
Experiments of Large File Caching and Comparisons of

Caching Algorithms

Brad Whitehead
1
, Chung-Horng Lung

2
, Amogelang Tapela, Gopinath Sivarajah

Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada

{
1
bwhitehe,

2
chlung}@sce.carleton.ca

Abstract
File sizes have grown tremendously over the past years

for music/video applications and the trend is still

growing. As a result, large ISPs are facing increasing

demand for bandwidth from the growth of file sizes. A

main contribution to this bandwidth demand problem is

inefficient use of bandwidth due to many ISP customers

downloading the same large files multiple times. This

paper first reports real experiments conducted on

Carleton’s Internet backbone by using the large file

caching technique. Various cache replacement

algorithms are then simulated and compared using

traces of large file transfers. The results reveal that

least recently used (LRU) performs better than others.

1. Introduction
The Internet today is inefficient in distributing large

files which become very common. This leads to long

wait times to download popular files. Whitehead [28]

studied the wait times for a popular download site after a

major release of a 210MB file. The file has been

downloaded 35,000 times in 18 days and the wait time

could reach an hour or even over 100 minutes after an

hour of its release.

An efficient caching solution for large files could

mitigate wait times and speed up downloads. Further,

efficient caching of large files reduces ISPs’ bandwidth

usage. The concept of caching has been widely used for

many years in computing systems and Web [20,23,27]

and networks [7,11]. However, there is no explicit large

file caching (LFC) solutions or experimental results

reported in the literature. The currently available caching

techniques are more suitable for caching Web pages and

small files. There are many technical challenges in

dealing with large file transfers [19]. A comparison of

Web caching and LFC is presented in section 2. The first

objective of this paper is to study the effect of large-file

caching on general Internet traffic.

Another trend of the network inefficiency problem is

the fact that the size of a “large” download is continually

increasing. To save money, ISPs can extend Web

caching to LFC. Very few companies are expanding

these tools for larger files. Large file transfers are not

perceived to be a major factor in bandwidth usage for an

ISP. However, in our study, we will show that large file

transfers account for about 20% of the Internet traffic on

Carleton’s Internet backbone based on real data traces

and the amount is still growing.

The second objective is to evaluate various caching

algorithms. Many caching algorithms have been used in

computing systems and Web caching. Some of them are

applicable to LFC; some need modifications. We have

applied and adapted some caching algorithms and

compared their performance based on the data traces

collected from real experiments.

2. Background and Related Work
Web caching has been used since the early 90s. Web

caching allows ISPs to save their bandwidth by storing

frequently accessed files locally [20,23,27]. Currently

available caching systems focus on Web pages almost

exclusively. Downloading large files, on the other hand,

is a much more challenging problem [19]. Table 1

summarizes the comparison between LFC and existing

Web caching products. In short, LFC has to deal with

any file type and various protocols. In addition, large

files typically are stored in multiple locations, LFC

techniques need to be able to identify the same files even

if they could be downloaded from different locations.

Table 1. Large File Caching & Web Caching

Content distribution networks (CDNs) are closely

related to our technique. Many approaches to peer-to-

peer (P2P) content distribution techniques have been

reported in the literature or used in practice, such as

BitTorrent [8], CHORD [5,14], CoBlitz [19], Coral [9],

Fast-Replica [4], Gnutella [10], Kazaa [15], Shark [1],

Large File Caching Web Caching

Any file type, large Web pages Small files and Web pages

1MB-10GB 0-10MB

Any protocol; HTTP, FTP,
FastTrack, Gnutella,
BitTorrent, CoBlitz, etc.

HTTP only

Files, in chunks or in whole,
mostly or always reside on
multiple sites

Files reside on a single site
or multiple sites

Seventh IEEE International Symposium on Network Computing and Applications

978-0-7695-3192-2/08 $25.00 © 2008 IEEE
DOI 10.1109/NCA.2008.44

244

and etc.. Some focus on content search and sharing using

keywords, e.g., [5,14,16,29]. Some techniques focus on

reducing the download time of popular files.

However, downloading large files is a qualitatively

different problem for CDNs, as [19] reported based on

Akamai’s experience. Some techniques break a large file

into pieces and exchange those pieces among clients

instead of always downloading from the origin server

[4,8,19]. Other techniques, e.g., FatNemo [2], Split-

Stream [3], ESM [6], Bullet [17], Astrolabe [21] mainly

deal with load balancing and link utilization, but they

require clients to simultaneously transmit the content.

BitTorrent is wildly used to support file downloads

and it scales well. CoBlitz has been explicitly proposed

to support large files and it outperforms BitTorrent [19].

One of CoBlitz’s design goals is to trade bandwidth for

disk seek times, because bandwidth price is continually

dropping and disk seek times are high and hence the

solutions may not be scalable [19]. However, high

bandwidth along does not guarantee high performance,

because every element of the delivery chain

(intermediate nodes and links) can affect the overall

performance. Also, if the cache hit ratio is high, using

caching could have better performance than that of high

bandwidth [22].

The cache in our approach resides on the local ISP

side where many clients using the same ISP may try to

access the same large files. The chance that many clients

share similar interests is high in some environment, such

as universities. Moreover, our approach could be used

together with other large file distribution services such as

BitTorrent and CoBlitz. In other words, large files can be

downloaded using those techniques from other peers or

servers if those files are not in the local cache.

3. Experiments and Empirical Results
The main functionalities required to support LFC are

cache lookup, redirection of connection, and identifying

large files and tracking of all file transfers on the

backbone server for every TCP connection, which

presents high challenge to the design and

implementation. Tracking the TCP connections on the

backbone server requires that information be stored for

every computer on the network and for each connection

for that computer.

Filestats is a network-sniffing program that records a

log of all file transfers over a network. Filestats was used

to validate the need for LFC in two ways. First, large-file

network traffic must make up a large enough percentage

of the total network traffic that it was significant; and

second, that enough of the files transferred were the same

(redundant) that a caching solution was viable.

All network traffic of the university going through the

backbone server was processed, but only file transfers

over 500KB in size were logged. The logs from Jan. 5 to

Jan. 23, 2004 were processed to form Figures 1 and 2.

Figures 1 and 2 show the correlation between file size

and the network impact. Figure 1 shows the expected

decrease in the number of files transferred as the file size

increases. Figure 2 shows that large files, over 1MB in

size, account for a large percentage of network traffic.

Figure 1: No. of Files Transferred vs. File Size

By comparing Figure 1 and Figure 2, several

conclusions can be drawn that can improve the efficiency

of LFC. The number of requests (files transferred) is an

important factor determining caching system

performance. Figure 1 shows that files between 0.5-1MB

account for almost the greatest number of transfers at

71226 transfers, behind 1-5MB at 76328. However

Figure 2 shows that these 0.5-1MB transfers only make

up 55GB of traffic, far lower than the 180GB for 1-5MB

transfers. Therefore, for our study, we focus on files over

1MB in size. This can also reduce the amount of

connections that need to be monitored. The specific file

size is actually configurable depending on different

needs or environments.

Figure 2: Bytes Transferred vs. File Size

4. Large File Caching Algorithms
This section presents a comparison of various LFC

algorithms with respect to hit ratio, byte hit ratio,

bandwidth saved, and cache size. The comparison was

245

conducted based on simulation of data traces collected

through experiments. The total number of requests from

these files (at least 1MB) was 130,866, and the total size

for the files was 380.81GBytes. There were 62,530

unique requests and their total size was 205.86GBytes.

The files in the trace file were collected between January

05 and January 14, 2004 inclusive.

Each algorithm is further explained as follows.

LRU –Least Recently Used. LRU removes the file

that was least recently accessed. In this method, time is

used to determine the file to be removed. More than one

file can be replaced if the incoming file size is greater

than the size of the replaced least recently object.

LRU Size – Least Recently Used with Size. This

method determines the file to be removed by looking at

the least recently used and the size of the file. The file to

be removed must have size which is greater or equally to

the size of the incoming file to be cached. The main aim

of the algorithm is to replace one file if the cache is full.

LRU Threshold – LRU with Threshold. In this

algorithm a value known as a threshold and the time for

the last access to the file are used to choose a file to

replace from the cache. The file that has the longest

recent-accessed time and its size is less than the

threshold value is evicted from the cache if a new file is

to be cached cannot fit in the current cache. Files that are

larger than the threshold value are not replaced from the

cache. The idea is to keep larger files in cache to save

bandwidth.

LFU –Least Frequently Used. This algorithm

removes the file that has been accessed the least.

Frequency is the key parameter that is used to determine

the object to be replaced.

LFU Size –Least Frequently Used with Size. This

algorithm replaces the file that has been accessed the

least. Frequency is the key parameter that is used to

determine the file to be replaced. The file to be removed

must have size which is greater or equally to the size of

the incoming file to be cached. Similar to LRU Size, the

main aim of the algorithm is to replace just one file if the

cache is full.

LFU Threshold – LFU with Threshold

This algorithm removes the file that has been accessed

the least and its size is less than or equal to the threshold

value. The idea is similar to LRU Threshold.

Greedy Dual Size Frequency [13]. The key

parameters in this method are file size, number of

references (frequency) to the file and the cost. The cost

of downloading the file from the remote server is equal

to the average bandwidth usage of the file. Each file that

is cached is assigned a key calculated using the above

parameters. If the cache is full, the file that has the least

key will be evicted. The key is calculated using the

formula shown below:

 Key(f) = Lvalue + freq(f) * bandwidth(f) / size(f) …(A)

The value of Lvalue tarts from 0 and is updated every

time a file is evicted. The new value for Lvalue will be

the key value of the removed file. If a request is a miss,

the file will be fetched from the remote server. If the free

space in the cache is smaller than the size of the

incoming file, one or more files that has the minimum

key will be removed. The file will then be cached and:

- the frequency (f) count is set to 1.

- key is recalculated from formula (A)

- cache used = cache used + size(f)

If a request is a hit:

- file frequency is increased by 1;

- key is recalculated from formula (A)

- cache size does not change

Static Cache. The static cache algorithm is a simple

algorithm that caches all the popular requests that were

made on the current day. The cache is deleted and reset

at the end of each day.

Static Algorithm

Gather all the requests for the day

For each requested file {

 Set value = #references / size of file

}

Sort these files from descending order

Populate the cache from the top of the sorted list

Largest Size. This algorithm determines the victim

file by removing the largest file from the cache. Size is

the key parameter in this method. The rationale here is

that more disk space will be available by replacing the

largest file.

Table 2 summarizes the implemented caching

algorithms and the rationale in determining the file for

replacement. Each algorithm is further explained as

follows.

Table 2. Summary of the Implemented Algorithms

Algorithm Replacement Policy
LRU Least recently accessed first
LRU
Size

LRU and file size in a specified range with
respect to incoming file size

LRU
Threshold

LRU and file size less than a certain threshold

LFU Least frequently accessed first
LFU
Size

LFU and file size in a specified range with
respect to incoming object

LFU
Threshold

LFU and file size less than a certain threshold

GreedyDual
SizeFreq

Least value first according to
Key(f) = L + (F*B)/S;

LargestSize Largest file first
Static No files are evicted, the cache is reset at the

end of the day, based on yesterday’s request
value (frequency/# of files)

5. Results and Analysis
Hit Ratios. Figure 3 shows the hit ratios for each of

the implemented algorithms.

246

Figure 3. Hit Ratio

Cache sizes Vs Hit Ratios

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 8 16 32 64 100 120 150
Cache sizes(GBytes)

H
it

 R
a

ti
o

s

Hit Ratios LRU

Hit Ratios LFU

Hit Ratios GreedyDual

Hit Ratios LRUSize

Hit Ratios LRUThresh

Hit Ratios LFUSize

Hit Ratios LFUThresh

Hit Ratios LargestSize

Hit Ratios Static

The LRU Size has higher hit ratio for all cache sizes. The

hit ratios for the Static Cache were the lowest for all the

cache sizes simulated. The hit ratio only deals with the

count of files that were found in the cache. However, it is

possible to have a high hit ratio and still save less

bandwidth especially if most of the hit were smaller files.

Byte Hit Ratios. Figure 4 shows the byte hit ratios

for each of the implemented algorithms. The byte hit

ratios were calculated for each of the cache size that has

been used during the simulation.

Figure 4. Byte Hit Ratio

Cache sizes Vs Byte Hit Ratios

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 4 8 16 32 64 100 120 150
Cache Sizes(GBytes)

B
y

te
 H

it
 R

a
ti

o
s

BHR: LRU

BHR: LFU

BHR: GreedyDual

BHR: LRUSize

BHR: LRUThresh

BHR: LFUSize

BHR: LFUThresh

BHR: LargestSize

BHR: Static

The byte hit ratio gives more information about the

bandwidth saved, because this parameter deals with the

actual size of the file. High byte hit ratio means more

bandwidth saved. The LRU algorithm has the highest

byte hit ratios for all the cache sizes.

Bytes Saved. Figure 5 shows the bytes saved for

different cache sizes used in the simulation. The LRU

has the highest number of saved bytes for each cache size

simulated. This bytes saved parameter and the byte hit

ratio are related; both are good at determining how

effective an algorithm is in saving bandwidth.

Figure 5. Bytes Saved

Cache Sizes Vs Saved Bytes

0.00E+00

2.00E+10

4.00E+10

6.00E+10

8.00E+10

1.00E+11

1.20E+11

1.40E+11

1 4 8 16 32 64 100 120 150

Cache Sizes(GBytes)

S
a

v
e

d
 B

y
te

s
(B

y
te

s
)

Saved Bytes: LRU

Saved Bytes: LFU

Saved Bytes: GreedyDual

Saved Bytes: LRUSize

Saved Bytes: LRUThresh

Saved Bytes: LFUSize

Saved Bytes: LFUThresh

Saved Bytes: LargestSize

Saved Bytes: Static

Bandwidth saved. Here we show the actual amount

of bandwidth used without cache and the amount of

bandwidth saved using cache. Only one case of using

LRU with 64G cache is presented in Figure 6 as an

demonstration. The first curve is the amount of

bandwidth that will be used without cache (labeled

NoCache). The second or bottom curve represents the

bandwidth used with a cache in place (labeled 64GB).

Finally, the third middle curve represents the amount of

bandwidth saved from having a cache. The difference

between the NoCache curve and the bandwidth used with

64GB curve is the amount of bandwidth saved for that

particular algorithm and corresponding cache size.

Figure 6. Bandwidth Saved on with 64 GB Cache

LRU: Time Vs Bandwidth(64GBytes)

0
1000
2000
3000
4000
5000
6000

0 14
9

29
8

44
7

59
6

74
5

89
4

10
43

11
92

13
41

average time(30 minutes)

ba
nd
wi
dth
(K
Bit
s/s
ec)

64GB
NoCache
bandwidth saved 64GB

6. Conclusion
This paper presented a LFC technique and a

comparison of various cache algorithms to support LFC.

As the size of files will be continually increasing,

caching large files at the local ISP can reduce download

times and bandwidth usage, especially for popular files.

The comparison was based on data traces obtained

from real experiments [28] in a university environment.

The experiments revealed that many redundant large files

had been downloaded from external servers. By caching

those large files in the local ISP server, download times

and bandwidth usage can be reduced. Generally

speaking, LRU performs the best based on the data

247

collected in our experiments. GreedyDualSize-Freq has

performed better than the LFU, because

GreedyDualSize-Freq method optimizes the byte hit ratio

and hit ratio with respect to LFU results.

LFU can be used if the user is only interested in the

popular files that are used frequently. If the hit ratio is

the main concern, then the LRUSize could be the

appropriate algorithm to use. For maximum byte hit ratio

and bandwidth saved LRU generates the highest value.

We are planning to repeat the experimental work as

the nature of our network traffic has changed

significantly since 2004. When the experiments were

conduced, the university had 30Mbps of Internet

bandwidth in January, 2004. For the 2006/2007

academic year the bandwidth was expanded to 60Mbps

in September and by April it had been doubled again to

120Mbps [24]. It is expected that more bandwidth has

been consumed for identical large files.

References
[1] S. Annapureddy, M. J. Freedman, and D. Mazires, “Shark:

Scaling File Servers via Cooperative Caching”, Proc. of 2nd

USENIX/ACM Symp. on Networked Sys Design and

Implementation, May 2005.

[2] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda,

“FatNemo: Building a resilient multi-source multicast fat-tree”,

Proc. of 9th Int’l Workshop on Web Content Caching and

Distribution, October 2004.

[3] M. Castro, P. Drushcel, A. Kermarrec, A. Nandi, A.

Rowstron, and A. Singh, “SplitStream: High-bandwidth

content distribution in a cooperative environment”, Proc. of

SOSP, Oct 2003.

[4] L. Cherkasova and J. Lee, “FastReplica: Efficient Large

File Distribution within Content Delivery Networks”, Proc. of

the 4th USITS, March 2003.

[5] “Open Chord Specification”, http://open-

chord.sourceforge.net.

[6] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for

end system Multicast”, IEEE J. on Selected Areas in

Communication, 2002.

[7] Cisco Systems, “Network Caching Technologies”,

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/net

_cach.htm.

[8] B. Cohen. Bittorrent, 2003,

http://bitconjurer.org/BitTorrent.

[9] “The Coral Content Distribution Network”,

http://www.coralcdn.org/.

[10] “Gnutella Protocol Definition”,

http://rfcgnutella.sourceforge.net/.

[11] Internet Caching Resource Center,

http://www.caching.com/caching101.htm

[12] Internet Systems Consortium Inc., “ISC Domain Survey:

Number of Internet Hosts”, 2004,

http://www.isc.org/index.pl?/ops/ds/host-count history.php.

[13] S. Jin and A. Bestavros, "Popularity-aware GreedyDual-

Size Web Proxy Caching Algorithms", Proc. of ICDCS, 2000.

[14] L. Karsten, K. Sven, "Open-CHORD: Distributed and

Mobile Systems Group", http://www.lspi.wiai.unibamberg.de/

dmsg/software/open_chord/.

[15] Kazza's Architecture, “How a Kazza’s client finds a

song”, http://computer.howstuffworks.

[16] B. Kim, K. Kim, “Keyword Search in DHT-Based Peer-

to-Peer Networks”, Proc. of 7th Int’l Conf. on Algorithms and

Arch. for Parallel Processing,, 2007, pp.338-347.

[17] D. Kosti´c, A. Rodriguez, J. Albrecht, and A. Vahdat,

“Bullet: high bandwidth data dissemination using an overlay

mesh”, Proc. of 19th ACM SOSP, 2003.

[18] T. Leighton, Akamai Technologies Inc., “The Challenges

of Delivering Content on the Internet” Keynote Speech,

IASTED Conf. On Parallel and Distributed Systems, 2002.

[19] K. Park and V. S. Pai, “Scale and Performance in the

CoBlitz Large-File Distribution Service”, Proc. of the 3rd

Symp. on Networked Sys Design and Implementation, 2006.

[20] M. Rabinovich and O. Spatscheck, Web Caching and

Replication, Addison Wesley, 2002.

[21] R. van Renesse, K. Birman, and W. Vogels, “Astrolabe: A

robust and scalable technology for distributed system

monitoring, management and data mining”, In ACM

Transactions on Computer Systems, May 2003.

[22] S. van Rompaey, K. Spaey, and C. Blondia, “Bandwidth

versus Storage Trade-off in a Content Distribution Network

and a Single Server System”, Proc. of the 7th Int’l Conf. on

Telecommunications, 2003, pp. 315-320.

[23] W. Shi and Y. Mao, “Performance Evaluation of Peer-to-

Peer Web Caching Systems”, Journal of Systems and Software,

May 2005, pp. 714-726.

[24] J. Stewart, Personal communication (email) with C.-H.

Lung, May 29th 2007.

[25] D. C. Verma, “Overview of Content Distribution

Networks” and “Site Design and Scalability Issues in Content

Distribution Networks” in Content Distribution Networks, New

York, NY: John Wiley & Sons, Inc., 2002, pp 1-61.

[26] D. C. Verma, “CDN Data Sharing Schemes” in Content

Distribution Networks, John Wiley & Sons, Inc., 2002.

[27] “Web Caching: Making the Most of Your Internet

Connection”, http://www.web-cache.com/.

[28] B. Whitehead, A Scalable Anycast Technology for

Caching Content Distribution Networks, Project Report, Dept

of Sys and Comp Eng, Carleton Univ., Canada, 2004.

[29] K.-H. Yang and J.-M. Ho, “Proof: A Novel DHT-Based

Peer-to-Peer Search Engine”, IEIEC Trans. on

Communications, E90-B4, 2007, pp. 817-825.

Acknowledgements:
We are grateful to John Stewart at Computer Computing

Services, and Narendra Mehta and Dave Sword in the Systems

and Computer Engineering Department for their trust, support,

and encouragement.

248

