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SYSC 5701
Operating System Methods 
for Real-Time Applications

Real-Time (RT) Systems

Winter 2014
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for those following Liu’s text:

� Ch. 1: Typical RT Applications
– digital controllers   (“motivation”)

� Ch. 2: Hard vs. Soft RT Systems
– jobs, processors, timing

� Ch.3: Reference Model of RT 
Systems
– basis for subsequent chapters
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Simple Digital Controller

digital controller

reference 
input        
r(t)

sensor 
input     
y(t)

controlled “plant”

actuator 
output     

u(t)

feedback control loop

u(t) = f ( r(t) – y(t) )

Control-Law 
Computation
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Digital Control

repeatedly:
1. sample inputs r(ti)  and  y(ti) 

– requires input hardware (e.g. A to D)

2. calculate control-law computation � u(ti)
– requires processor

3. generate output u(ti)
– requires output hardware (e.g. D to A)
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Temperature Controller 
Example

controllertemperature 
selector

temperature 
sensor

heater

heater 
control 
signal

heated object

IS

IT
OHP
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Temperature Controller 
Activities

1. sample inputs

2. calculate control-law 
computation

3. generate output

sample IS sample IT

calculate

generate OH

I/O 
hardware

I/O 
hardware

processor

active 
components
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Processor in Sampling Input?

� assume inputs via A/D converters
� processor must write start command to 

begin an A/D conversion
� processor must read digital value when 

conversion complete

sample I

start read
processor

A/D  I/O hardware
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Processor in Generating Output?

� assume output via D/A converter
� processor must be sure converter is not 

busy when starting a new conversion
� processor must write: data to begin a 

D/A conversion

generate O

start
processor

D/A   I/O hardware
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Solution 1    Sequential: Go Fast!
do forever
{ poll IS for selector input:  start poll read

poll IT for temperature input: (start poll read)
calculate control-law computation

wait (poll) for OH hardware ready
start OH generating heater control signal

}

processor: calculate

poll IS poll IT gen. O
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Analysis of Solution 1
� design approach: 

– no design, just GO as fast as possible 

� could it go faster?  (Solution 1a)
– utilize concurrency of active input devices!

processor: calculate

poll IS & IT gen. O time 
saved per 
iteration

previous: calculate

poll IS poll IT gen. O
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Solution 1:  Faster Still?
� faster hardware?  but … is faster necessary?
� engineering?

– reduce cost and still meet requirements?
� slower hardware is often less expensive

– is behaviour predictable? analysis?
– extension? processor available for more work?
– are there redundant loop iterations?  power?
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Requirements Analysis
� INPUT: timing and magnitude of reference 

input changes?     requirements!
� OUTPUT: how fast must output be 

adjusted to maintain acceptable plant 
state?
– what is “acceptable”?     requirements!
– variation from “ideal”?
– oscillation?

tolerances for 
engineering
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Periodic Iteration?
� could shift design approach to perform loop 

iterations at regular periodic intervals
� need h/w timer to gauge start of period
� period too large � slow

� failure to meet system requirements
– unacceptable from user’s perspective

� period too small � fast
� may have under-engineered product

– not optimal from engineering perspective
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Solution 2:
Sequential: Polled  +  Periodic

sample IS
sample IT

calculate

generate OH

poll timer  

iteration period

poll ITpoll IS

OH idle

IS idle

IT idleIT idle

OH idle

start 
iteration

deliver 
output
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Solution 2: Timing
� processor has no idle time  � busy 

waiting (poll)

� what factors influence the controller’s 
timing behaviour?  Are they predictable?

– complexity of calculation 

– behaviour of I/O hardware

� sampling inputs and generating outputs
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Solution 3 
Event-Driven: Interrupts

� periodic timer interrupt
� iteration period = integer multiple of timer 

period
� assume A/D input device generates

interrupt when data ready to be read
� use interrupts to schedule activities

� use ISRs to execute activities on processor
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Solution 3

sample IS
sample IT

calcu late

iteration period

OH idle

IS idle

IT idle   

OH idle   

start 
iteration

deliver 
output

timer interrupts

generate OH

= processor idle
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Solution 3: Processing
� all work done in ISRs � no polling!
� input ISRs: read values when ready

� timer ISR:  regular tick plus
– start input sampling
– calculate output
– start output generation
– may require ability for timer interrupt to 

interrupt timer ISR! 
� tick in calculate!
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OK for Toy Examples…but …

� multivariate, multirate systems
– multiple degrees of freedom
– different rates of control-law calculation

� more complex control-law computations
– smooth the output trajectory
– include estimation based on input history 

(state variables) and heuristics
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What About Control Hierarchy?

� higher-level objectives
– e.g. is temperature control part of a 

bigger manufacturing process?
� communication among hierarchy levels

� Liu text has more detailed examples!

Jan. 14, 2014 21

Engineering vs. Art

� art: creation of a system using methods 
that are unique to artist and artist’s 
abilities

� engineering: specification, design and 
development of realistic systems using 
quantitative, systematic and repeatable 
methods known to “many”
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Reference Model for RT Systems
� towards engineering RT systems
� terminology & taxonomy

– application characteristics
– scheduling, resource management

� generalize where possible
– simplify discussion
– assume general, unless specific reference
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Jobs  &  Tasks
� job : a unit of work that is carried out by the 

system (Ji )

� task : a set of related jobs that provide some 
system function  ( τi = { Ji,1, Ji,2 , … , Ji,N } )

� task � a generalization � a class of jobs
– tasks are specified at design-time

� job Ji,k � kth instance of task i
– jobs occur at run-time

Task i

process a packet
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Jobs & Task Example

Instances

Job i,1 : process 1st packet

Job i,2 : process 2nd packet

…

Job i,k : process kth packet

…

design-time 
abstraction

run-time 
realization
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Processors & Resources
� the available components in the system

– design decisions!

� processor : an active h/w component
involved in the execution of a job (Pi )

� resource : a passive (h/w or s/w)
component required by a job 

sometimes Liu text uses “resource” to 
encompass both processors and resources
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Release Time & Deadline

� release time (or arrival time) of a job: time 
at which the job becomes available for 
execution ( ri )

� deadline of a job: time at which the job 
must be completed

� response time of a job: length of time 
between the release time of the job and the 
time instant when it completes
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Deadlines

� relative deadline of a job: maximum
allowable response time of a job ( Di )

� absolute deadline of a job: time at which a 
job must be completed ( di = ri + Di )

� timing constraint: a constraint imposed on 
the timing behaviour of a job
– most often � the deadline of the job
– others too    e.g.   jitter

Recall Temperature Control 
Example (Solution 3, slide 17)

� Tasks, jobs, processors, resources?
� Release times, dead lines, response times?
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sample IS
sample IT

calcu late

OH idle

IS idle

IT idle 

OH idle  generate OH
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Hard RT System (Liu)

� recall previous definition � failure oriented
� a system is a hard real-time system if the 

requirements include the validation that the 
system always meets certain (hard) timing 
constraints

� validation: demonstration by a provably 
correct procedure, or by exhaustive 
simulation and testing

� guarantee vs. best effort
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Specifying Hard Timing 
Constraints

� deterministic  common  (hard!)
– specify constraints that must always be met

� probabilistic  not as common  (softer)
– specify constraint and probability of meeting 

constraint
– allows some (few) failures over many instances
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Job & Task Parameters

� temporal:  timing constraints and 
behaviour

� interconnection:  dependencies 
among jobs (or among tasks)

� resource:  active (processor) and 
passive (resource) components 
required
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Temporal Parameters of Jobs

� includes ri , di and Di

� feasible interval:  (ri , di]
– does not include ri , includes di

– includes execution time

� various forms of  jitter � variations in 
timing behaviours of instances of jobs
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Job Execution Time

� execution time : processing time required to 
complete work associated with job  ( ei )
– assumes that all required processors and 

resources are available
– depends on complexity of job and speed of 

processors
� execution jitter: range of possible execution 

times    [ ei
– , ei

+ ]
– best case and worst case execution times
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Release Time Revisited

� fixed : know exact release time
� jittered : range of possible release times    

[ ri
– , ri

+ ]
� sporadic / aperiodic : released at random 

intervals     e.g. key pressed on a keyboard
– sporadic : specified minimum inter-arrival time
– aperiodic : no spec’ed minimum inter-arrival 

time
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Periodic Task Model

� deterministic workload model
– applied at design-time

� lots of research
– Liu & Layland, 1973

� basis for Rate Monotonic (RM) analysis
– DoD requirement for hard RT systems
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Periodic Task Model  (2)

� period : time between successive releases 
of jobs in a task  ( pi )
– typically have jitter  � use minimum

� pessimistic ?  deterministic !

� execution time : maximum execution time  
of a job in the task ( ei )

� pessimistic ?  deterministic ! 

� phase : release time of first job in task (φi )
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Notes About Model

� assumptions:
– number of tasks, periods, execution times, 

phases are known
– required components are always available

� pessimistic � always assumes worst cases
– NOTE: accuracy (and applicability) of model 

decreases with increasing jitter 

Jan. 14, 2014 38

Hyperperiod

� hyperperiod : least common multiple of 
all task periods ( H )
– number of jobs for task i = 

� if n tasks, number N of jobs in 
hyperperiod:

Σ
i = 1

n
H
pi

N  =

H
pi
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Processor Utilization 

� processor utilization by a task : fraction of 
time the task keeps the processor busy ( ui )

� total utilization of processor by tasks ( U )

ui =
ei
pi

Σ
i = 1

n
U  = ui =

ei
pi

Σ
i = 1

n
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How is Utilization Useful?
� U ≤≤≤≤ 1.0 for each processor is a 

necessary, but not sufficient, condition for 
meeting deadlines

� must consider other related factors
– deadlines
– priority
– sporadic tasks
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Deadlines
� in general Di not constrained relative to pi

– can be shorter, equal, or longer than pi

� if  Di < ei then impossible to meet deadline
� throughput assumption:  system always 

keeps up with work demanded
– periodic task model:   Di = pi
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Back to:  Job & Task 
Parameters

� temporal:  timing constraints and behaviour
���� periodic task model

� interconnection:  dependencies among 
jobs (or among tasks)

� resource:  active (processor) and passive 
(resource) components required
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Interconnection Parameters
� precedence constraint :   jobs (tasks) must 

be performed in specified order
– independent : order not constrained

� precedence relation : partial order that 
identifies precedence constraints 
– denote “<”   (Lamport: “happens before”)
– Ji < Jk indicates that Ji must complete before Jk

can begin      i.e. Ji happens before Jk

� Ji is a predecessor of Jk

Jan. 14, 2014 44

More on Precedence
� Ji is an immediate predecessor of Jk if 

– Ji < Jk AND
– no other job Jj such that Ji < Jj < Jk

� Ji is independent of Jk if neither 
Ji < Jk nor   Jk < Ji

� chain : a set of jobs in which no two jobs 
are independent  
– for all pairs, either Ji < Jk or   Jk < Ji
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Job Precedence Graph
� embody precedence relation  < over set of 

jobs  J in a directed graph :  G =  ( J, < )
� vertices : each job in J is a vertex
� edges : edge from Ji to Jk iff Ji is an 

immediate predecessor of Jk

� lattice (not necessarily a tree!)
� job may have multiple immediate 

predecessors
� may have more than one job with no 

predecessors
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Resource Parameters
( Resource = Processors + Resources )

� all jobs require one or more processors
� resource parameters of a job:

– type of processor(s) & number(s)
– other resources required
– time interval over which each is needed

� parameter of resource:  preemptivity

Sharing Resources
� All jobs require resources
� Can jobs share resources?

– Yes! Jobs often share a processor and memory.
– Sharing I/O is less common … single “driver” task

Sharing complicates things!
Sharing requires management! � Scheduling!
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Can Sharing Involve Preemption? 
(or run to completion)

� priority concern!
– can a job be preempted by a higher-priority job ? 

� yes � job is preemptable
� no � job is nonpreemptable
Which might lead to more complicated scheduling?

� jobs often share a processor with preemption
� preempting shared memory access? a good 

idea?
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Implementing Preemption
� context switch:

1. pause executing job

2. save job/resource state at time of 
pausing

3. install another job/resource state
� context switch back to preempted job (i.e. 

resume the job) at a future point in time
We’ll see this in more detail later!

Recall Example (slide 17)
� Periods, execution times,  jitter (?)
� Processor utilization, precedence 

graphs?
� Preemption? Context switch?
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sample IS

sample IT

calcu late

OH idle

IS idle

IT idle

OH idlegenerate OH
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Scheduling Theory
� ideal goal : all jobs are always allocated 

required resources to complete execution 
within their feasible regions  ( r, d ]

� scheduling algorithm : decides the order 
in which jobs are allocated resources

� scheduler : a module that implements a 
scheduling algorithm

� scheduling decision point: point in time 
when scheduler decides which job to 
execute next
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Schedule
� schedule : assignment of all jobs (over 

time) to available resources
� feasible schedule : every job starts at or 

after its release time and completes by its 
deadline
– Could be more than one feasible schedule!

� optimal scheduling algorithm : always 
produces a feasible schedule if at least one 
feasible schedule exists
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Common Approaches For 
Real-Time Scheduling

� Clock-Driven (Time-Driven) : scheduling 
decision points are specified a priori (static)
– E.G. the temperature control example. More Later!

� Weighted Round-Robin : weighted jobs join a 
FIFO queue – weight determines amount of 
processor time allocated to the job  �

� Priority-Driven (Event-Driven) : scheduling 
decisions are made as events occur (dynamic)
– schedule ready job with highest priority

( Liu Ch. 4 )
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Priority-Driven Scheduling

� A major topic!  But first …

� lets look at an event-driven process 
model in more detail


