
1/16/2014

1

SYSC 5701
Operating System Methods
for Real-Time Applications

Real-Time (RT) Systems

Winter 2014

Jan. 14, 2014 2

for those following Liu’s text:

� Ch. 1: Typical RT Applications
– digital controllers (“motivation”)

� Ch. 2: Hard vs. Soft RT Systems
– jobs, processors, timing

� Ch.3: Reference Model of RT
Systems
– basis for subsequent chapters

Jan. 14, 2014 3

Simple Digital Controller

digital controller

reference
input
r(t)

sensor
input
y(t)

controlled “plant”

actuator
output

u(t)

feedback control loop

u(t) = f (r(t) – y(t))

Control-Law
Computation

Jan. 14, 2014 4

Digital Control

repeatedly:
1. sample inputs r(ti) and y(ti)

– requires input hardware (e.g. A to D)

2. calculate control-law computation � u(ti)
– requires processor

3. generate output u(ti)
– requires output hardware (e.g. D to A)

Jan. 14, 2014 5

Temperature Controller
Example

controllertemperature
selector

temperature
sensor

heater

heater
control
signal

heated object

IS

IT
OHP

Jan. 14, 2014 6

Temperature Controller
Activities

1. sample inputs

2. calculate control-law
computation

3. generate output

sample IS sample IT

calculate

generate OH

I/O
hardware

I/O
hardware

processor

active
components

1/16/2014

2

Jan. 14, 2014 7

Processor in Sampling Input?

� assume inputs via A/D converters
� processor must write start command to

begin an A/D conversion
� processor must read digital value when

conversion complete

sample I

start read
processor

A/D I/O hardware

Jan. 14, 2014 8

Processor in Generating Output?

� assume output via D/A converter
� processor must be sure converter is not

busy when starting a new conversion
� processor must write: data to begin a

D/A conversion

generate O

start
processor

D/A I/O hardware

Jan. 14, 2014 9

Solution 1 Sequential: Go Fast!
do forever
{ poll IS for selector input: start poll read

poll IT for temperature input: (start poll read)
calculate control-law computation

wait (poll) for OH hardware ready
start OH generating heater control signal

}

processor: calculate

poll IS poll IT gen. O

Jan. 14, 2014 10

Analysis of Solution 1
� design approach:

– no design, just GO as fast as possible

� could it go faster? (Solution 1a)
– utilize concurrency of active input devices!

processor: calculate

poll IS & IT gen. O time
saved per
iteration

previous: calculate

poll IS poll IT gen. O

Jan. 14, 2014 11

Solution 1: Faster Still?
� faster hardware? but … is faster necessary?
� engineering?

– reduce cost and still meet requirements?
� slower hardware is often less expensive

– is behaviour predictable? analysis?
– extension? processor available for more work?
– are there redundant loop iterations? power?

Jan. 14, 2014 12

Requirements Analysis
� INPUT: timing and magnitude of reference

input changes?  requirements!
� OUTPUT: how fast must output be

adjusted to maintain acceptable plant
state?
– what is “acceptable”?  requirements!
– variation from “ideal”?
– oscillation?

tolerances for
engineering

1/16/2014

3

Jan. 14, 2014 13

Periodic Iteration?
� could shift design approach to perform loop

iterations at regular periodic intervals
� need h/w timer to gauge start of period
� period too large � slow

� failure to meet system requirements
– unacceptable from user’s perspective

� period too small � fast
� may have under-engineered product

– not optimal from engineering perspective

Jan. 14, 2014 14

Solution 2:
Sequential: Polled + Periodic

sample IS
sample IT

calculate

generate OH

poll timer

iteration period

poll ITpoll IS

OH idle

IS idle

IT idleIT idle

OH idle

start
iteration

deliver
output

Jan. 14, 2014 15

Solution 2: Timing
� processor has no idle time � busy

waiting (poll)

� what factors influence the controller’s
timing behaviour? Are they predictable?

– complexity of calculation

– behaviour of I/O hardware

� sampling inputs and generating outputs

Jan. 14, 2014 16

Solution 3
Event-Driven: Interrupts

� periodic timer interrupt
� iteration period = integer multiple of timer

period
� assume A/D input device generates

interrupt when data ready to be read
� use interrupts to schedule activities

� use ISRs to execute activities on processor

Jan. 14, 2014 17

Solution 3

sample IS
sample IT

calcu late

iteration period

OH idle

IS idle

IT idle

OH idle

start
iteration

deliver
output

timer interrupts

generate OH

= processor idle

Jan. 14, 2014 18

Solution 3: Processing
� all work done in ISRs � no polling!
� input ISRs: read values when ready

� timer ISR: regular tick plus
– start input sampling
– calculate output
– start output generation
– may require ability for timer interrupt to

interrupt timer ISR!
� tick in calculate!

1/16/2014

4

Jan. 14, 2014 19

OK for Toy Examples…but …

� multivariate, multirate systems
– multiple degrees of freedom
– different rates of control-law calculation

� more complex control-law computations
– smooth the output trajectory
– include estimation based on input history

(state variables) and heuristics

Jan. 14, 2014 20

What About Control Hierarchy?

� higher-level objectives
– e.g. is temperature control part of a

bigger manufacturing process?
� communication among hierarchy levels

� Liu text has more detailed examples!

Jan. 14, 2014 21

Engineering vs. Art

� art: creation of a system using methods
that are unique to artist and artist’s
abilities

� engineering: specification, design and
development of realistic systems using
quantitative, systematic and repeatable
methods known to “many”

Jan. 14, 2014 22

Reference Model for RT Systems
� towards engineering RT systems
� terminology & taxonomy

– application characteristics
– scheduling, resource management

� generalize where possible
– simplify discussion
– assume general, unless specific reference

Jan. 14, 2014 23

Jobs & Tasks
� job : a unit of work that is carried out by the

system (Ji)

� task : a set of related jobs that provide some
system function (τi = { Ji,1, Ji,2 , … , Ji,N })

� task � a generalization � a class of jobs
– tasks are specified at design-time

� job Ji,k � kth instance of task i
– jobs occur at run-time

Task i

process a packet

Jan. 14, 2014 24

Jobs & Task Example

Instances

Job i,1 : process 1st packet

Job i,2 : process 2nd packet

…

Job i,k : process kth packet

…

design-time
abstraction

run-time
realization

1/16/2014

5

Jan. 14, 2014 25

Processors & Resources
� the available components in the system

– design decisions!

� processor : an active h/w component
involved in the execution of a job (Pi)

� resource : a passive (h/w or s/w)
component required by a job

sometimes Liu text uses “resource” to
encompass both processors and resources

Jan. 14, 2014 26

Release Time & Deadline

� release time (or arrival time) of a job: time
at which the job becomes available for
execution (ri)

� deadline of a job: time at which the job
must be completed

� response time of a job: length of time
between the release time of the job and the
time instant when it completes

Jan. 14, 2014 27

Deadlines

� relative deadline of a job: maximum
allowable response time of a job (Di)

� absolute deadline of a job: time at which a
job must be completed (di = ri + Di)

� timing constraint: a constraint imposed on
the timing behaviour of a job
– most often � the deadline of the job
– others too e.g. jitter

Recall Temperature Control
Example (Solution 3, slide 17)

� Tasks, jobs, processors, resources?
� Release times, dead lines, response times?

Jan. 14, 2014 28

sample IS
sample IT

calcu late

OH idle

IS idle

IT idle

OH idle generate OH

Jan. 14, 2014 29

Hard RT System (Liu)

� recall previous definition � failure oriented
� a system is a hard real-time system if the

requirements include the validation that the
system always meets certain (hard) timing
constraints

� validation: demonstration by a provably
correct procedure, or by exhaustive
simulation and testing

� guarantee vs. best effort

Jan. 14, 2014 30

Specifying Hard Timing
Constraints

� deterministic  common (hard!)
– specify constraints that must always be met

� probabilistic  not as common (softer)
– specify constraint and probability of meeting

constraint
– allows some (few) failures over many instances

1/16/2014

6

Jan. 14, 2014 31

Job & Task Parameters

� temporal: timing constraints and
behaviour

� interconnection: dependencies
among jobs (or among tasks)

� resource: active (processor) and
passive (resource) components
required

Jan. 14, 2014 32

Temporal Parameters of Jobs

� includes ri , di and Di

� feasible interval: (ri , di]
– does not include ri , includes di

– includes execution time

� various forms of jitter � variations in
timing behaviours of instances of jobs

Jan. 14, 2014 33

Job Execution Time

� execution time : processing time required to
complete work associated with job (ei)
– assumes that all required processors and

resources are available
– depends on complexity of job and speed of

processors
� execution jitter: range of possible execution

times [ei
– , ei

+]
– best case and worst case execution times

Jan. 14, 2014 34

Release Time Revisited

� fixed : know exact release time
� jittered : range of possible release times

[ri
– , ri

+]
� sporadic / aperiodic : released at random

intervals e.g. key pressed on a keyboard
– sporadic : specified minimum inter-arrival time
– aperiodic : no spec’ed minimum inter-arrival

time

Jan. 14, 2014 35

Periodic Task Model

� deterministic workload model
– applied at design-time

� lots of research
– Liu & Layland, 1973

� basis for Rate Monotonic (RM) analysis
– DoD requirement for hard RT systems

Jan. 14, 2014 36

Periodic Task Model (2)

� period : time between successive releases
of jobs in a task (pi)
– typically have jitter � use minimum

� pessimistic ? deterministic !

� execution time : maximum execution time
of a job in the task (ei)

� pessimistic ? deterministic !

� phase : release time of first job in task (φi)

1/16/2014

7

Jan. 14, 2014 37

Notes About Model

� assumptions:
– number of tasks, periods, execution times,

phases are known
– required components are always available

� pessimistic � always assumes worst cases
– NOTE: accuracy (and applicability) of model

decreases with increasing jitter

Jan. 14, 2014 38

Hyperperiod

� hyperperiod : least common multiple of
all task periods (H)
– number of jobs for task i =

� if n tasks, number N of jobs in
hyperperiod:

Σ
i = 1

n
H
pi

N =

H
pi

Jan. 14, 2014 39

Processor Utilization

� processor utilization by a task : fraction of
time the task keeps the processor busy (ui)

� total utilization of processor by tasks (U)

ui =
ei
pi

Σ
i = 1

n
U = ui =

ei
pi

Σ
i = 1

n

Jan. 14, 2014 40

How is Utilization Useful?
� U ≤≤≤≤ 1.0 for each processor is a

necessary, but not sufficient, condition for
meeting deadlines

� must consider other related factors
– deadlines
– priority
– sporadic tasks

Jan. 14, 2014 41

Deadlines
� in general Di not constrained relative to pi

– can be shorter, equal, or longer than pi

� if Di < ei then impossible to meet deadline
� throughput assumption: system always

keeps up with work demanded
– periodic task model: Di = pi

Jan. 14, 2014 42

Back to: Job & Task
Parameters

� temporal: timing constraints and behaviour
���� periodic task model

� interconnection: dependencies among
jobs (or among tasks)

� resource: active (processor) and passive
(resource) components required

1/16/2014

8

Jan. 14, 2014 43

Interconnection Parameters
� precedence constraint : jobs (tasks) must

be performed in specified order
– independent : order not constrained

� precedence relation : partial order that
identifies precedence constraints
– denote “<” (Lamport: “happens before”)
– Ji < Jk indicates that Ji must complete before Jk

can begin i.e. Ji happens before Jk

� Ji is a predecessor of Jk

Jan. 14, 2014 44

More on Precedence
� Ji is an immediate predecessor of Jk if

– Ji < Jk AND
– no other job Jj such that Ji < Jj < Jk

� Ji is independent of Jk if neither
Ji < Jk nor Jk < Ji

� chain : a set of jobs in which no two jobs
are independent
– for all pairs, either Ji < Jk or Jk < Ji

Jan. 14, 2014 45

Job Precedence Graph
� embody precedence relation < over set of

jobs J in a directed graph : G = (J, <)
� vertices : each job in J is a vertex
� edges : edge from Ji to Jk iff Ji is an

immediate predecessor of Jk

� lattice (not necessarily a tree!)
� job may have multiple immediate

predecessors
� may have more than one job with no

predecessors
Jan. 14, 2014 46

Resource Parameters
(Resource = Processors + Resources)

� all jobs require one or more processors
� resource parameters of a job:

– type of processor(s) & number(s)
– other resources required
– time interval over which each is needed

� parameter of resource: preemptivity

Sharing Resources
� All jobs require resources
� Can jobs share resources?

– Yes! Jobs often share a processor and memory.
– Sharing I/O is less common … single “driver” task

Sharing complicates things!
Sharing requires management! � Scheduling!

Jan. 14, 2014 47 Jan. 14, 2014 48

Can Sharing Involve Preemption?
(or run to completion)

� priority concern!
– can a job be preempted by a higher-priority job ?

� yes � job is preemptable
� no � job is nonpreemptable
Which might lead to more complicated scheduling?

� jobs often share a processor with preemption
� preempting shared memory access? a good

idea?

1/16/2014

9

Jan. 14, 2014 49

Implementing Preemption
� context switch:

1. pause executing job

2. save job/resource state at time of
pausing

3. install another job/resource state
� context switch back to preempted job (i.e.

resume the job) at a future point in time
We’ll see this in more detail later!

Recall Example (slide 17)
� Periods, execution times, jitter (?)
� Processor utilization, precedence

graphs?
� Preemption? Context switch?

Jan. 14, 2014 50

sample IS

sample IT

calcu late

OH idle

IS idle

IT idle

OH idlegenerate OH

Jan. 14, 2014 51

Scheduling Theory
� ideal goal : all jobs are always allocated

required resources to complete execution
within their feasible regions (r, d]

� scheduling algorithm : decides the order
in which jobs are allocated resources

� scheduler : a module that implements a
scheduling algorithm

� scheduling decision point: point in time
when scheduler decides which job to
execute next

Jan. 14, 2014 52

Schedule
� schedule : assignment of all jobs (over

time) to available resources
� feasible schedule : every job starts at or

after its release time and completes by its
deadline
– Could be more than one feasible schedule!

� optimal scheduling algorithm : always
produces a feasible schedule if at least one
feasible schedule exists

Jan. 14, 2014 53

Common Approaches For
Real-Time Scheduling

� Clock-Driven (Time-Driven) : scheduling
decision points are specified a priori (static)
– E.G. the temperature control example. More Later!

� Weighted Round-Robin : weighted jobs join a
FIFO queue – weight determines amount of
processor time allocated to the job �

� Priority-Driven (Event-Driven) : scheduling
decisions are made as events occur (dynamic)
– schedule ready job with highest priority

(Liu Ch. 4)

Jan. 14, 2014 54

Priority-Driven Scheduling

� A major topic! But first …

� lets look at an event-driven process
model in more detail

