
Functional Programming and
Distributed Computing

Fanyu Ran • Yang Zhou • Yuhang Gao • Yuhao Lu

Overview

● Distributed Computing

● Problem with OOP

● Functional Programming

● What can FP offer

● FP and Distributed Computing

Distributed Computing
Purpose

● Parallel, High-Performance

Applications

(Big Data, HPC, etc.)

● Fault-tolerant Applications

(Telecom Infrastructure, Web, etc.)

Basic Issue

● Utilization and cooperation of

multiple processors.

● The potential for partial failure.

Object Oriented Programming
vs

Functional Programming

Problem with OOP
Mutable State

➔ The Object's methods is supposed to

mutate its internal state (variables).

Problem with OOP

➔ When state is shared:

➔ Problem solved ?

Bottleneck, Deadlock, Complexity...

Image from:

https://www.keil.com/pack/doc/cmsis/RTOS/html/group__CMSIS__RTOS__MutexMgmt.html

Problem with OOP

Image from: http://www.exploredatabase.com/2014/04/what-is-deadlock-in-database.html

 Deadlock

What is Functional Programming ?

What is Functional Programming ?
● FP is a type of programming paradigm which has several features.

● Most of traditional languages (Javascript, Python, Java, etc.) can be written in

functional style.

● FP language is language designed with FP in mind.

○ Lisp

○ Haskell

○ OCaml

○ Erlang

○ Scala (?)

○ …

No side-effects

Immutability

No mutable state

First-Class &

High-Order

Function

Function passed around

Features of FP

Purity

TCO, Closure,

Curry…

Purity

● Function reads all inputs from its input

arguments.

● Function exports all outputs to its return

values.

Purity

● The function always evaluates the same

result value given the same argument

value(s).

● Evaluation of the result does not cause any

semantically observable side effect or

output, such as mutation of mutable

objects or output to I/O devices.

https://en.wikipedia.org/wiki/Pure_function

Immutability
State of objects cannot be

modified after it is created.

How can we program without

modifying state ?

Immutability

Loop as an example:

First-Class Function

Capability of programming language to:

● pass functions as arguments to other

functions

● return functions as the values from other

functions

● assign functions to variables

● store functions in data structures

To be concise, function is just like all other

values like integer, float, double, etc..

https://en.wikipedia.org/wiki/First-class_function

Function that does at least one of the following

● takes one or more functions as arguments

● returns a function as its result

High-Order Function

What can FP offer to distributed computing ?
No side-effects and mutable

variables

FP facilitates code distribution over several

CPU and eases concurrent programming.

Functions as building blocks

Functions can be combined, sent remotely

and applied locally on distributed data sets.

FP in the real world
Erlang/Elixir

What is Elixir?

● Elixir is a dynamic, functional language

designed for building scalable and

maintainable applications

● Elixir leverages the Erlang VM, known for

running low-latency, distributed and

fault-tolerant systems

● being successfully used in web

development and the embedded software

domain(e.g.2 Million Websocket

Connections in single machine).

FP in the real world
Erlang/Elixir

NINE nines(99.9999999% reliability)?

Two Pillars of resilience and reliability

● Message-passing between isolated processes

● Automatic recovery and monitoring

Image from https://www.youtube.com/watch?v=naNN_gJas2A

FP in the real world
Erlang/Elixir

 Elixir power tools

● Message with GenServer modules

Image from https://www.youtube.com/watch?v=naNN_gJas2A

FP in the real world
Erlang/Elixir

 Elixir power tools

● Message with GenServer modules

Image from https://www.youtube.com/watch?v=naNN_gJas2A

FP in the real world
Erlang/Elixir

Elixir power tools

● Supervisor for transparent resilience

Image from https://www.youtube.com/watch?v=naNN_gJas2A

Thank You

