) is determined by inverting the 
system model equation. If the system model fulfills 
Hadamard condition [6], then R can be determined through 
direct inversion. Otherwise, R can be determined using a 
regularization scheme, such as that of [1].  



2. Estimation Scheme  

Our method is based on the assumption that a set of good 
sensors produces internally consistent data. Such consistency 
can be verified by estimating the measured data at each 
sensor in the set, using only measurements on other sensors, 
and then comparing the estimate to the actual data measured. 
The general procedure for the algorithm is outlined as 
follows: 

 
 

We iterate over each sensor si in set A (containing all 
sensors), forming a set A′ (all sensors not including si). A′ is 
then tested to calculate a parameter Ti which reflects the 
consistency of measurements among sensors in A′, and is the 
sum of estimation errors for all sensors not including si. Hj 
represents the rows of the sensitivity matrix H which 
correspond to measurements on sj. x̂  is then calculated from 
x̂ =R(si,sj)z, which excludes data from sensors si and sj. The 
estimate of z is determined using eq. (1) and the estimation 
error (Ei,j) is determined for all possible sensor pairs si and sj. 
We have shown that Ei,j can be efficiently calculated by pre-
computing parameters which are independent of data [3]. 

3. Decision Parameter 

If all values of Ti are low, A′ contains all “good” sensors, 
otherwise it contains at least one erroneous sensor. Ti values 
are tested against each other to detect if any are significantly 
less than the others. This is tested using Analysis of Variance 
(ANOVA) between Ei of all sensors in set A. Using the 
statistical terminology, Ei are referred to as Treatments [8]. 
ANOVA is used to determine the statistical similarity 
between the Ei’s by testing the equality of N Treatment 
means (µ1,µ2,µ3,…,µN) [8]. The treatment effect (τi) represents 
difference of an individual measurement from the overall 
mean (µ). The null hypothesis (H0) in this case is that no 
sensors are erroneous, and thus the treatment effect (τi) is 
equal to zero for all si in A. 
 

H0: τ1 = τ2 = τ3 =…= τN =0 
H1: τi ≠ 0  for at least one i 

 
Under the null hypothesis, each Treatment consists of µ with 
a random error component, with observations taken from the 
normal distribution of µ with overall variance (σ2). In this 
case, the estimation error values of A′ for each candidate 
sensor (si) are similar to one another. The hypothesis is tested 

by comparing two independent estimates of the population 
variance:  
 
1. Variance between µi and µ:    (µi-µ)2 
2. Variance within Treatments:  (Ei-µi)2 
 
The first variance determines the difference between 
Treatments and the second variance determines the error 
within each Treatment. From the above two variances, we 
calculate sum of squares of Treatments variances: 
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and sum of squares of error variance:  
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By dividing SST and SSE by their respective degrees of 
freedom (N-2 and ((N-1)N)-1), the mean square Treatment 
(MST) and mean square error (MSE) are calculated. MSE is an 
unbiased estimate of the σ2 regardless of statistical difference 
between Treatments. On the other hand, MST is an unbiased 
estimate of the variance only if H0 is true. The ratio f0=MST/ 
MSE has an F-distribution with degree of freedom N-2 and 
(N-1)N-1. Hypothesis H0 is rejected if f0 > fα, N-2, (N-1)N-1 [8]. 
Thus, using ANOVA, we test if a data set has erroneous 
sensors, at significance level α=0.05.  
 

However, we do not know the location and number of 
erroneous sensors. To accomplish this task, we use Fisher’s 
Least Significant difference (LSD). LSD compares all pairs 
of means with the t-statistic. The pairs of means are 
considered significantly different if  
 

  |µi-µj| > LSD  
where, 
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An erroneous sensor will have mean that is significantly 
different from others (p<0.05). On the other hand, a “good” 
sensor will be statistically similar to all other non-erroneous 
sensors.  

III. RESULTS 

The method was validated using data from Electrical 
Impedance Tomography (EIT). EIT is an imaging technique 
which calculates the electrical conductivity distribution 
within a medium from electrical measurements made at a 
series of electrodes on the medium surface. EIT is a good 
candidate for this method because it is a measurement 
modality in which multiple sets of sensor data are 
simultaneously acquired. EIT data are acquired by 
successively applying a low amplitude low frequency current 
across each pair of electrodes while measuring the voltage 
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differences produced on all the other pairs of electrodes. The 
measurement system used for these experiments has 16 
electrodes; for each current pattern, there are 13 electrode 
pairs not used for current application at which the voltage is 
read. Data were acquired from a previous study in which 
mechanically ventilated mongrel dogs were monitored with 
sixteen EIT electrodes spaced evenly around the shaved 
thorax [2].  

 
A representative set EIT data of ventilated dogs was used 

for data with no error (Fig. 1A), and simulated erroneous data 
from electrode 5 was generated (Fig. 1B). The reconstructed 
images and graphs of T vs. electrode number are shown. In 
Fig. 1B, the electrode with errors has significantly lower Ti 
(p<0.05). Fig. 2 shows µi vs. electrode number, where the 
error bars represent the 95% confidence interval. All the non-
erroneous electrodes have a similar confidence interval. 
However, for the mean of the erroneous electrode, the 
deviation for the confidence intervals lower and upper limits 
much is smaller. This suggests the electrode data within A’ 
matches better when the erroneous electrode is removed.  

 
Fig 1A corresponds to f0 = 1.47, which is less than f0.05, 14, 

239=1.67; H0 cannot be reject at p<.05, and we conclude there 
are no erroneous electrodes. On the other hand, the null 
hypothesis is rejected for Fig 1B since f0=2.71 is significantly 
higher than f0.05, 14, 239.  

  
To determine the sensitivity of the method, white 

Gaussian noise was added to the data of a particular electrode 
from a representative clean data. Data were calculated for 
SNR values from -50dB to 50dB, where simulations are 
repeated 100 times to calculate the error distribution. The 
resulting F ratio vs. SNR graph indicates the method can 
reliably detect an erroneous electrode when the SNR is below 
approximately 5dB. 
 

IV. CONCLUSION 

In this paper, we have presented a method to 
automatically detect erroneous sensors in multi-sensor 
system, such as EIT. The method is based on the model that 
an erroneous sensor produces measurements inconsistent with 
those from other good sensors. Results show that the method 
is able to correctly detect the presence of and identify the 
location of erroneous sensors in representative EIT data.  
 

The decision criterion is based on ANOVA and shows 
that detection of one or more erroneous sensor is feasible for 
SNR less than 5dB with p<0.05. Automatic detection of 
sensor errors in multi-sensor system has several possible 
applications. In offline processing, such a technique could 
identify and correct for such errors. More usefully, if 
implemented in multi-sensor monitoring equipment, it would 
be possible to alert staff who could then attend to the 
problem. However, for such online applications, the 

algorithm is still slow (5s) for real-time data analysis, but 
would permit erroneous sensor detection in the background. 

 

 
Figure 1: Top: (A) Reconstructed conductivity distribution of a dog 
thorax with no electrode error. (B) Reconstructed conductivity 
distribution of dog thorax with simulated erroneous electrode data of 
SNR=-10dB to electrode 5. Electrodes are numbered in the clockwise 
direction starting at 12 o’clock position. Dark colors are regions of low 
conductivity. Bottom: (A) T vs. electrode graph shows consistency in 
the absence of no erroneous electrode. (B) T vs. electrode graph 
shows T for electrode 5 is much lower than the rest of the T values, 
suggesting that electrode 5 is erroneous 
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Figure 2: The mean values of Ei for all electrodes in A of Fig. 1B. The 
erroneous electrode has a smaller µ with smaller difference between 

the limits of the confidence interval as compared to the ”good” 
electrodes.  
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Figure 3: F statistic (± Std Dev) vs. SNR: Representative “good” data 
were used to analyze the sensitivity of the method. White Gaussian 
noise was added to electrode 5 (SNR: -50dB to 50dB). The 
experiment was repeated to determine the margin of error. The 
threshold for detection is at a SNR of 5dB. 
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