SYSC 5701
Operating System Methods
for Real-Time Applications

Real-Time (RT) Systems

Winter 2014

for those following Liu’s text:

e Ch. 1: Typical RT Applications
— digital controllers (“motivation”)

e Ch. 2. Hardvs. Soft RT Systems
— Jobs, processors, timing

e Ch.3: of R
Systems

— basis for subsequent chapters

Jan. 14, 2014 fﬂ Carleton

Simple Digital Controller

reference u(t) = (r(t) —y(t))

sensor
Input
y(t)

iInput
10 . actuator
X output
u(t)

.14 2 & Carleton

Digital Control

repeatedly:
1. sample inputs r(t) and y(t)
— requires input hardware (e.g. Ato D)

2. calculate control-law computation = u(t;)
— requires processor

3. generate output u(t)
— requires output hardware (e.g. D to A)

Jan. 14, 2014 ‘g Carleton

Temperature Controller
Example

temperature
selector

\
/

heater
temperature control
sensor signal

Jan. 14, 2014 ;ﬁ uCNEIIﬂetOIl

Temperature Controller

Activities ctive
sample inputs components

sample Iq sample |1+ /0
hardware

calculate control-law

computation [INcalctlaie - processor

generate output|/generate Oy |-—— /O
hardware

Jan. 14, 2014 ‘g Carleton

- UNMIVERSITY

Processor in Sampling Input?

assume inputs via A/D converters

Drocessor must write start command to
negin an A/D conversion

orocessor must read digital value when
conversion complete

SRS -— A/D 1/0 hardware

I I +<— processor
start read

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

Processor in Generating Output?

e assume output via D/A converter

Jan. 14, 2014

D/A conversion

generate O

start

processor must be sure converter Is not
pusy when starting a new conversion

orocessor must write: data to begin a

— D/A 1/0O hardware
«—— processor

¥ Carleton

Solution 1

do forever
{ poll I for selector input: start read
poll I+ for temperature input: (start read)

./
control-law computation

wait (poll) for O, hardware ready
O, generating heater control signal

poII P poII I T g{g&O

Processor: | l

Jan. 14, 2014 ‘g Carleton

Analysis of Solution 1

e design approach:
— no design, just GO as fast as possible

e could it go faster? (Solution 1a)
— utilize concurrency of active input devices!

poll 1 & I gen. O fime

a——— ‘ saved per
Processor: . e
iteration

poll 15 poll I;
Y A\

previous: |

Jan. 14, 2014 -ﬁ} Carleton

- UNMIVERSITY

Solution 1: Faster Still?

e faster hardware? but ... Is faster necessary?
® ?

— reduce cost and still meet requirements?
e slower hardware is often less expensive
— Is behaviour predictable? analysis?
— extension? processor available for more work?
— are there redundant loop iterations? power?

Jan. 14, 2014 ‘g Carleton

- UNMIVERSITY

Requirements Analysis

e INPUT: timing and magnitude of reference
Input changes? <

e OUTPUT: how fast must output be
adjusted to maintain acceptable plant

state?
— what Is “acceptable”™? <&

-~

— variation from “ideal”? tolerances for
— oscillation? engineering

Jan. 14, 2014 ‘g Carleton

Periodic lteration?

e could shift design approach to perform loop
iterations at regular periodic intervals

e need h/w timer to gauge start of period
e period too large -2
—> fallure to meet system requirements
— unacceptable from user’s perspective
e period too small - fast
- may have product
— not optimal from engineering perspective

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

——Iteration period

Solution 2:

start
Iteration

Jan. 14, 2014

& Carleton

. WNIVERSITY

deliver
output

Solution 2: Timing

e processor has no idle time -2 busy
walting (poll)

e what factors influence the controller’s
timing behaviour? Are they predictable?

— complexity of calculation
— behaviour of I/O hardware

o sampling inputs and generating outputs

Jan. 14, 2014 fﬂ Carleton

Solution 3

e periodic timer interrupt

e iteration period = integer multiple of timer
period

e assume A/D input device generates
iInterrupt when data ready to be read

® use to schedule activities
® uUse |ISRs to execute activities on processor

Jan. 14, 2014 ‘g Carleton

Solution 3

start deliver

iteration _ _
timer interrupts

A N B

iy

l—iteration period)
- = processor idle

Jan. 14, 2014 @ Carleton

. WNIVERSITY

Solution 3: Processing

work done in ISRs - !
iInput ISRs: read values when ready

e fimer ISR: regular plus
— start input sampling
— calculate output
— start output generation

— may require ability for timer interrupt to
Interrupt timer ISR!

o In calculate!

Jan. 14, 2014 ‘g Carleton

- UNMIVERSITY

OK for Toy Examples...but ...

e multivariate, multirate systems
— multiple degrees of freedom
— different rates of control-law calculation

e more complex control-law computations

— smooth the output trajectory

— Include estimation based on input history
(state variables) and heuristics

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

What About Control Hierarchy?

e higher-level objectives

—e.g. Is temperature control part of a
bigger manufacturing process?

e communication among hierarchy levels
e Liu text has more detailed examples!

Jan. 14, 2014 fﬂ Carleton

Engineering vs. Art

e art: creation of a system using methods
that are unique to artist and artist’s
abilities

® engineering: specification, design and
development of realistic systems using

guantitative, systematic and repeatable
methods known to “many”

Jan. 14, 2014 fﬂ Carleton

for RT Systems

e towards engineering RT systems

e terminology & taxonomy
— application characteristics
— scheduling, resource management

e generalize where possible
— simplify discussion
— assume general, unless specific reference

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

Jobs & Tasks

o > a unit of work that is carried out by the
system (J.)

o . a set of related jobs that provide some
system function ()

e task => a generalization - a class of jobs
— tasks are specified at design-time

e job J;, = K" instance of task i
— jobs occur at run-time

Jan. 14, 2014 ‘g Carleton

Jobs & Task Example

Task | Instances

process a packet | job i,1 : process 15t packet

Job 1,2 : process 2" packet

Job i,k : process k" packet

A

design-time run-time
abstraction realization
¥ Carleton

. UNMIVERSITY

Jan. 14, 2014

Processors & Resources

e the avallable components in the system
— design decisions!

o . an active h/w component
Involved In the execution of a job (1)

o . a passive (h/w or s/w)
component required by a job

resource

.14 2 & Carleton

Release Time & Deadline

o (or arrival time) of a job: time
at which the job becomes available for
execution (r;)

o of a job: time at which the job
must be completed

o of a job: length of time
between the release time of the job and the
time instant when it completes

Jan. 14, 2014 fﬂ Carleton

Deadlines

of a job: maximum
allowable response time of a job (D)

of a job: time at which a
Jjob must be completed ()

. a constraint imposed on
the timing behaviour of a job
— most often - the deadline of the job
— otherstoo e.qg. |jitter

Jan. 14, 2014 fﬂ Carleton

Recall Temperature Control
Example (Solution 3, slide 17)

e Tasks, jobs, processors, resources?
e Release times, dead lines, response times?

Jan. 14, 2014

Hard RT System (Liu)

recall previous definition - failure oriented

a systemis a If the
requirements include the that the
system always meets certain (hard) timing
constraints

. demonstration by a provably
correct procedure, or by exhaustive
simulation and testing

vS. best effort

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

Specifying Hard Timing
Constraints
< (hard!)

— specify constraints that must always be met

< (softer)

— specify constraint and probability of meeting
constraint

— allows some (few) failures over many instances

Jan. 14, 2014 fﬂ Carleton

Job & Task Parameters

. timing constraints and
behaviour

. dependencies
among jobs (or among tasks)

. active (processor) and
passive (resource) components
required

Jan. 14, 2014 fﬂ Carleton

Temporal Parameters of Jobs

e Includes and
o

— does not include r; , includes d.
— includes

e various forms of - variations In
timing behaviours of instances of jobs

Jan. 14, 2014 fﬂ Carleton

Job Execution Time

o . processing time required to
complete work associated with job (¢)

— assumes that all required processors and
resources are available

— depends on complexity of job and speed of
pProcessors

o . range of possible execution
times

— best case and worst case execution times

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

Release Time Revisited

. know exact release time
- range of possible release times

. released at random
Intervals e.g. key pressed on a keyboard
— sporadic : specified minimum inter-arrival time
— aperiodic : no spec’ed minimum inter-arrival
time
Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

e deterministic workload model
— applied at design-time

e |ots of research
— Liu & Layland, 1973

e basis for Rate Monotonic (RM) analysis
— DoD requirement for hard RT systems

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

Periodic Task Model (2)

® time between successive releases
of jobsinatask ()

— typically have jitter = use minimum
e pessimistic ? deterministic !

O : maximum execution time
of ajob inthe task (&)

e pessimistic ? deterministic !
. release time of first job In task ()

Jan. 14, 2014 fﬂ Carleton

Notes About Model

— number of tasks, periods, execution times,
phases are known

— required components are always available
- always assumes worst cases

— NOTE: accuracy (and applicability) of model
decreases with increasing jitter

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

Hyperperiod

o . least common multiple of
all task periods ()

— number of jobs for task | :ﬁ_

e if N tasks, number [\l of jobs In
hyperperiod:

Jan. 14, 2014

Processor Utilization

o . fraction of
time the task keeps the processor busy (U)
e.

I

T

e total utilization of processor by tasks (')

Jan. 14, 2014

How Is Utilization Useful?

for each processor is a
, condition for

meeting deadlines

e must consider other related factors
— deadlines
— priority
— sporadic tasks

Jan. 14, 2014 fﬂ Carleton

Deadlines

e in general D; not constrained relative to p,
— can be shorter, equal, or longer than p,

o If then impossible to meet deadline
o . system always

keeps up with work demanded

Jan. 14, 2014 fﬂ Carleton

Back to:

Job & Task

Parameters
. timing constraints and behaviour

9

. dependencies among

Jjobs (or among tas

. active (
(resource) components required

KS)

orocessor) and passive

Jan. 14, 2014 fﬂ Carleton

Interconnection Parameters

o . Jobs (tasks) must
be performed In specified order

— : order not constrained

o . partial order that
identifies precedence constraints

— denote “<” (Lamport: “happens before”)

— indicates that J; must complete before J,
can begin i.e. J;, happens before J,

[Ji IS& Of\]k

Jan. 14, 2014 fﬂ Carleton

More on Precedence

e J Is an of J, If
~J <J. AND
— no other job J; such that J; < J; < J,

® J IS of J, If neither

Ji < Jy nor J,<J
o . a set of jobs in which no two jobs
are independent

— for all pairs, either J, < J, or J, <J

Jan. 14, 2014 fﬂ Carleton

Job Precedence Graph

e embody precedence relation < over set of
jobs J in a directed graph :

o . each job in J is a vertex

o . edge from J; to J, Iff J;Is an
Immediate predecessor of J,

o (not necessarily a tree!)

e job may have multiple immediate
predecessors

e may have more than one job with no
predecessors

Jan. 14, 2014 fﬂ Carleton

Resource Parameters
()

e all jobs require one or more processors

o of a joDb:
— type of processor(s) & number(s)
— other resources required
— time interval over which each is needed

Jan. 14, 2014 fﬂ Carleton

Sharing Resources
e All jobs require resources

e Can jobs share resources?

— Yes! Jobs often share a processor and memory.
— Sharing 1/O is less common ... single “driver” task

Sharing complicates things!
Sharing requires management! = Scheduling!

Jan. 14, 2014 fﬂ Carleton

Can Sharing Involve Preemption?

(or run to completion)
® priority concern!

— can a job be preempted by a higher-priority job ?
e Yes - jobis
e NO > |ObIs
Which might lead to more complicated scheduling?
e jobs often share a processor with preemption

e preempting shared memory access? a good
iIdea?

Jan. 14, 2014 ‘g Carleton

Implementing Preemption

pause executing job

save Job/resource state at time of
pausing
3. Install another job/resource state

e context switch back to preempted job (i.e.
resume the job) at a future point in time

We'll see this in more detail later!

Jan. 14, 2014 fﬂ Carleton

Recall Example (slide 17)

e Periods, execution times, |itter (?)

e Processor utilization, precedence
graphs?

o Prleemptlion? Clontextlswitcrll?

Jan. 14, 2014

Scheduling Theory

o . all jobs are always allocated
required resources to complete execution
within their feasible regions (r, d |

o . decides the order
In which jobs are allocated resources

o . @ module that implements a
scheduling algorithm

@ . point In time
when scheduler decides which job to
execute next

Jan. 14, 2014 fﬂ Carleton

Schedule

o . assignment of all jobs (over
time) to available resources

o . every job starts at or
after its release time and completes by its

deadline
— Could be more than one feasible schedulel!

o . always
produces a feasible schedule If at least one
feasible schedule exists

Jan. 14, 2014 fﬂ Carleton

S UNMIVERSITY

Common Approaches For

Real-Time Scheduling

o . scheduling
decision points are specified a priori (static)
— E.G. the temperature control example. More Later!

o . weighted jobs join a

FIFO queue — weight determines amount of
processor time allocated to the job

o . scheduling
decisions are made as events occur (dynamic)

— schedule ready job with highest priority

Jan. 14, 2014 fﬂ Carleton

Priority-Driven Scheduling

e A major topic! But first ...

e |lets look at an
IN more detall

Jan. 14, 2014 fﬂ Carleton

