1/16/2014

SYSC 5701
Operating System Methods
for Real-Time Applications

Real-Time (RT) Systems

Winter 2014

for those following Liu’s text:

e Ch. 1. Typical RT Applications
— digital controllers (“motivation”)

e Ch. 2: Hard vs. Soft RT Systems
— jobs, processors, timing

e Ch.3: Reference Model of RT
Systems
— basis for subsequent chapters

Jan. 14, 2014 2

Simple Digital Controller

Control-Law
referer;ce u() = f (r® - y@) Computation
inpu
rt) — actuator
output

sensor ue
input feedback control loo
y() P

Jan. 14, 2014 3

Digital Control

repeatedly:

1. sample inputs r(t;) and y(t)
— requires input hardware (e.g. A to D)

2. calculate control-law computation 2> u(t;)
— requires processor

3. generate output u(t;)
— requires output hardware (e.g. D to A)

Jan. 14, 2014 4

Temperature Controller

Example
temperature
selector
heater
temperature control
sensor signal

e

Jan. 14, 2014 5

Temperature Controller

Activities active
1. sample inputs components

sample |- Reull
hardware
2. calculate control-law

computation [EEIEE]

processor

3. generate output|eEhEEEien—— /O
hardware

Jan. 14, 2014 6

1/16/2014

Processor in Sampling Input?

e assume inputs via A/D converters

® processor must write start command to
begin an A/D conversion

e processor must read digital value when
conversion complete

m <~ A/D /O hardware

ﬂ H «— processor
start read

Jan. 14, 2014 7

Processor in Generating Output?

e assume output via D/A converter

® processor must be sure converter is not
busy when starting a new conversion

e processor must write: data to begin a
D/A conversion

«— D/A 1/O hardware

<«— processor
start

Jan. 14, 2014 8

Solution 1 sequential: Go Fast!
do forever
{ poll I for selector input: start- poll —read
poll I for temperature input: (st/art poll read)
calculate control-law computation
wait (poll) for O, hardware ready
start O, generating heater control signal

} poll Is poll I 93&.0

Jan. 14, 2014 9

Analysis of Solution 1

e design approach:
- no design, just GO as fast as possible
e could it go faster? (Solution 1a)
— utilize concurrency of active input devices!

p%ih Q:LO time

. ‘ 77 saved per
processor||[N [| iteration
previous: [N TR

Jan. 14, 2014 10

Solution 1:; Faster Still?

e faster hardware? but ... is faster necessary?
e engineering?
- reduce cost and still meet requirements?
o slower hardware is often less expensive
— is behaviour predictable? analysis?
— extension? processor available for more work?
— are there redundant loop iterations? power?

Jan. 14, 2014 1

Requirements Analysis

e INPUT: timing and magnitude of reference
input changes? < requirements!

e OUTPUT: how fast must output be
adjusted to maintain acceptable plant
state?

— what is “acceptable”? < requirements!

— variation from “ideal? tolerances for
— oscillation? engineering

Jan. 14, 2014 12

Periodic Iteration?

e could shift design approach to perform loop
iterations at regular periodic intervals

e need h/w timer to gauge start of period
e period too large - slow
- failure to meet system requirements
— unacceptable from user’s perspective
e period too small > fast
- may have under-engineered product
— not optimal from engineering perspective

Jan. 14, 2014 13

1/16/2014

Solution 2:
Sequential: Polled + Periodic

|—iteration period |

Solution 2: Timing

e processor has no idle time - busy
waiting (poll)

e what factors influence the controller’'s
timing behaviour? Are they predictable?

— complexity of calculation
— behaviour of I/0 hardware
o sampling inputs and generating outputs

sample Ig I idle

Iy idle sample |, I; idle
Oy, idle generate Oy Oy idle

poll Ig poll | calculate poll timer

] start deliver
iteration output
Jan. 14, 2014 14

Solution 3

Event-Driven: Interrupts

e periodic timer interrupt

e iteration period = integer multiple of timer
period

e assume A/D input device generates
interrupt when data ready to be read

e use interrupts to schedule activities
e use ISRs to execute activities on processor

Jan. 14, 2014 16

Jan. 14, 2014 15
Solution 3
start deliver
iteration output

timer interrupts
S S DN S N S M
sample Ig Ig idle
sample |+ N I idle

Oy, idle generate Oy Oy idle

v

——
N @ calculate | [

|—iteration period |
I:I = processor idle

Jan. 14, 2014 17

Solution 3: Processing
e all work done in ISRs - no polling!
e input ISRs: read values when ready
e timer ISR: regular tick plus
— start input sampling
— calculate output
— start output generation

— may require ability for timer interrupt to
interrupt timer ISR!

e tick in calculate!

Jan. 14, 2014 18

1/16/2014

OK for Toy Examples...but ...

e multivariate, multirate systems
— multiple degrees of freedom
— different rates of control-law calculation

e more complex control-law computations
- smooth the output trajectory

— include estimation based on input history
(state variables) and heuristics

Jan. 14, 2014 19

What About Control Hierarchy?

e higher-level objectives

—e.g. is temperature control part of a
bigger manufacturing process?

e communication among hierarchy levels
e Liu text has more detailed examples!

Jan. 14, 2014 20

Engineering vs. Art

e art: creation of a system using methods
that are unique to artist and artist’s
abilities

e engineering: specification, design and
development of realistic systems using
guantitative, systematic and repeatable
methods known to “many”

Jan. 14, 2014 21

Reference Model for RT Systems

e towards engineering RT systems
e terminology & taxonomy
— application characteristics
- scheduling, resource management
e generalize where possible
- simplify discussion
— assume general, unless specific reference

Jan. 14, 2014 22

Jobs & Tasks

e job : a unit of work that is carried out by the
system (J;)

e task : a set of related jobs that provide some
system function (1,={J;1, Ji2, ..., Jin})

e task - a generalization - a class of jobs
— tasks are specified at design-time

e job J;, > k" instance of task i
— jobs occur at run-time

Jan. 14, 2014 23

Jobs & Task Example

Taski Instances
process a packet | Job i,1 : process 15t packet

Job i,2 : process 2" packet

Job i,k : process kth packet

I

I
design-time run-time
abstraction realization

Jan. 14, 2014 24

1/16/2014

Processors & Resources

e the available components in the system
— design decisions!

e processor : an active h/w component
involved in the execution of a job (P;)

e resource : a passive (h/w or s/w)
component required by a job

resource

Jan. 14, 2014 25

Release Time & Deadline

e release time (or arrival time) of a job: time
at which the job becomes available for
execution (r;)

e deadline of a job: time at which the job
must be completed

e response time of a job: length of time
between the release time of the job and the
time instant when it completes

Jan. 14, 2014 26

Deadlines

e relative deadline of a job: maximum
allowable response time of a job (D;)

e absolute deadline of a job: time at which a
job must be completed (d;=r,+ D;)

e timing constraint: a constraint imposed on
the timing behaviour of a job
— most often > the deadline of the job
—otherstoo e.g. jitter

Jan. 14, 2014 27

Recall Temperature Control
Example (Solution 3, slide 17)

e Tasks, jobs, processors, resources?
e Release times, dead lines, response times?

|
sample ig Ig idle
sample Iy | I; idle

Oy idle generate O,; O, idle

calcullate

Jan. 14, 2014 28

Hard RT System (Liu)

e recall previous definition - failure oriented

e a system is a hard real-time system if the
requirements include the validation that the
system always meets certain (hard) timing
constraints

e validation: demonstration by a provably
correct procedure, or by exhaustive
simulation and testing

e guarantee vs. best effort

Jan. 14, 2014 29

Specifying Hard Timing
Constraints
e deterministic < common (hard!)
- specify constraints that must always be met

e probabilistic < not as common (softer)

- specify constraint and probability of meeting
constraint

— allows some (few) failures over many instances

Jan. 14, 2014 30

1/16/2014

Job & Task Parameters

e temporal: timing constraints and
behaviour

e interconnection: dependencies
among jobs (or among tasks)

e resource: active (processor) and
passive (resource) components
required

Jan. 14, 2014 31

Temporal Parameters of Jobs

e includes r;, d; and D,

e feasible interval: (r;, d]
— does not include r; , includes d;
- includes execution time

e various forms of jitter -> variations in
timing behaviours of instances of jobs

Jan. 14, 2014

Job Execution Time

e execution time : processing time required to
complete work associated with job (e;)
— assumes that all required processors and
resources are available
- depends on complexity of job and speed of
processors
e execution jitter: range of possible execution
times [e, "]
— best case and worst case execution times

Jan. 14, 2014

Release Time Revisited

e fixed : know exact release time
e jittered : range of possible release times
[rim]
e sporadic / aperiodic : released at random
intervals e.g. key pressed on a keyboard
— sporadic : specified minimum inter-arrival time
—aperiodic : no spec’ed minimum inter-arrival
time

Jan. 14, 2014 34

Periodic Task Model

e deterministic workload model
— applied at design-time

e |ots of research
- Liu & Layland, 1973

e basis for Rate Monotonic (RM) analysis
— DoD requirement for hard RT systems

Jan. 14, 2014

Periodic Task Model (2)

e period : time between successive releases
of jobs in atask (p;)
— typically have jitter - use minimum
e pessimistic ? deterministic !
e execution time : maximum execution time
of a job in the task (e;)
e pessimistic ? deterministic !
e phase : release time of first job in task (g)

Jan. 14, 2014

Notes About Model

e assumptions:
— number of tasks, periods, execution times,
phases are known
- required components are always available
® pessimistic > always assumes worst cases
— NOTE: accuracy (and applicability) of model
decreases with increasing jitter

37

1/16/2014

Jan. 14, 2014

Hyperperiod

e hyperperiod : least common multiple of
all task periods (H)
— number of jobs for task i :%

e if n tasks, number N of jobs in
hyperperiod:

H
N = a
1 Pi

M=

Jan. 14, 2014

Processor Utilization

e processor utilization by a task : fraction of
time the task keeps the processor busy (u;)

How is Utilization Useful?

eU < 1.0 foreach processoris a
necessary, but not sufficient, condition for
meeting deadlines

e must consider other related factors

— deadlines
— priority
— sporadic tasks

Jan. 14, 2014

€
e total utilization of processor by tasks (U)
n n e
U= Z U; :,Z -
i=1 i=1Pi
Deadlines

e in general D; not constrained relative to p,
— can be shorter, equal, or longer than p;

e if D, <e; then impossible to meet deadline

e throughput assumption: system always
keeps up with work demanded
— periodic task model: D; =p;

Jan. 14, 2014 41

Back to: Job & Task
Parameters

e temporal: timing constraints and behaviour

/ - periodic task model
e interconnection: dependencies among
jobs (or among tasks)

e resource: active (processor) and passive

(resource) components required

Jan. 14, 2014

42

Interconnection Parameters

e precedence constraint : jobs (tasks) must
be performed in specified order
— independent : order not constrained

e precedence relation : partial order that
identifies precedence constraints
—denote “<” (Lamport: “happens before”)

- J; < J, indicates that J; must complete before J,
can begin i.e. J; happens before J,

¢ J; is a predecessor of J,

Jan. 14, 2014 43

1/16/2014

More on Precedence

e J; is an immediate predecessor of J, if
-J;<J, AND
- no other job J; such that J; < J; < J,
e J; is independent of J, if neither
Ji<J, nor J <
e chain : a set of jobs in which no two jobs
are independent
— for all pairs, either J; < J, or J, <J

Jan. 14, 2014 44

Job Precedence Graph
e embody precedence relation < over set of
jobs J inadirectedgraph: G = (J,<)
e vertices : each job in J is a vertex
e edges : edge from J; to J, iff J;is an
immediate predecessor of J,
e lattice (not necessarily a tree!)

e job may have multiple immediate
predecessors

e may have more than one job with no
predecessors

Jan. 14, 2014 45

Resource Parameters
(Resource = Processors + Resources)
e all jobs require one or more processors
e resource parameters of a job:
— type of processor(s) & number(s)
— other resources required
— time interval over which each is needed

e parameter of resource: preemptivity

Jan. 14, 2014 46

Sharing Resources
e All jobs require resources
e Can jobs share resources?
- Yes! Jobs often share a processor and memory.
— Sharing I/O is less common ... single “driver” task

Sharing complicates things!
Sharing requires management! - Scheduling!

Jan. 14, 2014 47

Can Sharing Involve Preemption?
(or run to completion)
e priority concern!
— can a job be preempted by a higher-priority job ?
e yes > job is preemptable
e NO > job is nonpreemptable
Which might lead to more complicated scheduling?
e jobs often share a processor with preemption
e preempting shared memory access? a good
idea?

Jan. 14, 2014 48

Implementing Preemption

e context switch:
1. pause executing job
2. save job/resource state at time of
pausing
3. install another job/resource state

e context switch back to preempted job (i.e.
resume the job) at a future point in time

We'll see this in more detail later!

Jan. 14, 2014 49

1/16/2014

Recall Example (slide 17)

e Periods, execution times, jitter (?)

e Processor utilization, precedence
graphs?

° Prleemptlion? Clontextlswitcrf?

samplelg

)

-

Jan. 14, 2014 50

Scheduling Theory

e ideal goal : all jobs are always allocated
required resources to complete execution
within their feasible regions (r, d]

e scheduling algorithm : decides the order
in which jobs are allocated resources

e scheduler : a module that implements a
scheduling algorithm

e scheduling decision point: point in time
when scheduler decides which job to
execute next

Jan. 14, 2014 51

Schedule

e schedule : assignment of all jobs (over
time) to available resources

e feasible schedule : every job starts at or
after its release time and completes by its
deadline
— Could be more than one feasible schedule!

e optimal scheduling algorithm : always
produces a feasible schedule if at least one
feasible schedule exists

Jan. 14, 2014 52

Common Approaches For
Real-Time Scheduling (Liu Ch. 4)

e Clock-Driven (Time-Driven) : scheduling

decision points are specified a priori (static)

— E.G. the temperature control example. More Later!
e Weighted Round-Robin : weighted jobs join a

FIFO queue — weight determines amount of

processor time allocated to the job ®

e Priority-Driven (Event-Driven) : scheduling
decisions are made as events occur (dynamic)
- schedule ready job with highest priority

Jan. 14, 2014 53

Priority-Driven Scheduling

e A major topic! But first ...

e lets look at an event-driven process
model in more detail

Jan. 14, 2014 54

