Operating System Methods for
Real-Time Applications

Threads

Winter 2014

Recall Process Creation

e each process has code, data, and stack
— other resources too? (I/O devices?)

e allocate a thread of control
— managed by the kernel

Mar 18/14 ﬂ Carleton

UNIVERSITY

Code, Data, Stack

e what If processes replicate behaviour?
— execute the same code?
— OK If memory manager will permit this(?)

®ina process model:

processes do not share memory

— each must have Its own copy of code +
data and stack space

Mar 18/14 g% Carleton

— UNIVERSITY

Heavywelight Process

e a heavyweight process requires all of the
above: code, data, stack

e heavyweight processes are strict:
do not share resources

e Heavyweight processes: system must
have memory manager hardware that can
Isolate and protect regions of memory
based on s/w level id’s

— Cortex-A (yes, MMU) ... Cortex-M (no, MPU)

Mar 18/14 ﬂ Carleton 4

UNIVERSITY

Lightweilght Processes

® can share code and data
e must have own stack and thread of control

e less overhead during lightweight kernel
activity:

— faster context switch and IPC ©

— application programmers must manage sharing
of data ®

... (maybe specialized languages can help?)

Mar 18/14 g% Carleton

— UNIVERSITY

Application Design
Philosophy

e heavyweight processes: encapsulate large -
grained parallel activities that are loosely
coupled

— I.e. Interact infrequently, minimal data sharing

e lightweight processes encapsulate finer -
grained parallel activities that are tightly
coupled

— I.e. Interact frequently, lots of data sharing

Mar 18/14 ﬂ Carleton

UNIVERSITY

Performance Goals

e heavyweight switching and IPC

-2 “more” expensive

— looser coupling = heavyweight IPC and
switching

e lightweight switching and IPC

- ‘“less” expensive

— tighter coupling = lightweight IPC and
switching

Mar 18/14 g% Carleton

— UNIVERSITY

Thread

o A IS a lightweight process
created in the context of a heavyweight
process

e only the threads in the context of the
same heavyweight process can access
the code and data of that process

Mar 18/14 g% Carleton

— UNIVERSITY

Thread Management

1. by kernel
2. outside of kernel
3. hybrid — developing trend!

Mar 18/14 g% Carleton

1. Threads Managed by Kernel

kernel has two classes of processes:

e lightweight (thread) and heavyweight (process)
— different services for each

e threads of a process are autonomous

e a thread may become blocked, but just that
thread Is blocked (not the entire process)

Mar 18/14 g% Carleton

Kernel Managed Threads

e heavywelight process does not really execute
as a single thread of control

—> a container for managing threads

e the process has a set of threads
— the active elements of the process

e kernel manages both process and thread
scheduling

Mar 18/14 g% Carleton

— UNIVERSITY

2. Threads Outside of Kernel

e process has single thread of control
— managed by kernel
e single control thread is shared among threads
— managed by thread manager
e Unknown to kernel!
e this sort of thread called user-thread (fiber?)
e thread manager resides outside of kernel (appl? code!)

e often a run-time library supplied by
language/environment vendors

Mar 18/14 ﬂ Carleton

UNIVERSITY

User Threads
e If strict process model — each process must
have its own copy of thread manager (no
code sharing!)

e If a thread makes an IPC call via the kernel
and becomes blocked

- kernel blocks the process ! ®
(kernel has no knowledge of threads!) &

Mar 18/14 g% Carleton

3. Hybrid Threads

e user thread concept known to kernel, but
user-thread manager Is outside of kernel

e thread manager and kernel cooperate —
“scheduler " user thread for the process is

known to the kernel

— special interactions supported between scheduler
thread and kernel

Mar 18/14 g% Carleton

— UNIVERSITY

Hybrid

con'’t

when a user-thread invokes a kernel service and Is
blocked:

kernel “pseudo” blocks user-thread — records
relevant blocking criteria, but instead of blocking
process ...

kernel returns control to relevant scheduler thread

3. scheduler thread “blocks” the user-thread (outside
of kernel!) and schedules a different user-thread

— netresult: thread iIs blocked, process not blocked

4. when criteria met to unblock original user-thread
— kernel informs relevant scheduler thread

— scheduler thread unblocks the thread and makes thread
scheduling decisions

15

Hybrid Thread Blocking

blocking call
notify scheduler thread

Mar 18/14 @ Carleton

e UNIVERSITY

User-Thread Scheduling
Issues

e time-slice ©

— sultability to real-time app’s ?
e preempt vs. non-preempt

— voluntary relinquish?

e all the same-old issues:
— priority? timed services? eftc.

Mar 18/14 g% Carleton

— UNIVERSITY

Extended Process Model
with Threads

Mar 18/14

° «—

heavyweight kernel processes

N .

| _user _
threads /

lightweight processes (kernel

s Carleton

Kernel-Mode
Threads/Processes

e common In large, general-purpose o/s
— MMU hardware!

e not as common In real-time applications

e modern o/s’ often manage I/O subsystems
— e.g. disk I/O subsystem

— require “supervisor” permission to access
restricted |I/O devices

— must execute in kernel’s supervisor context

Mar 18/14 ﬂ Carleton

UNIVERSITY

O/S Layer Above Kernel

e may Iinclude processes that are not visible
outside of the o/s but exist inside the o/s

e these processes are created (and run) in the
kernel’'s context to permit access to
restricted h/w

e called kernel-mode processes

Mar 18/14 g% Carleton

— UNIVERSITY

Kernel-Mode Process Layer

application

processes N
kernel-mode
processes

|

Mar 18/14 ﬁ Carleton

Similar (Kernel) Thread Trend

e Wwhen

process invokes kernel service — kernel

blocks process and a kernel-mode
thread associated with the request

e new thread has unique stack (in kernel’s space)
+ shares access to kernel code and data

® MNust
Kerne

KErne

nave enough stack space to permit a
-mode thread for each process ®

-mode thread executes with supervisor

orivileges on behalf of the requesting process

Mar 18/14 ﬂ Carleton

UNIVERSITY

Kernel-Mode Threads

e kernel manages kernel-mode threads

e kernel threads can be preempted

® Mmore concurrency

e still need to protect access to kernel’'s shared data

structures!

e has overheads! ®
e hasn'’t hit real-time kernels in a big way (yet)
but h/w Is driving in this direction!

Mar 18/14 g% Carleton

— UNIVERSITY

Threads Example:
POSIX Threads (pthreads)

Part of Portable Operating System Standard (POSIX)
— http://en.wikipedia.org/wiki/POSIX

IEEE Std 1003.1-2013

Maintained by The Open Group

Based on UNIX thread model ... widely supported
— E.g.: ONX, VxWorks (PSE52 ... later)

— Many more (Windows add-ins too!)

e API spec for: C (primary) [Ada, Fortran (optional)]

Mar 18/14 g% Carleton ”

— UNIVERSITY

Just scratching the surface in these slides!!!!

Sync & Comm (Normal)

e semaphores for synchronization
e shared memory
® messaging (message gueues)

e mutex (lock, unlock)
— access control (e.qg. priority inheritance)

e condition variables (Hoare-style monitors)
e timed services

Mar 18/14 g% Carleton

— UNIVERSITY

Thread Management

e “main’” thread — created when containing
process created

® process terminates when “main” thread

terminates
I nt pthread create (
pthread t *t hread, /[l 1d
*attr, [/ attributes
void *(*start _routine)(void *), // funcl
void *arg /] args

)

Mar 18/14 g% Carleton

e’ UNIVERSITY

Joining a Thread

e sometimes want thread to return some
application-specific value at termination

e allow a thread to “join” a 2" thread to receive
the 2" thread’s termination data

e need special comm? mechanism - make
sure thread’s return value is not lost if 2nd
thread terminates before joiner

Mar 18/14 g% Carleton

— UNIVERSITY

Join
int pthread join(2" thread, **return_val ue)
e “attach” thread to 2"d thread
e blocks (waits) until 2" thread terminates
e returns with “return value” from 2" thread

e if 2"d thread terminates first, 2" thread is put
In “limbo” state, but data persists to ensure the
return_value Is not lost

Mar 18/14 g% Carleton

— UNIVERSITY

Thread Termination

e iImplicit: return from start_routine function
—returns function’s return_value to joiner
® explicit: void pthread exit(*return_value)

e can also explicitly terminate another thread.:
int pthread kill(other _thread, sig);

Mar 18/14 g% Carleton

— UNIVERSITY

Detached Thread

e when thread not required to supply a
return value -> declare thread as detached

e When detached thread terminates, all
allocated resources are reclaimed

Mar 18/14 g% Carleton

— UNIVERSITY

(Partial) pthread State Machine

yield

exit &

fOI‘CG.d. yield, sleep, detached
transitions exit, wait,

create lock, join

RUNNING D .
exit & IS

self transitions : | detached
>

WAIT on
Sema4

exit

timeout

unlock

Mar 18/14

Lock/Unlock Mutex

| nt pthread nmutex | ock(
pt hread nutex t *nutex),

I nt pt hread nut ex _unl ock(
pthread nutex t *nutex);

e Similar to binary semaphore
e Can set a priority ceiling

e Can set policy (priority inheritance,
priority ceiling emulation, none)

Mar 18/14 ﬂ Carleton

UNIVERSITY

Monitors

® Use as the blocking
‘queue”

No aliasing
int pthread cond init(e/////////

pthread cond t *restrict ,
const pthread condattr t *restrict attr),

Mar 18/14 g% Carleton

— UNIVERSITY

Monitor: Wait on Condition
Variable

I nt pthread cond wait (
pt hread cond t *cond,
pt hread nutex t *nutex),;

e caller waits on condition variable, and

mutex Is unlocked (single operation!)

e convention: when return from wait,
caller “owns” the mutex

—.e. releaser must leave monitor!

Mar 18/14 ﬂ Carleton

UNIVERSITY

Monitor: Signal Condition
Variable

I nt pthread cond signal(thread cond t *cond);
e Unblocks a thread from the condition variable
— No blocked thread? —-> no effect

e Scheduling policy decides which thread
— E.G. priority-driven

e Released thread “owns” mutex
— Recall pt hread _cond wai t

Mar 18/14 ﬂ Carleton

Timed Wait on Sema4

Int semtinedwait(semt *restrict sem
const struct tinespec *restrict abstine),

e Absolute time

e Return: O = success (locked sema4 within
specified time)

— 1 =error, Including eTimedOut
e Similar call for wait on condition variable

Mar 18/14 g% Carleton

— UNIVERSITY

Signals

e Allow asynchrounous events to be
communicated and then processed

e Record individual signal in sigevent data
structure
— Some are predefined system event types
— Application can define specific event types, too

e All event types for system = union of all
sigevents

Mar 18/14 g% Carleton

— UNIVERSITY

Raising Signals
e Can be caused by runtime events
— Asynchronous 1I/O, Timeouts, Faults

e May be sent to:
— Process (thread container)
e Process by any “willing” thread
— Specific thread

e May be queued
e |s “pending” until received

Mar 18/14 g% Carleton

— UNIVERSITY

Recelving Signals

Int sigwait(const sigset t *restrict set,

Int *restrict sigQ); /

e Calling thread waits for any signal in set
— “walits” = blocked
— “willing” to process any signal in set

e Signhal number stored (returned) in sig

e After call, caller then takes appropriate
action to process signal

e Provides asynchronous pre-emption

Mar 18/14 g% Carleton

— UNIVERSITY

POSIX.1, RT & RT Profiles

https://www.opengroup.org/platform/single_unix_specification/upl oads/40/5991/POSI X -briefing-2006-2.PDF

5-year update cycle: 2003, 2008, 2013
=== = % X/Open &
7 POSIX.1b | (POSIX.1d F'l“l':-.]‘alb System |
| Realtime Additional RT Nﬂm-}r king /K [nnn'lm'lls /
= . U 1993 - y b 1999 P 1999 y o=
(POSIX1 Y { POSIX.1 3 [-{)1-.,[1{1 ‘-,
Basic UNIX Revision Tech. Corr.
1 941} “,'r A <, 2 % | 2iHi r-l 3002
I',-];T{j'{,;lh 2 4 POSIX.Ic 1 F'{ ISIX. 1| b | P[]‘:}I‘{ 1l|—"—" 3 Y
Shell& Utilities Threads Additional RT| Tracing F{}.‘%IT{ EE.-H‘-
"‘x_ 19493 _,-"I "\“MLJ p I&'-L_,f'} L; Device Cirl. |
S — e e \ 2003)
/" POSIX5 / POSIX.5b | [POSIX.5¢) . S ——
Basic UNIX #| Realime #= Networking | — Ada Bindi Ngs
'E_M_ 19972 d _ 1 D96 __j' I"H_ 19408 i
¢ Pfgrsm.la"“-l (" POSIX.13
RT profiles | - Revision
, 1998 / \ 2003

Mar 18/14 @ CEII‘]GtO]_’l

UNIVERSITY

Minimal profile (PSE51)

http://www-users.cs.york.ac.uk/~burns/papers/c-posix. pdf

e Single Process e Signals
e Threads e Clocks and Timers

e Memory Management @ /O devices

e Semaphores e Fixed priority sporadic
server

e Mutexes with Priority
Inheritance e NOT In profile :

e Condition Variables — file service (beyond 1/O)
— message queues

— networking
Mar 18/14 g% Carleton

e’ UNIVERSITY

POSIX RT Profiles

https.//www.opengroup.org/platform/single _unix_specification/upl 0ads/40/5991/POSI X -briefing-2006-2.PDF

= ; Multi-Purpose
,f . : BN =
/ Asynchronous ! Multiple o .

Networking \, 1/0 Processes .-'f Shell &
Utilities

--"\-\._‘_

lessage o
\ Queues /" Multi ple

QNX, VxWorks — e

o =
Simple ™

Vol Users
v File System %,

Dedicated

Full
File System

Controller

PSES2

Mar 18/14 ’5[_27 (Carleton

UNIVERSITY

