
SYSC 5701
Operating System Methods for

Real-Time ApplicationsReal-Time Applications

Threads

Winter 2014

Recall Process Creation

� each process has code, data, and stack
– other resources too? (I/O devices?)

� allocate a thread of control
– managed by the kernel

Mar 18/14

– managed by the kernel

2

Code, Data, Stack

� what if processes replicate behaviour?
– execute the same code?
– OK if memory manager will permit this(?)

� in a strict process model:

Mar 18/14

� in a strict process model:
processes do not share memory

– each must have its own copy of code +
data and stack space

3

Heavyweight Process
� a heavyweight process requires all of the

above: code, data, stack
� heavyweight processes are strict:

do not share resources

Mar 18/14

do not share resources
� Heavyweight processes: system must

have memory manager hardware that can
isolate and protect regions of memory
based on s/w level id’s
– Cortex-A (yes, MMU) … Cortex-M (no, MPU)

4

Lightweight Processes
� can share code and data
� must have own stack and thread of control
� less overhead during lightweight kernel

activity:

Mar 18/14

– faster context switch and IPC ☺
– application programmers must manage sharing

of data �
… (maybe specialized languages can help?)

5

Application Design
Philosophy

� heavyweight processes: encapsulate large -
grained parallel activities that are loosely
coupled
– i.e. interact infrequently, minimal data sharing

lightweight processes encapsulate finer -

Mar 18/14

� lightweight processes encapsulate finer -
grained parallel activities that are tightly
coupled
– i.e. interact frequently, lots of data sharing

6

Performance Goals
� heavyweight switching and IPC

� “more” expensive
– looser coupling = less heavyweight IPC and

switching

� lightweight switching and IPC

Mar 18/14

� lightweight switching and IPC
� “less” expensive
– tighter coupling = more lightweight IPC and

switching

7

Thread

� A thread is a lightweight process
created in the context of a heavyweight
process

� only the threads in the context of the

Mar 18/14

� only the threads in the context of the
same heavyweight process can access
the code and data of that process

8

Thread Management

1. by kernel
2. outside of kernel
3. hybrid – developing trend!

Mar 18/14 9

1. Threads Managed by Kernel

kernel has two classes of processes:
� lightweight (thread) and heavyweight (process)

– different services for each

� threads of a process are autonomous

Mar 18/14

� threads of a process are autonomous
� a thread may become blocked, but just that

thread is blocked (not the entire process)

10

Kernel Managed Threads
� heavyweight process does not really execute

as a single thread of control
� a container for managing threads

� the process has a set of threads

Mar 18/14

� the process has a set of threads
– the active elements of the process

� kernel manages both process and thread
scheduling

11

2. Threads Outside of Kernel

� process has single thread of control
– managed by kernel

� single control thread is shared among threads
– managed by thread manager

unknown to kernel!

Mar 18/14

� unknown to kernel!
� this sort of thread called user-thread (fiber?)
� thread manager resides outside of kernel (appln code!)
� often a run-time library supplied by

language/environment vendors

12

User Threads
� if strict process model – each process must

have its own copy of thread manager (no
code sharing!)

� if a thread makes an IPC call via the kernel
and becomes blocked

Mar 18/14

and becomes blocked
� kernel blocks the process ! �
(kernel has no knowledge of threads!) �

13

3. Hybrid Threads
� user thread concept known to kernel, but

user-thread manager is outside of kernel
� thread manager and kernel cooperate –

“scheduler ” user thread for the process is
known to the kernel

Mar 18/14

known to the kernel
– special interactions supported between scheduler

thread and kernel

14

Hybrid
con’t

when a user-thread invokes a kernel service and is
blocked:

1. kernel “pseudo” blocks user-thread – records
relevant blocking criteria, but instead of blocking
process ...

2. kernel returns control to relevant scheduler thread

Mar 18/14

2. kernel returns control to relevant scheduler thread
3. scheduler thread “blocks” the user-thread (outside

of kernel!) and schedules a different user-thread
– net result: thread is blocked, process not blocked

4. when criteria met to unblock original user-thread
– kernel informs relevant scheduler thread
– scheduler thread unblocks the thread and makes thread

scheduling decisions
15

Hybrid Thread Blocking

process

scheduler
thread

user threads

Mar 18/14

kernel

blocking call

notify scheduler thread

save info

16

User-Thread Scheduling
Issues

� time-slice �
– suitability to real-time app’s ?

� preempt vs. non-preempt
– voluntary relinquish?

Mar 18/14

– voluntary relinquish?

� all the same-old issues:
– priority? timed services? etc.

17

Extended Process Model
with Threads

heavyweight kernel processes

user

Mar 18/14

lightweight processes (kernel threads)

• • •

• • •

user
threads• • •

18

Kernel-Mode
Threads/Processes

� common in large, general-purpose o/s
– MMU hardware!

� not as common in real-time applications
� modern o/s’ often manage I/O subsystems � modern o/s’ often manage I/O subsystems

– e.g. disk I/O subsystem
– require “supervisor” permission to access

restricted I/O devices
– must execute in kernel’s supervisor context

Mar 18/14 19

O/S Layer Above Kernel

� may include processes that are not visible
outside of the o/s but exist inside the o/s

� these processes are created (and run) in the
kernel’s context to permit access to

Mar 18/14

kernel’s context to permit access to
restricted h/w

� called kernel-mode processes

20

kernel-mode

Kernel-Mode Process Layer

…
application
processes

…

Mar 18/14

kernel

kernel-mode
processes

…

21

Similar (Kernel) Thread Trend
� when process invokes kernel service – kernel

blocks process and creates a kernel-mode
thread associated with the request

� new thread has unique stack (in kernel’s space)
+ shares access to kernel code and data

Mar 18/14

+ shares access to kernel code and data
� must have enough stack space to permit a

kernel-mode thread for each process �
� kernel-mode thread executes with supervisor

privileges on behalf of the requesting process

22

Kernel-Mode Threads
� kernel manages kernel-mode threads
� kernel threads can be preempted
� more concurrency
� still need to protect access to kernel’s shared data

structures!

Mar 18/14

structures!

� has overheads! �
� hasn’t hit real-time kernels in a big way (yet)

but h/w is driving in this direction!

23

Threads Example:
POSIX Threads (pthreads)

� Part of Portable Operating System Standard (POSIX)
– http://en.wikipedia.org/wiki/POSIX

� IEEE Std 1003.1-2013
� http://www.opengroup.org/onlinepubs/9699919799/nframe.html

Mar 18/14

� http://www.opengroup.org/onlinepubs/9699919799/nframe.html

� Maintained by The Open Group http://www.opengroup.org

� Based on UNIX thread model … widely supported
– E.g.: QNX, VxWorks (PSE52 … later)
– Many more (Windows add-ins too!)

� API spec for: C (primary) [Ada, Fortran (optional)]

24

Sync & Comm (Normal)
� semaphores for synchronization
� shared memory
� messaging (message queues)
� mutex (lock, unlock)

Just scratching the surface in these slides!!!!

Mar 18/14

� mutex (lock, unlock)
– access control (e.g. priority inheritance)

� condition variables (Hoare-style monitors)
� timed services

25

Thread Management
� “main” thread – created when containing

process created
� process terminates when “main” thread

terminates
int pthread_create (int pthread_create (

pthread_t *thread, // id

pthread_attr_t *attr, // attributes

void *(*start_routine)(void *), // funcn

void *arg // args

);

Mar 18/14 26

Joining a Thread
� sometimes want thread to return some

application-specific value at termination
� allow a thread to “join” a 2nd thread to receive

the 2nd thread’s termination data
� need special commn mechanism � make

sure thread’s return value is not lost if 2nd

thread terminates before joiner

Mar 18/14 27

Join
int pthread_join(2nd_thread, **return_value)

� “attach” thread to 2nd_thread
� blocks (waits) until 2nd_thread terminates
� returns with “return value” from 2nd_thread
� if 2nd_thread terminates first, 2nd_thread is put

in “limbo” state, but data persists to ensure the
return_value is not lost

Mar 18/14 28

Thread Termination
� implicit: return from start_routine function

– returns function’s return_value to joiner
� explicit: void pthread_exit(*return_value)

� can also explicitly terminate another thread:
int pthread_kill(other_thread, sig);

Mar 18/14 29

Detached Thread

� when thread not required to supply a
return_value � declare thread as detached

� when detached thread terminates, all
allocated resources are reclaimedallocated resources are reclaimed

Mar 18/14 30

self transitions

(Partial) pthread State Machine

create

yield, sleep,
exit, wait,
lock, joinREADY RUNNING

DONE
yield

exit &
detached

exit &
! detachedwait

join

forced
transitions

Mar 18/14

self transitions

signal

WAIT on
Sema4

LIMBO

SLEEP

! detachedwait

join

sleep

timeout

JOIN
exit

WAIT on
mutex

unlock

lock

31

Lock/Unlock Mutex
int pthread_mutex_lock(

pthread_mutex_t *mutex);

int pthread_mutex_unlock(

pthread_mutex_t *mutex);

Similar to binary semaphore� Similar to binary semaphore
� Can set a priority ceiling
� Can set policy (priority inheritance,

priority ceiling emulation, none)

Mar 18/14 32

Monitors
� use condition variable as the blocking

“queue”

int pthread_cond_init(

pthread_cond_t *restrict cond,

No aliasing

pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);

Mar 18/14 33

Monitor: Wait on Condition
Variable

int pthread_cond_wait(

pthread_cond_t *cond,

pthread_mutex_t *mutex);

� caller waits on condition variable, and
mutex is unlocked (single operation!)mutex is unlocked (single operation!)

� convention: when return from wait,
caller “owns” the mutex
– i.e. releaser must leave monitor!

Mar 18/14 34

Monitor: Signal Condition
Variable

int pthread_cond_signal(thread_cond_t *cond);

� Unblocks a thread from the condition variable
– No blocked thread? � no effect

� Scheduling policy decides which thread� Scheduling policy decides which thread
– E.G. priority-driven

� Released thread “owns” mutex
– Recall pthread_cond_wait

Mar 18/14 35

Timed Wait on Sema4
int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abstime);

� Absolute time
� Return: 0 = success (locked sema4 within

specified time) specified time)
– 1 = error, including eTimedOut

� Similar call for wait on condition variable

Mar 18/14 36

Signals
� Allow asynchrounous events to be

communicated and then processed
� Record individual signal in sigevent data

structure
– Some are predefined system event types– Some are predefined system event types
– Application can define specific event types, too

� All event types for system = union of all
sigevents

Mar 18/14

N.B.: Just touching surface … very complex!!

37

Raising Signals
� Can be caused by runtime events

– Asynchronous I/O, Timeouts, Faults

� May be sent to:
– Process (thread container)

Process by any “willing” thread� Process by any “willing” thread
– Specific thread

� May be queued
� Is “pending” until received

Mar 18/14 38

Receiving Signals
int sigwait(const sigset_t *restrict set,

int *restrict sig);

� Calling thread waits for any signal in set
– “waits” = blocked
– “willing” to process any signal in set– “willing” to process any signal in set

� Signal number stored (returned) in sig
� After call, caller then takes appropriate

action to process signal
� Provides asynchronous pre-emption

Mar 18/14 39

POSIX.1, RT & RT Profiles
https://www.opengroup.org/platform/single_unix_specification/uploads/40/5991/POSIX-briefing-2006-2.PDF

5-year update cycle: 2003, 2008, 2013

Mar 18/14

5 = Ada Bindings

40

Minimal profile (PSE51)

� Single Process
� Threads
� Memory Management

� Signals
� Clocks and Timers
� I/O devices

Fixed priority sporadic

http://www-users.cs.york.ac.uk/~burns/papers/c-posix.pdf

� Semaphores
� Mutexes with Priority

Inheritance
� Condition Variables

� Fixed priority sporadic
server

� NOT in profile :
– file service (beyond I/O)
– message queues
– networking

Mar 18/14 41

POSIX RT Profiles

QNX, VxWorks

https://www.opengroup.org/platform/single_unix_specification/uploads/40/5991/POSIX-briefing-2006-2.PDF

Mar 18/14

PSE51 PSE52 PSE53

PSE54

42

