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Ethernet  
frame 

IP packet 
(if Ether type 

is 0800 in hex) 

 

http://en.wikipedia.org/wiki/EtherType 

http://en.wikipedia.org/wiki/EtherType�


When a Router Gets a Ethernet 
Frame 
 Data contained in frames in the data link 

layer (Layer 2) and packets in the 
network layer (Layer 3).  

 In the network layer, you look only at the 
section of the frame that was referred to 
as data in the Ethernet frame. As the 
Ethernet frame moves up from the data 
link layer to the network layer, the data 
link header is removed. 

 Removing the data link information 
removes destination and source address 
fields (which store the MAC addresses of 
the network devices), and the type field. 
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1 

2 

3 

4 

5 

6 

Node  
(switch or router) 

Routing in Packet Networks 

 Three possible (loopfree) routes from 1 to 6: 
 1-3-6, 1-4-5-6, 1-2-5-6 

 Which is “best”? 
 Min delay?  Min hop? Max bandwidth? Min cost?  

Max reliability? 
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Creating the Routing Tables 

 Need information on state of links 
 Link up/down; congested; delay or other metrics 

 Need to distribute link state information using a 
routing protocol 
 What information is exchanged? How often? 
 Exchange with neighbors; Broadcast or flood 

 Need to compute routes based on information 
 Single metric;  multiple metrics 
 Single route; alternate routes 
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Routing Algorithm Requirements  

 Responsiveness to changes 
 Topology or bandwidth changes, congestion  
 Rapid convergence of routers to consistent set of routes 
 Freedom from persistent loops 

 Optimality 
 Resource utilization, path length  

 Robustness 
 Continues working under high load, congestion, faults, 

equipment failures, incorrect implementations 

 Simplicity 
 Efficient software implementation, reasonable processing 

load 
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Switch or router 

Host 
VCI 

Routing in Virtual-Circuit Packet 
Networks 

 Route determined during connection setup 
 Tables in switches implement forwarding that 

realizes selected route Fall 2012 10 Prof. Chung-Horng Lung 



Incoming       Outgoing 
Node  VCI     Node  VCI 
  A      1           3       2 
  A      5           3       3 
  3       2           A      1 
  3       3           A      5 

Incoming       Outgoing 
Node  VCI     Node  VCI 
  1       2           6       7 
  1       3           4       4 
  4       2           6       1 
  6       7           1       2 
  6       1           4       2 
  4       4           1       3 

Incoming       Outgoing 
Node  VCI     Node  VCI 
  3       7           B      8 
  3       1           B      5 
  B      5            3      1 
  B      8            3      7 

Incoming       Outgoing 
Node  VCI     Node  VCI 
  C      6           4       3 
  4       3           C      6 

Incoming       Outgoing 
Node  VCI     Node  VCI 
  2       3           3       2 
  3       4           5       5 
  3       2           2       3 
  5       5           3       4 

Incoming       Outgoing 
Node  VCI     Node  VCI 
  4       5           D      2 
  D      2           4       5 

Node 1 

Node 2 

Node 3 

Node 4 

Node 6 

Node 5 

Routing Tables in VC Packet 
Networks 

 Example:  VCI from A to D 
 From A & VCI 5 → 3 & VCI 3 → 4 & VCI 4 
 → 5 & VCI 5 → D & VCI 2 Fall 2012 11 Prof. Chung-Horng Lung 



       2                       2 
       3                       3 
       4                       4 
       5                       2 
       6                       3 

Node 1 

Node 2 

Node 3 

Node 4 

Node 6 

Node 5 

       1                       1 
       2                       4 
       4                       4 
       5                       6 
       6                       6 

       1                        3 
       2                        5 
       3                        3 
       4                        3 
       5                        5 

Destination       Next node 
       1                        1 
       3                       1 
       4                        4 
       5                        5 
       6                      5 

       1                       4 
       2                       2 
       3                       4 
       4                       4 
       6                       6 

       1                        1 
       2                        2 
       3                        3 
       5                        5 
       6                        3 

Destination       Next node 

Destination       Next node 

Destination       Next node 

Destination       Next node 
Destination       Next node 

Routing Tables in Datagram 
Packet Networks 
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0000 
0111 
1010 
1101 

0001 
0100 
1011 
1110 

0011 
0101 
1000 
1111 

0011 
0110 
1001 
1100 

R1 

1 

2 5 

4 

3 

0000   1 
0111   1 
1010   1 
…       … 

0001   4 
0100   4 
1011   4 
…      … 

R2 

Non-Hierarchical Addresses and 
Routing 

 No relationship between addresses & routing 
proximity 

 Routing tables require 16 entries each 
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0000 
0001 
0010 
0011 

0100 
0101 
0110 
0111 

1100 
1101 
1110 
1111 

1000 
1001 
1010 
1011 

R1 R2 

1 

2 5 

4 

3 

00   1 
01   3 
10   2 
11   3 

00   3 
01   4 
10   3 
11   5 

Hierarchical Addresses and 
Routing 

 Prefix indicates network where host is 
attached 

 Routing tables require 4 entries (one for each 
network) each 
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Specialized Routing 

 Flooding 
 Useful in starting up network 
 Useful in propagating information to all nodes 

 
 Deflection Routing 
 Fixed, preset routing procedure 
 No route synthesis 
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Flooding 

Send a packet to all nodes in a network 
 No routing tables available 
 Need to broadcast packet to all nodes (e.g. to 

propagate link state information) 
 

Approach 
 Send packet on all ports except one where it 

arrived 
 Exponential growth in packet transmissions 
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6 

Flooding is initiated from Node 1:  Hop 1 transmissions 
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6 

Flooding is initiated from Node 1:  Hop 2 transmissions 
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1 

2 

3 

4 

5 

6 

Flooding is initiated from Node 1:  Hop 3 transmissions 
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Limited Flooding 

 Time-to-Live field in each packet limits 
number of hops to certain diameter 

 Each switch adds its ID before flooding; 
discards repeats 

 Source puts sequence number in each 
packet; a switch/router records source 
address and sequence number and discards 
repeats 
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Deflection Routing 
 Network nodes forward packets to preferred port 
 If preferred port busy, deflect packet to another port 
 Works well with regular topologies 
 Manhattan street network 
 Rectangular array of nodes 
 Nodes designated (i,j)  
 Rows alternate as one-way streets 
 Columns alternate as one-way avenues 

 Bufferless operation is possible 
 Proposed for optical packet networks 
 All-optical buffering currently not viable 
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0,0 0,1 0,2 0,3 

1,0 1,1 1,2 1,3 

2,0 2,1 2,2 2,3 

3,0 3,1 3,2 3,3 

Tunnel from 
last column to 
first column or 

vice versa 
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0,0 0,1 0,2 0,3 

1,0 1,1 1,2 1,3 

2,0 2,1 2,2 2,3 

3,0 3,1 3,2 3,3 

busy 

Example: Node (0,2)→(1,0) 
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Shortest Paths & Routing 

 Many possible paths connect any given 
source and to any given destination 

 Routing involves the selection of the path to 
be used to accomplish a given transfer 

 Typically it is possible to attach a cost or 
distance to a link connecting two nodes 

 Routing can then be posed as a shortest path 
problem  
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Routing Metrics 
Means for measuring desirability of a path 
 Path Length = sum of costs or distances 
 Possible metrics 
 Hop count:  rough measure of resources used 
 Reliability:  link availability; BER 
 Delay:  sum of delays along path;  complex & dynamic 
 Bandwidth:  “available capacity” in a path 
 Load:  Link & router utilization along path 
 Cost:  $$$ 
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Shortest Path Approaches 

Distance Vector Protocols 
 Neighbors exchange list of distances to destinations 
 Best next-hop determined for each destination 
 Ford-Fulkerson (distributed) shortest path algorithm 
Link State Protocols 
 Link state information flooded to all routers 
 Routers have complete topology information 
 Shortest path (& hence next hop) calculated  
 Dijkstra (centralized) shortest path algorithm 
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San Jose  392 

San Jose  596 

Distance Vector 
Do you know the way to San Jose? 
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Distance Vector 
Local Signpost 
 Direction 
 Distance 

 
Routing Table 
For each destination list: 
 Next Node 
 Distance 

Table Synthesis 
 Neighbors exchange 

table entries 
 Determine current best 

next hop 
 Inform neighbors 

 Periodically 
 After changes 

dest next dist 
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Shortest Path to SJ 

i 
j 

San 
Jose 

Cij 

Dj 

Di If Di is the shortest distance to SJ from i 
and if j is a neighbor on the shortest path, 
then  Di = Cij + Dj 

Focus on how nodes find their shortest 
path to a given destination node, i.e.  SJ 
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i only has local info 
from neighbors  

Dj" 

Cij” 

i 

San 
Jose 

j Cij 

Dj 

Di j" 

Cij' 

j' 
Dj' 

Pick current  
shortest path  

But we don’t know the shortest 
paths 
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Why Distance Vector Works 

San 
Jose 1 Hop 

From SJ 2 Hops 
From SJ 3 Hops 

From SJ 

Accurate info about SJ 
 ripples across network, 

Shortest Path Converges 

SJ sends 
accurate info 

Hop-1 nodes 
calculate current  
(next hop, dist), & 
send to neighbors 
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Bellman-Ford Algorithm 
 Consider computations for one destination d 
 Initialization 

 Each node table has 1 row for destination d 
 Distance of node d to itself is zero:  Dd=0 
 Distance of other node j to d is infinite:  Dj=∝, for j≠ d 
 Next hop node nj = -1 to indicate not yet defined for j ≠ d 

 Send Step 
 Send new distance vector to immediate neighbors across local link 

 Receive Step 
 At node i, find the next hop that gives the minimum distance to d,  

 Di=minj {Cij+Dj(d)} 
Replace old (nj, Dj(d)) by new (nj*, Dj*(d)) if new next node or distance 

found 
 Go to send step 
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Bellman-Ford Algorithm 
 Now consider parallel computations for all destinations d 
 Initialization 

 Each node has 1 row for each destination d 
 Distance of node d to itself is zero:  Dd(d)=0 
 Distance of other node j to d is infinite:  Dj(d)= ∝ , for j ≠ d 
 Next node nj = -1 since not yet defined 

 Send Step 
 Send new distance vector to immediate neighbors across local link 

 Receive Step 
 For each destination d, find the next hop that gives the minimum 

distance to d,  

 Di=Minj { Cij+ Dj(d) } 
 Replace old (nj, Di(d)) by new (nj*, Dj*(d)) if new next node or distance 

found 
 Go to send step 
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Iteration Node 1 Node 2 Node 3 Node 4 Node 5 

Initial (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) 

1 

2 

3 

3 
1 

5 

4 
6 

2 

2 

3 

4 

2 

1 

1 

2 

3 

5 
San 
Jose 

Table entry  
@ node 1 
for dest SJ 

Table entry  
@ node 3 
for dest SJ 

Please note that in this example we determine 
the optimal path to destination node 6 from 
each other node. In general the same algorithm 
should be run for EACH considered as 
destination 
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Iteration Node 1 Node 2 Node 3 Node 4 Node 5 

Initial (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) 

1 (-1, ∞) (-1, ∞) (6,1) (-1, ∞) (6,2) 

2 

3 

San 
Jose 

D6=0 

D3=D6+1 
n3=6 

3 
1 

5 

4 
6 

2 

2 

3 

4 

2 

1 

1 

2 

3 

5 

D6=0 D5=D6+2 
n5=6 

0 

2 

1 
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Iteration Node 1 Node 2 Node 3 Node 4 Node 5 

Initial (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) 

1 (-1, ∞) (-1, ∞) (6, 1) (-1, ∞) (6,2) 

2 (3,3) (5,6) (6, 1) (3,3) (6,2) 

3 

San 
Jose 

3 
1 

5 

4 
6 

2 

2 

3 

4 

2 

1 

1 

2 

3 

5 
0 

1 

2 

3 

3 

6 
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Iteration Node 1 Node 2 Node 3 Node 4 Node 5 

Initial (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) (-1, ∞) 

1 (-1, ∞) (-1, ∞) (6, 1) (-1, ∞) (6,2) 

2 (3,3) (5,6) (6, 1) (3,3) (6,2) 

3 (3,3) (4,4) (6, 1) (3,3) (6,2) 

San 
Jose 

3 
1 

5 

4 
6 

2 

2 

3 

4 

2 

1 

1 

2 

3 

5 
0 

1 

2 6 

3 

3 

4 
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Iteration Node 1 Node 2 Node 3 Node 4 Node 5 

Initial (3,3) (4,4) (6, 1) (3,3) (6,2) 

1 (3,3) (4,4) (4, 5) (3,3) (6,2) 

2 

3 

San 
Jose 

3 
1 

5 

4 
6 

2 

2 

3 

4 

2 

1 

1 

2 

3 

5 
0 

1 

2 

3 

3 

4 

Network disconnected;  Loop created between nodes 3 and 4 

5 
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Iteration Node 1 Node 2 Node 3 Node 4 Node 5 

Initial (3,3) (4,4) (6, 1) (3,3) (6,2) 

1 (3,3) (4,4) (4, 5) (3,3) (6,2) 

2 (3,7) (4,4) (4, 5) (5,5) (6,2) 

3 

San 
Jose 

3 
1 

5 

4 
6 

2 

2 

3 

4 

2 

1 

1 

2 

3 

5 
0 

2 

5 

3 

3 

4 

7 

5 

Node 4 could have chosen 2 as next node because of tie  Fall 2012 41 Prof. Chung-Horng Lung 



Iteration Node 1 Node 2 Node 3 Node 4 Node 5 

Initial (3,3) (4,4) (6, 1) (3,3) (6,2) 

1 (3,3) (4,4) (4, 5) (3,3) (6,2) 

2 (3,7) (4,4) (4, 5) (5,5) (6,2) 

3 (3,7) (4,6) (4, 7) (5,5) (6,2) 

San 
Jose 

3 
1 

5 

4 
6 

2 

2 

3 

4 

2 

1 

1 

2 

3 

5 0 

2 

5 

5 7 

4 

7 

6 
Node 2 could have chosen 5 as next node because of tie Fall 2012 42 Prof. Chung-Horng Lung 



3 

5 

4 
6 

2 

2 

3 

4 

2 

1 

1 

2 

3 

5 
1 

Iteration Node 1 Node 2 Node 3 Node 4 Node 5 

1 (3,3) (4,4) (4, 5) (3,3) (6,2) 

2 (3,7) (4,4) (4, 5) (2,5) (6,2) 

3 (3,7) (4,6) (4, 7) (5,5) (6,2) 

4 (2,9) (4,6) (4, 7) (5,5) (6,2) 

San 
Jose 

0 

7 7 

5 

6 

9 

2 

Node 1 could have chose 3 as next node because of tie Fall 2012 43 Prof. Chung-Horng Lung 



3 1 2 4 
1 1 1 

3 1 2 4 
1 1 

X 

(a) 

(b) 

Update Node 1 Node 2 Node 3 

Before break (2,3) (3,2) (4, 1) 

After break (2,3) (3,2) (2,3) 

1 (2,3) (3,4) (2,3) 

2 (2,5) (3,4) (2,5) 

3 (2,5) (3,6) (2,5) 

4 (2,7) (3,6) (2,7) 

5 (2,7) (3,8) (2,7) 

… … … … 

Counting to Infinity Problem 
Nodes believe best 
path is through each 
other 
(Destination is node 4) 
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Problem:  Bad News Travels 
Slowly 
Remedies 
 Split Horizon 

 Do not report route to a destination to the 
neighbor from which route was learned 

 Poisoned Reverse 
 Report route to a destination to the neighbor 

from which route was learned, but with infinite 
distance 

 Breaks erroneous direct loops immediately 
 Does not work on some indirect loops 
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3 1 2 4 
1 1 1 

3 1 2 4 
1 1 

X 

(a) 

(b) 

Split Horizon with Poison Reverse 

Nodes believe best 
path is through 
each other 

Update Node 1 Node 2 Node 3 

Before break (2, 3) (3, 2) (4, 1) 
After break (2, 3) (3, 2) (-1, ∞) Node 2 advertizes its route to 4 to 

node 3 as having distance infinity;  
node 3 finds there is no route to 4 
 

1 (2, 3) (-1, ∞) (-1, ∞) Node 1 advertizes its route to 4 to 
node 2 as having distance infinity;  
node 2 finds there is no route to 4 
 

2 (-1, ∞) (-1, ∞) (-1, ∞) Node 1 finds there is no route to 4 
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Link-State Algorithm 
 Basic idea: two step procedure 
 Each source node gets a map of all nodes and link metrics 

(link state) of the entire network  
 Find the shortest path on the map from the source node to 

all destination nodes 

 Broadcast of link-state information 
 Every node i in the network broadcasts to every other node 

in the network: 

 ID’s of its neighbors:  Ni=set of 
neighbors of i 

 Distances to its neighbors:  {Cij | j ∈Ni} 
 Flooding is a popular method of broadcastinglink state 

information 
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Dijkstra Algorithm:  Finding 
shortest paths in order 

s 

w 

w" 

w' 

Closest node to s is 1 hop away 

w" 

x 

x' 

2nd closest node to s is 1 hop  
away from s or w” 

x 
z 

z' 

3rd closest node to s is 1 hop  
away from s, w”, or x w' 

Find shortest paths from 
source s to all other 
destinations 
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Dijkstra’s algorithm 
 N:  set of nodes for which shortest path already found 
 Initialization:  (Start with source node s) 

 N = {s}, Ds = 0, “s is distance zero from itself” 
 Dj=Csj for all j ≠ s,  distances of directly-connected neighbors 

 Step A: (Find next closest node i)  
 Find i ∉ N such that 
 Di = min Dj    for  j ∉ N  
 Add i to N 
 If N contains all the nodes, stop 

 Step B: (update minimum costs) 
 For each node j ∉ N 
 Dj = min (Dj, Di+Cij) 
 Go to Step A 

Minimum distance from s to 
j through node i in N Fall 2012 49 Prof. Chung-Horng Lung 



Execution of Dijkstra’s algorithm 

Iteration N D2 D3 D4 D5 D6 
Initial {1} 3 2 5 ∝ ∝ 

1 {1,3} 3 2 4 ∝ 3 
2 {1,2,3} 3 2 4 7 3 
3 {1,2,3,6} 3 2 4 5 3 
4 {1,2,3,4,6} 3 2 4 5 3 
5 {1,2,3,4,5,6} 3 2 4 5 3 

1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 

 

 

 

 

 
 

 

 

 
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Shortest Paths in  Dijkstra’s 
Algorithm 

1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 

1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 

1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 1 

2 

4 

5 

6 

1 

1 

2 

3 2 
3 

5 

2 

4 

3 3 
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Reaction to Failure 
 If a link fails, 
 Router sets link distance to infinity & floods the 

network with an update packet 
 All routers immediately update their link database & 

recalculate their shortest paths 
 Recovery very quick 

 But watch out for old update messages  
 Add time stamp or sequence # to each update 

message 
 Check whether each received update message is new 
 If new, add it to database and broadcast 
 If older, send update message on arriving link 
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Why is Link State Better? 

 Fast, loopless convergence 
 Support for precise metrics, and multiple 

metrics if necessary (throughput, delay, cost, 
reliability) 

 Support for multiple paths to a destination 
 algorithm can be modified to find best two paths 
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Source Routing 

 Source host selects path that is to be followed by a packet 
 Strict:  sequence of nodes in path inserted into header 

 Intermediate switches read next-hop address and remove 
address 

 Source host needs link state information or access to a route 
server 

 Source routing allows the host to control the paths that its 
information traverses in the network 

 Potentially the means for customers to select what service 
providers they use 

Pros: No Need for intermediate routers to maintain routing tables! 

Cons: Burden at the source! 
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1 

2 

3 

4 

5 

6 
A 

B 

Source host 

Destination host 

1,3,6,B 

3,6,B 6,B 

B 

Example 
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Chapter 7 
Packet-Switching 

Networks 

ATM Networks 



Asynchronous Tranfer Mode 
(ATM) 

 Packet multiplexing and switching 
 Fixed-length packets: “cells” 
 Connection-oriented 
 Rich Quality of Service support 

 Conceived as end-to-end 
 Supporting wide range of services 
 Real time voice and video 
 Circuit emulation for digital transport 
 Data traffic with bandwidth guarantees 

 Detailed discussion in Chapter 9 
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ATM 
Adaptation 

Layer 

ATM 
Adaptation 

Layer 

ATM Network 

Video Packet Voice Video Packet Voice 

ATM Networking 

 End-to-end information transport using cells 
 53-byte cell (48bytes payload, 5bytes header),  provide 

low delay and fine multiplexing granularity 
 Support for many services through ATM Adaptation Layer Fall 2012 58 Prof. Chung-Horng Lung 



TDM vs. Packet Multiplexing 

Variable bit 
rate Delay Burst traffic Processing 

TDM Multirate 
only 

Low, fixed Inefficient Minimal, very 
high speed 

Packet Easily 
handled 

Variable Efficient Header & packet 
processing 
required 

 

 

 * 

*In mid-1980s, packet processing mainly in software and 
hence slow;  By late 1990s, very high speed packet 
processing possible. This is why ATM was promoted! 
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ATM:  Attributes of TDM & Packet 
Switching  

 
• Packet structure gives 

flexibility & efficiency 
 
• Synchronous slot 

transmission gives high 
speed & density Packet Header Figure in book is 

inaccurate, no timing 
information is given. 

time 

time 
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ATM Switching 
Switch carries out table translation and routing 

ATM switches can be implemented using shared memory, 
shared backplanes, or self-routing multi-stage fabrics  

 

75 75 
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 Virtual connections setup across network 
 Connections identified by locally-defined tags 
   ATM Header contains virtual connection information: 

   8-bit Virtual Path Identifier 
  16-bit Virtual Channel Identifier 

 Powerful traffic grooming capabilities 
 Multiple VCs can be bundled within a VP  
 Similar to tributaries with SONET, except variable bit rates possible 
 

Physical link 

Virtual paths 

Virtual channels 

ATM Virtual Connections 
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ATM 
Sw 
1 

ATM 
Sw 
4 

ATM 
Sw 
2 

ATM 
Sw 
3 

ATM 
cross- 

connect 

a 
b 
c 

d 
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VPI 3 VPI 5 

VPI 2 

VPI 1 

a 

b 
c 

d 
e 

Sw = switch 

VPI/VCI switching & multiplexing 

 Connections a,b,c bundled into VP at switch 1 
 Crossconnect switches VP without looking at VCIs 
 VP unbundled at switch 2;  VC switching thereafter 

 VPI/VCI structure allows creation virtual networks Fall 2012 63 Prof. Chung-Horng Lung 



MPLS & ATM 
 ATM initially touted as more scalable than packet 

switching 
 ATM envisioned speeds of 150-600 Mbps 
 Advances in optical transmission proved ATM to be 

the less scalable:  @ 10 Gbps 
 Segmentation & reassembly of messages & streams into 

48-byte cell payloads difficult & inefficient 
 Header must be processed every 53 bytes vs. 500 bytes 

on average for packets 
 Delay due to 1250 byte packet at 10 Gbps = 1 µsec;  delay 

due to 53 byte cell @ 150 Mbps ≈ 3 µsec  
 MPLS (Chapter 10) uses tags to transfer packets 

across virtual circuits in Internet 
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