
1

 Chapter 8
Communication

Networks and Services

Transport Layer Protocols:
UDP and TCP

Fall 2012 Prof. Chung-Horng Lung

2

Outline

 UDP Protocol
 TCP – Quick Overview
 TCP Header
 TCP Connection Management
 TCP Congestion Control

Fall 2012 Prof. Chung-Horng Lung

3

UDP
 Best effort (unreliable) datagram service
 Multiplexing enables sharing of IP datagram service
 Simple transmitter & receiver
 Connectionless: no handshaking & no connection state
 Low header overhead
 No flow control, no error control, no congestion control
 UDP datagrams can be lost or out-of-order

 Applications
 multimedia (e.g., VoIP, video, RTP)
 network services (e.g. DNS, RIP, SNMP)

Fall 2012 Prof. Chung-Horng Lung

4

UDP Datagram
 Source and destination ports:

 Identify applications
 Client ports are ephemeral
 Server ports are well-known
 Max number is 65,535

 UDP length
 Total number of bytes in

datagram (including header)
 8 bytes ≤ length ≤ 65,535

 UDP Checksum
 Optionally detects errors in

UDP datagram

Source Port Destination Port

UDP Length UDP Checksum

Data

0 16 31

0-255
 Well-known ports

256-1023
 Less well-known ports

1024-65536
 Ephemeral client ports

*

Fall 2012 Prof. Chung-Horng Lung

5

UDP Multiplexing

 All UDP datagrams arriving to IP address B and
destination port number n are delivered to the same
process

 Source port number is not used in multiplexing

...

UDP

 IP

1 2 n ...

UDP

 IP

1 2 n ...

UDP

 IP

1 2 n

A B C

*

Fall 2012 Prof. Chung-Horng Lung

6

Outline

 TCP – Quick Overview
 TCP Header
 TCP Connection Management
 TCP Congestion Control

Fall 2012 Prof. Chung-Horng Lung

7

TCP-Quick Overview
 Reliable byte-stream service
 More complex transmitter & receiver

 Connection-oriented (logical connection): full-duplex unicast
connection between client & server processes
 Connection setup, connection state, connection release

 Higher delay than UDP
 Error control, flow control, and congestion control
 Higher header overhead

 Most applications use TCP
 HTTP, SMTP, FTP, TELNET, POP3, …

Fall 2012 Prof. Chung-Horng Lung

8

Reliable Byte-Stream Service
 Stream Data Transfer

 transfers a contiguous stream of bytes across the network,
with no indication of boundaries

 TCP groups bytes into segments
 transmits segments as convenient
 Application may send a 1000-byte message, TCP may

transfer it into two chunks of 500-byte each or three chunks
etc.

 Reliability
 error control mechanism to deal with IP transfer impairments

 Write 45 bytes
Write 15 bytes
Write 20 bytes

buffer buffer

Application

Transport

Read 40 bytes
Read 40 bytes

segments

ACKS, sequence #
Error Detection &
Retransmission

*

Fall 2012 Prof. Chung-Horng Lung

9

Flow Control between Hosts

 Buffer limitations & speed mismatch can
result in loss of data that arrives at
destination

 Receiver controls rate at which sender
transmits to prevent buffer overflow

buffer

segments buffer used
Application

Transport

advertised
window size < B

buffer available = B

*

Fall 2012 Prof. Chung-Horng Lung

10

Congestion Control over the
Network
 Available bandwidth to destination varies with

activity of other users
 Transmitter dynamically adjusts transmission rate

according to network congestion as indicated by
RTT (round trip time) & ACKs

 Elastic utilization of network bandwidth

buffer

segments

buffer

Application

Transport

ACKS
RTT

Estimation

*

Fall 2012 Prof. Chung-Horng Lung

11

TCP Multiplexing
 A TCP connection is specified by a 4-tuple

 (source IP address, source port, destination IP address,
destination port)

 TCP allows multiplexing of multiple connections between end
systems to support multiple applications simultaneously

 Arriving segment directed according to connection 4-tuple

...

TCP

 IP

1 2 m ...

TCP

 IP

1 2 n

A B C

...

TCP

 IP

1 2 k

(A, 5234, B, 80)

(A, 6234, B, 80)

(C, 5234, B, 80) Fall 2012 Prof. Chung-Horng Lung

12

Outline

 TCP – Quick Overview
 TCP Header
 TCP Connection Management
 TCP Congestion Control

Fall 2012 Prof. Chung-Horng Lung

13

TCP Segment Format

• Each TCP segment has header of 20 or more bytes + 0 or more bytes of data

Source port Destination port

Sequence number

Acknowledgment number

Checksum Urgent pointer

Options Padding

0 4 10 16 24 31

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Header
length Reserved Window size

Data

Fall 2012 Prof. Chung-Horng Lung

14

TCP Header

Port Numbers
 A socket identifies a connection endpoints or applications (processes)

 IP address + port
 A connection specified by a socket pair
 Well-known ports: FTP 20, DNS 53, HTTP 80,

Prof. Chung-Horng Lung

Source port Destination port

Sequence number

Acknowledgment number

Checksum Urgent pointer

Options Padding

0 4 10 16 24 31

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Header
length Reserved Window size

Data

15

TCP Header

Sequence Number (SN): byte count, 32 bits (0 ≤ SN ≤ 232-1)
 Position of first data byte in segment (offset for the byte stream).

 If SN=100 and there are 5 data bytes in the segment, then the next segment will
have a SN=105.

 Initial sequence number selected during connection setup
 If SYN=1(during connection establishment) the SN indicates the initial SN (ISN) of

the senders byte stream. The sequence number for the first data byte in this stream
will be ISN + 1.

Fall 2012 Prof. Chung-Horng Lung

Source port Destination port

Sequence number

Acknowledgment number

Checksum Urgent pointer

Options Padding

0 4 10 16 24 31

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Header
length Reserved Window size

Data

16

TCP Header

Acknowledgement Number (similar to ARQ)
 SN of next byte expected by receiver
 Acknowledges that all prior bytes in stream have been received

correctly
 Valid if ACK flag is set
Header length (4 bits)
 Length of header in multiples of 32-bit words (4 bytes)
 Minimum 20 bytes, maximum 60 bytes

 Fall 2012 Prof. Chung-Horng Lung

Source port Destination port
Sequence number

Acknowledgment number

Checksum Urgent pointer

Options Padding

0 4 10 16 24

U R G
A C K

P S H
R S T

S Y N
F I N

Header length Reserved Window size

Data

17

TCP Header
Reserved
 6 bits
 Future use

Control (6 bits)
 URG: urgent pointer flag (data needs immediatey delivery)

 Urgent message end = SN + urgent pointer
 ACK: ACK number is valid
 PSH: override TCP buffering, pass to the application immediately
 RST: reset connection

 Connection is aborted (e.g., abnormal op) and application layer notified
 SYN: request a connection
 FIN: sender finishes sending, but still needs to get a FIN from receiver

Fall 2012 Prof. Chung-Horng Lung

Source port Destination port
Sequence number

Acknowledgment number

Checksum Urgent pointer

Options Padding

0 4 10 16 24 31

U R G
A C K

P S H
R S T

S Y N
F I N

Header length Reserved Window size

Data

18

TCP Header

Window Size (16 bits to advertise window size)
 Used for flow and congestion control
 Sender will accept bytes with SN from ACK to ACK + window
 Maximum window size is 65535 bytes
TCP Checksum
 Internet checksum method
 TCP pseudoheader + TCP segment

 Pseudoheader: simplified header created by src and dest., not transmitted.

 Fall 2012 Prof. Chung-Horng Lung

Source port Destination port
Sequence number

Acknowledgment number

Checksum Urgent pointer

Options Padding

0 4 10 16 24 31

U R G
A C K

P S H
R S T

S Y N
F I N

Header length Reserved Window size

Data

19

TCP Header
Options
 Variable length
 NOP (No Operation)

option is used to pad
TCP header to multiple
of 32 bits

 Time stamp is used for:
 Round trip measurements
 Distinguish wrap around

SNs for high speed
routers

Options
 Maximum Segment

Size (MSS) option
specifies largest
segment a receiver
wants to receive
 Specified during

connection setup.

 Window Scale option
increases TCP window
from 16 to 32 bits

Fall 2012 Prof. Chung-Horng Lung

20

Outline

 TCP – Quick Overview
 TCP Header
 TCP Connection Management
 TCP Congestion Control

Fall 2012 Prof. Chung-Horng Lung

21

TCP Connection Establishment
• “Three-way Handshake”
• ISN’s protect against segments from prior connections

Host A Host B

Fall 2012 Prof. Chung-Horng Lung

Q: What is the ACK no

from receiver?

From the sender?

Seq. no?

22

Initial Sequence Number
 Select initial sequence numbers (ISN) to

protect against segments from prior
connections (that may circulate in the
network and arrive at a much later time)

 Select ISN to avoid overlap with sequence
numbers of prior connections

 Use local clock to select ISN sequence
number (ISN is increased by 1 every four
microseconds)

 High bandwidth connections pose a problem
 Use timestamps to distinguish wrap around SNs

 Fall 2012 Prof. Chung-Horng Lung

23

If host always uses the same ISN (p.609)

Host A Host B

Delayed segment with
Seq_no = n+2
will be accepted
 Not desirable

SYN, Seq_no = n

Fall 2012 Prof. Chung-Horng Lung

24

Maximum Segment Size

 Maximum Segment Size (MSS)
 largest block of data that TCP sends to other end

 Each end can announce its MSS during
connection establishment

 Default is 576 bytes including 20 bytes for IP
header and 20 bytes for TCP header

 Ethernet implies MSS of 1460 bytes

Fall 2012 Prof. Chung-Horng Lung

25

Client-Server Application

accept returns
read (blocks)

read returns

write
read (blocks)

Host A (client) Host B (server)

socket
bind
listen
accept (blocks)

socket
connect
(blocks)

connect returns

write
read (blocks)

read returns

t1

t2

t3

t4
t5

t6

26

TCP Window Flow Control

1024 bytes
to transmit

1024 bytes
to transmit

1024 bytes
to transmit

128 bytes
to transmit

1024 bytes
to transmit

can only
 send 512

 bytes

Host A Host B

t1

t2

t3

t4

t0

*

Fall 2012 Prof. Chung-Horng Lung

27

Nagle’s Algorithm
 Situation: user types 1 character at a time
 Transmitter sends TCP segment per character (41Bytes)
 Receiver sends ACK (40Bytes)
 Receiver echoes received character (41Bytes)
 Transmitter ACKs echo (40 Bytes)
 162 bytes transmitted to transfer 1 character!

 Solution:
 TCP sends data & waits for ACK
 New characters buffered
 Send new characters when ACK arrives
 Algorithm adjusts to RTT
 Short RTT send frequently at low efficiency
 Long RTT send less frequently at greater efficiency

Fall 2012 Prof. Chung-Horng Lung

28

Silly Window Syndrome
 Situation:
 Transmitter sends large amount of data
 Receiver buffer depleted slowly, so buffer fills
 Every time a few bytes read from buffer, a new

advertisement to transmitter is generated
 Sender immediately sends data & fills buffer
 Many small, inefficient segments are transmitted

 Solution:
 Receiver does not advertise window until window is at least

½ of receiver buffer or maximum segment size
 Transmitter refrains from sending small segments

Fall 2012 Prof. Chung-Horng Lung

29

 232 = 4.29x109 bytes = 34.3x109 bits
 At 1 Gbps, sequence number wraparound in 34.3

seconds.
 Timestamp option: Insert 32 bit timestamp in

header of each segment
 Timestamp + sequence no → 64-bit seq. no
 Timestamp clock must:
 tick forward at least once every 231 bits
 Not complete cycle in less than one MSL
 Example: clock tick every 1 ms @ 8 Tbps wraps

around in 25 days

Sequence Number Wraparound

Fall 2012 Prof. Chung-Horng Lung

30

Delay-BW Product & Advertised
Window Size
 Suppose RTT=100 ms, R=2.4 Gbps
 # bits in pipe  30 Mbytes

 If single TCP process occupies pipe, then
required advertised window size is
 RTT x Bit rate = 30 Mbytes
 Normal maximum window size is 65535 bytes

 Solution: Window Scale Option
 Window size up to 65535 x 214 = 1 Gbyte allowed
 Requested in SYN segment

*

Fall 2012 Prof. Chung-Horng Lung

31

TCP State
Transition
Diagram

CLOSED

LISTEN

SYN_RCVD

ESTABLISHED

CLOSING

TIME_WAIT

SYN_SENT

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

FIN_WAIT_2

passive open,
create TCB

application
close,
send

FIN

application close
or timeout,
delete TCB

2MSL timeout
delete TCB

receive SYN,
send ACK

Appli-
cation
close

Fall 2012 Prof. Chung-Horng Lung

32

Outline

 TCP – Quick Overview
 TCP Header
 TCP Connection Management
 TCP Congestion Control

Fall 2012 Prof. Chung-Horng Lung

33

TCP Congestion Control
 Advertised window size is used to ensure that receiver’s buffer

will not overflow
 However, buffers at intermediate routers between source and

destination may overflow

Router

R bps Packet
flows from

many
sources

 Congestion occurs when total arrival rate from all packet flows
exceeds R over a sustained period of time

 Buffers at multiplexer will fill and packets will be lost
Fall 2012 Prof. Chung-Horng Lung

34

Phases of Congestion Behavior

1. Light traffic
 Arrival Rate << R
 Low delay
 Can accommodate more

2. Knee (congestion onset)
 Arrival rate approaches R
 Delay increases rapidly
 Throughput begins to

saturate
3. Congestion collapse
 Arrival rate > R
 Large delays, packet loss
 Useful application

throughput drops

Th
ro

ug
hp

ut
 (b

ps
)

D
el

ay
 (s

ec
)

R

R

Arrival
Rate

Arrival
Rate

*

Fall 2012 Prof. Chung-Horng Lung

35

Window Congestion Control
 Desired operating point: just before knee
 Sources must control their sending rates so that aggregate

arrival rate is just before knee
 TCP sender maintains a congestion window cwnd

to control congestion at intermediate routers
 Effective window is minimum of congestion window

and advertised window
 Problem: source does not know what its “fair” share

of available bandwidth should be
 Solution: adapt dynamically to available BW
 Sources probe the network by increasing cwnd
 When congestion detected, sources reduce rate
 Ideally, sources sending rate stabilizes near ideal point

*

Fall 2012 Prof. Chung-Horng Lung

36

Congestion Window
 How does the TCP congestion algorithm change

congestion window dynamically according to the
most up-to-date state of the network?

 At light traffic: each segment is ACKed quickly
 Increase cwnd aggresively

 At knee: segment ACKs arrive, but more slowly
 Slow down increase in cwnd

 At congestion: segments encounter large delays
(so retransmission timeouts occur); segments are
dropped in router buffers (resulting in duplicate
ACKs)
 Reduce transmission rate, then probe again

*

Fall 2012 Prof. Chung-Horng Lung

37

TCP Congestion Control:
Slow Start
 Slow start: increase congestion window size by one

segment upon receiving an ACK from receiver
 initialized at ≤ 2 segments
 used at (re)start of data transfer
 congestion window increases exponentially

ACK

Seg

RTTs
1
2
4

8

cwnd

*

Fall 2012 Prof. Chung-Horng Lung

38

TCP Congestion Control:
Congestion Avoidance
 Algorithm

progressively sets a
congestion threshold
 When cwnd >

threshold, slow down
rate at which cwnd is
increased

 Increase congestion
window size by one
segment per round-
trip-time (RTT)
 cwnd grows linearly with

time

RTTs
1
2

4

8

cwnd

threshold

*

Fall 2012 Prof. Chung-Horng Lung

39

TCP Congestion Control:
Congestion

 Congestion is detected
upon timeout or receipt of
duplicate ACKs

 Assume current cwnd
corresponds to available
bandwidth

 Adjust congestion threshold
= ½ x current cwnd

 Reset cwnd to 1
 Go back to slow-start
 Over several cycles expect

to converge to congestion
threshold equal to about ½
the available bandwidth

C
on

ge
st

io
n

w
in

do
w

10

5

15

20

0

Round-trip times

Slow
start

Congestion
avoidance

Time-out

Threshold

*

Fall 2012 Prof. Chung-Horng Lung

40

Fast Retransmit & Fast Recovery
 Congestion causes many segments to be

dropped
 If only a single segment is dropped, then

subsequent segments trigger duplicate
ACKs before timeout

 Can avoid large decrease in cwnd as
follows:
 When three duplicate ACKs arrive,

retransmit lost segment immediately
 Reset congestion threshold to ½ cwnd
 Reset cwnd to congestion threshold + 3 to

account for the three segments that
triggered duplicate ACKs

 Remain in congestion avoidance phase
 However if timeout expires, reset cwnd to

1
 In absence of timeouts, cwnd will oscillate

around optimal value

SN=1
ACK=2

ACK=2
ACK=2
ACK=2

SN=2
SN=3
SN=4
SN=5

*

Fall 2012 Prof. Chung-Horng Lung

41

TCP Congestion Control:
Fast Retransmit & Fast Recovery

C
on

ge
st

io
n

w
in

do
w

10

5

15

20

0

Round-trip times

Slow
start

Congestion
avoidance

Time-out

Threshold

Fall 2012 Prof. Chung-Horng Lung

42

TCP Retransmission Timeout
 TCP retransmits a segment after timeout period
 Timeout too short: excessive number of retransmissions
 Timeout too long: recovery too slow & slow reaction to loss
 Timeout depends on RTT: time from when segment is sent to

when ACK is received
 Round trip time (RTT) in Internet is highly variable
 Routes vary and can change in mid-connection
 Traffic fluctuates, multiple traffic flows

 TCP uses adaptive estimation of RTT
 Measure RTT each time ACK received: Mn

 tRTT(new) = α tRTT(old) + (1 – α) Mn

 α = 7/8 typical

Fall 2012 Prof. Chung-Horng Lung

43

RTT Variability
 Estimate variance σ2 of RTT variation
 Estimate for timeout:

 tout = tRTT + k dRTT

 If RTT highly variable, timeout increase accordingly
 If RTT nearly constant, timeout close to RTT estimate

 Approximate estimation of deviation

 dRTT(new) = β dRTT(old) + (1-β) | Mn - tRTT |

 tout = tRTT + 4 dRTT (I.e. k=4)

Fall 2012 Prof. Chung-Horng Lung

44

RTT and Timeout: an Example
 For packet (n), use timeout (n-1).

 Example: At time 0 the TCP round trip time is actually 30 msec. For the following packets,

acknowledgements came back after 26, 32, 24 msec, respectively. Apply the dynamic timeout
Jacobson’s algorithm to calculate the best timeout estimate at the end. Use α =0.9 and β =0.9.
(The notations used in the following are simplified.)

 Assume at the start d(0)= 0 msec and RTT(0) = 30.
 Measured values: M(0)=30, M(1)=26, M(2)=32, M(3)=24.

 RTT(n) = α * RTT(n-1) + (1- α) *M (n) d(n) = β * d (n-1) + (1- β) * | RTT(n) -M(n) |
 RTT(1) = 0.9 x 30 + 0.1 x 26=29.6 d(1)= 0.9 x 0 + 0.1 x |29.6-26|=0.36
 RTT(2) = 0.9 x 29.6 + 0.1 x 32=29.84 d(2)= 0.9 x .36 + 0.1 x |29.84-32|=0.54
 RTT(3) = 0.9 x 29.84 + 0.1 x 24=29.256 d(3)= 0.9 x 0.54 + 0.1 x |29.256-24|=1.01

 Timeout(n) = RTT(n) + 4 * d(n)

Timeout(3) = RTT(3) + 4 * d(3) = 29.256 + 4 x 1.01 = 33.3 msec

 Fall 2012 Prof. Chung-Horng Lung

	 Chapter 8 Communication Networks and Services
	Outline
	UDP
	UDP Datagram
	UDP Multiplexing
	Outline
	TCP-Quick Overview
	Reliable Byte-Stream Service
	Flow Control between Hosts
	Congestion Control over the Network
	TCP Multiplexing
	Outline
	Slide Number 13
	TCP Header
	TCP Header
	TCP Header
	TCP Header
	TCP Header
	TCP Header
	Outline
	Slide Number 21
	Initial Sequence Number
	Slide Number 23
	Maximum Segment Size
	Client-Server Application
	Slide Number 26
	Nagle’s Algorithm
	Silly Window Syndrome
	Sequence Number Wraparound
	Delay-BW Product & Advertised Window Size
	Slide Number 31
	Outline
	TCP Congestion Control
	Phases of Congestion Behavior
	Window Congestion Control
	Congestion Window
	TCP Congestion Control: �Slow Start
	TCP Congestion Control: �Congestion Avoidance
	TCP Congestion Control: �Congestion
	Fast Retransmit & Fast Recovery
	TCP Congestion Control: �Fast Retransmit & Fast Recovery
	TCP Retransmission Timeout
	RTT Variability
	RTT and Timeout: an Example

