
SYSC 5701
Operating System Methods
for Real -Time Applicationsfor Real -Time Applications

Real-Time Languages

Winter 2014

Languages for Real-Time
Systems

� survey of existing real-time features
– W. A. Halang, A. D. Stoyenko, ``Comparative Evaluation of

High Level Real Time Programming Languages,'' Real-Time
Systems, Volume 4, Number 2, pp. 365 – 382, December

Mar 20/14

1990

� conventional elements
– bit processing
– re-entrant procedures
– I/O capabilities

2

Halang & Stoyenko
� processes/tasking

– hierarchy
– run-time statistics available
– scheduling strategies
– priorities – static and/or dynamic
– IPC: messaging

Mar 20/14

– IPC: messaging

� synchronization
– semaphores
– “other” – IPC (e.g. mutex, condition variables,

rendezvous)
– resource reservation & allocation strategy
– resource statistics available

3

Halang & Stoyenko
� events

– interrupt handling
– enable/disable interrupt
– asynchronous event signaling

� timing
– date/time available

Mar 20/14

– date/time available
– cumulative run-time available
– timed scheduling support
– timed synchronization/IPC services

� run-time verification
– exceptions

4

Halang & Stoyenko Suggest
Additional Desirable Features

� application-oriented synchronization constructs
– e.g. monitors

� surveillance of:
– occurrences of events within time windows

Mar 20/14

– occurrences of events within time windows
– occurrences of event sequences
– timeout of resource claims

� availability of current task and resource states
� inherent prevention of deadlocks

5

Halang & Stoyenko: Additional Desirable Features

� feasible scheduling algorithms
– analyzable schedulability

� early detection and handling of transient
overloads
accurate real time

Mar 20/14

� accurate real time
� exact timing of operations
� dynamic configuration for fault recovery
� event recording/tracing

sounds like a lot to
ask of a language!

6

Conventional Approach
� separate language and kernel
� procedural language

– gets close to machine when needed
– e.g. C, assembly language

how many of desired features are

Mar 20/14

� how many of desired features are
supported in language directly?

� most of real-time support is in the kernel!
� application program makes “calls” to

kernel primitives (i.e. invokes primitives)

7

Conventional: Kernel
� kernel primitives are not part of the language
� program compiled using kernel interface

library to hide details of invocation
� compiled object file linked with kernel object

file to create a load module (static binding)

Mar 20/14

file to create a load module (static binding)
� sometimes compiled object is converted to

load module – assumes that kernel is pre-
loaded in target – dynamic binding
mechanism (hidden by interface library)

8

Conventional Problems �
� resulting application is kernel/platform

dependent
– “virtual machine” abstraction is too low-level
– portability, platform evolution ?? �

Mar 20/14

� E.G. FreeRTOS vs. µC/OS

� multiple tool vendors: compiler (IDE), kernel
– compatibility issues – more details! �

9

Languages to Address Hard
Real-Time

� Ada (1983, 1995, 2005, 2012)
– DoD

� Pearl (not PERL) (early 1970’S !!)
– extinct? (Germany, control systems)

Mar 20/14

– extinct? (Germany, control systems)

� Real-Time Euclid (1986) – research project
– extends Euclid (U. of T. early 80’s)

� Real-Time Java (2000) - time permitting

10

Ada 83
� include kernel-like functionality (and support) in

language
– multitasking & multiprocessing
– motivation: US DoD software engineering

concerns
too many different platforms/kernel/language

Mar 20/14

� too many different platforms/kernel/language
combinations – unmanageable

� goal : single software platform (language +
kernel) for applications

� goal : decrease (hide) hardware dependence
� very ambitious ! !

11

Ada 83
� Pascal-like syntax & strongly-typed
� package

– modularity & information hiding
– black-box modules � software engineering

roots!

Mar 20/14

roots!
� task concurrent process
� packages and tasks have separate specification

(interface) and body (implementation)
� interrupts are integral part of language

12

Ada 83procedure syntax
� in param’s: set by caller
� out param’s: set by callee � reply!
� inout param’s: initial value set by caller,

returned value set by callee
argument list fixed by syntax at compile time

Mar 20/14

� argument list fixed by syntax at compile time
� e.g.: procedure DeQ (aList: inout integer_list;

x: out integer)
� Functions? Yes, but no side effects

13

Package
� specification : define publicly-visible artifacts

that may be accessed (imported) from outside
of the package
– e.g. data objects, object types, procedures,

task + entries
� body : implementation of exported artifacts

Mar 20/14

� body : implementation of exported artifacts
– may include hidden declarations and

definitions (used in implementation)
– hidden artifacts cannot be directly accessed

from outside of package

14

Spec is different from .h files !!!

Package
� can separately compile specification and body
� s/w eng roots!
� “packaging” is a common object-oriented

concept
Ada83 does not implement “modern” OO

Mar 20/14

� Ada83 does not implement “modern” OO
features
– e.g. inheritance

15

Stack Package Example

- - stack package for integer variables
- - SPECIFICATION
package INTEGER_STACK is

type STATUS is (OK, UNDERFLOW, OVERFLOW);

“--” = comment

in/out parameters

Mar 20/14

type STATUS is (OK, UNDERFLOW, OVERFLOW);
procedure PUSH (E : in INTEGER; FLAG : out STATUS);
procedure POP (E : out INTEGER; FLAG : out STATUS);

end INTEGER_STACK;

� This is all that is public for “user” of package to see

16

Stack Example- - BODY
package body INTEGER_ STACK is

SIZE : constant INTEGER := 10;
SPACE : array (1 . . SIZE) of INTEGER;
INDEX : INTEGER range 0 . . SIZE := 0;

procedure PUSH (E : in INTEGER; FLAG: out STATUS) is

Pascal-like type and
data declarations

HIDDEN: array
implementation of
stack

Mar 20/14

begin
if INDEX = SIZE then FLAG := OVERFLOW
else INDEX := INDEX + 1;

SPACE(INDEX) := E ;
FLAG := OK;

endif;
end PUSH;

17

Stack Example
procedure POP (E : out INTEGER; FLAG: out STATUS) is
begin

. . .
end POP;

end INTEGER_STACK;

Mar 20/14

end INTEGER_STACK;

� user calls:
STACK . PUSH (ELEMENT, STAT);
STACK . POP (ELEMENT, STAT);

18

Ada Tasks
� spec/body syntax similar to packages
� rendezvous IPC (send/receive/reply)
� tasks accessed by calls to rendezvous entry s

– like a procedure call for task IPC ports
– similar syntax to procedures (in/out params)

Mar 20/14

– similar syntax to procedures (in/out params)
� task accepts entry

– blocked if no caller waiting
� caller is blocked until accepted by task
� caller released when task finishes entry

19

Example:
Character Buffer Task

- - character BUFFER SPEC
task BUFFER is

entry READ (C : out CHARACTER);
entry WRITE (C : in CHARACTER);

Mar 20/14

entry WRITE (C : in CHARACTER);
end BUFFER;

� This (and maybe some documentation) is all
that is given to programmers that use the buffer
task

20

Single Char Buffer Example

task body BUFFER is
POOL : CHARACTER;
begin

loop
accept WRITE (C : in CHARACTER) do

POOL := C;

local variable:
persistent over
life of task

accept
WRITE

Mar 20/14

POOL := C;
end;
accept READ (C : out CHARACTER) do

C := POOL;
end;

endloop;
end BUFFER;

reply!

release caller

WRITE
then
accept
READ

21

Single Char Buffer Example

� producer task calls:
BUFFER . WRITE(CHAR);

� consumer task calls:

Mar 20/14

� consumer task calls:
BUFFER . READ(CHAR);

� What happens if reader calls before a
character is in the buffer?

22

Selective Accept
� Single statement allows receiver to

receive from more than one entry
select

accept entryA
or

accept entryB
or

…
end select;

Mar 20/14 23

Multiple Character Buffer
Example

� Specification: Same as version 1!!

- - character BUFFER SPEC
task BUFFER is

Mar 20/14

task BUFFER is
entry READ (C : out CHARACTER);
entry WRITE (C : in CHARACTER);

end BUFFER;

24

Multiple Char Buffer Example

task body BUFFER is
- - character buffer (BUFF) is a circular FIFO list
- - in a static array
B_SIZE : constant INTEGER = 100;

Mar 20/14

B_SIZE : constant INTEGER = 100;
BUFF : array (1 . . B_SIZE) of CHARACTER;
IN_INDEX, OUT_INDEX :
INTEGER range 1 . . B_SIZE := 1;

25

Multiple Char Buffer Example
begin
loop

select
accept WRITE (C : in CHARACTER) do

BUFF(IN_INDEX) := C;
end ;
IN_INDEX := IN_INDEX mod B_SIZE + 1

or

in rendezvous

outside of
rendezvous

select - - accept whichever one is ready!

Mar 20/14

or
accept READ (C : out CHARACTER) do

C := BUFF(OUT_INDEX);
end ;
OUT_INDEX := OUT_INDEX mod B_SIZE + 1

end loop;
end BUFFER;

end select ;

26

Multiple Char Buffer Example

� selective accept : receive from either
Producer or Consumer – whenever called

� “mutex ” (sequential) in Buffer task – no
interference at BUFF!

� what if consumer calls when BUFF empty

Mar 20/14

� what if consumer calls when BUFF empty
– nothing to consume? should block? exception?

� what if producer calls when BUFF full
– no space to store? should block? exception?

27

GUARDS

� conditional closing of entries during select
� guard : boolean condition

– when true : entry open – will be selected
– when false : entry closed – will not be selected

Mar 20/14

– when false : entry closed – will not be selected

� Guard evaluated each time containing “select”
is executed

Syntax:
when boolean_condition_true =>

28

Modifications to
Buffer Task Body

COUNT : INTEGER range 1 . . B_SIZE := 0 ;
begin
loop
select
when COUNT < B_Size =>

guard against
full condition

Mar 20/14

COUNT < B_Size =>
accept WRITE (C : in CHARACTER) do

BUFF(IN_INDEX) := C;
end ;
IN_INDEX := IN_INDEX mod B_SIZE + 1;
COUNT := COUNT + 1;

29

Modifications to Buffer Task Body

or
when COUNT > 0 =>
accept READ (C : out CHARACTER) do

C := BUFF(OUT_INDEX);
end ;

guard against
empty condition

Mar 20/14

end ;
OUT_INDEX := OUT_INDEX mod B_SIZE + 1;
COUNT := COUNT – 1;

end select;
end loop;

30

� sender can select alternative action if
receiver is not ready to accept entry:

select
RCV_TASK . RNDZVOUS; -- do rendezvous

Some Variations not necessarily a
call to RCV_TASK

Mar 20/14

or
RCV_NOT_READY_proc; -- call procedure

end select ;

31

Delay
�delay – an “else” alternative in select
� for receivers:

select
. . . - - selective accepts as before

Mar 20/14

. . . - - selective accepts as before
or

delay T ;
- - no callers in time T
do_DELAY_processing ;

end select ;

32

Delay
� delay – can also expand sender’s options

select
RCV_TASK.RNDZVOUS;

or
delay T;
TIMED_OUT_proc;

Mar 20/14

TIMED_OUT_proc;
end select ;

� if sender not accepted within time T – then
call is aborted, and sender performs
TIMED_OUT_proc

33

Ada 95
� improvements based on 10 years of trying ☺
� enhance to include classical O-O features
� improved tasking:

– more efficient IPC

Mar 20/14

more efficient IPC
– more predictable operation
– improved interrupt handling

34

Ada 95
� decomposed standard from “all-or-nothing” to

core + annexes
– Ada83 – compiler did everything, or was not

certified
– Ada95 – compiler must support minimum core

Mar 20/14

– Ada95 – compiler must support minimum core
and then annexes as desired
� allowed more efficient compilers (profiles)

35

Some Interesting/Relevant
Annexes

Systems Programming
� machine operations
� interrupt support
� user-defined allocation/finalization

Mar 20/14

� user-defined allocation/finalization
� shared variable control
� task identification (vs. global names)

36

Some Interesting/Relevant Annexes
Real-Time Systems
� priorities – static and dynamic

– interrupt and task priorities

� task dispatching
– run-until-blocked/completed

Mar 20/14

– run-until-blocked/completed
– preemption

� ceiling priorities
� entry queuing facilities � done by tasks!

– forward calls to different entries
– requeue entries

37

Some Interesting/Relevant Annexes

Real-Time Systems (con’t)
� mutex and synchronization

– protected types (monitors?)

� can configure for simpler tasking

Mar 20/14

� can configure for simpler tasking
models

� e.g. max. number of tasks
max. number of entries per task
max. stack space

38

Some Interesting/Relevant Annexes

Interrupts
� binding : associates an interrupt

procedure with an interrupt
� supports communication between

Mar 20/14

interrupt procedures and other objects
– bound procedures can modify shared

variables that are guarding entries of
“protected” objects

39

Interrupt Example
(static binding)

use INTERRUPT_MANAGEMENT;
protected Timer is

entry WAIT_FOR_TICK;
procedure Handle_Timer_Interrupt;
pragma ATTACH_HANDLER(

creates interrupt
procedure binding

Mar 20/14

pragma ATTACH_HANDLER(
Handle_Timer_Interrupt , TIMER_INTERRUPT_ID);

private Tick_Occurred : BOOLEAN := FALSE;

binding mechanism is compiler specific

40

Interrupt Example
protected body Timer is

entry WAIT_FOR_TICK
when Tick_Occurred is

Tick_Occurred := FALSE;
- - external task leaves and does once-a-tick stuff

end WAIT_FOR_TICK;

entry guarded –
called by external task

Mar 20/14

procedure Handle_Timer_Interrupt is
begin

Tick_Occurred := TRUE;
end Handle_Timer_Interrupt;

end Timer;

Guards are re-evaluated after
every execution of an entry or
procedure on a protected object

41

Ada 2005 (10 more years)

� Additional dispatching models
– Including: Non-preemptive, and EDF
– Round robin �

� Timing events
Define handlers ... Interrupt-like– Define handlers ... Interrupt-like

� Execution time monitoring
– cumulative run-time (not wall-clock time)

� Ravenscar profile – deterministic!
– Subset for safety critical systems

Mar 20/14 42

Ada 1012 (7 more years)

� Programming contracts � pre- and post-
conditions (assertions)

� Task affinities � map onto multicore
architecturesarchitectures

� Task-safe queues � more efficient
synchronized structures

Mar 20/14 43

What about Other Languages
that Include “Time”?

� PEARL
� Real-Time Euclid
� Real-Time Java

Mar 20/14 44

Pearl (not PERL)
Process and Experiment Automation Realtime

Language
� Germany – early 70’s – collaboration between

researchers and industry – motivated by
engineering issues in real-time control systems
overview:

Mar 20/14

� overview:
– procedural aspects: Pascal-like, strong typing
– allows direct hardware access
– modules: import and export lists
– separate compilation

45

Pearl (con’t)

� includes process definition (tasks)
� activation: time and/or event-related
� missing:

– schedulability analysis provisions

Mar 20/14

– schedulability analysis provisions
– structured exception handlers
– unstructured (semaphore-like) process

synchronization

46

Time in PEARL

� additional data types:
– clock value = time instance
– duration value = time interval

Mar 20/14

scheduling time-constrained behaviour:
� simple schedules : based on temporal

events or interrupt occurrence

47

� (BNF) syntax:
simple-event-schedule ::=

at clock-expr | after duration-expr | when int-name
� periodic schedules:

schedule ::=

Pearl
Schedules

periodstart stop

schedule ::=
at clock-expr all duration-expr until clock-expr
| after duration-expr all duration-expr during duration-

expr
| when int-expr all duration-expr

{ until clock-expr | during duration-expr }

Mar 20/14 48

Pearl
Task State Transition Control

� tasks are either dormant, ready, running or suspended
� Programs must force task state changes
� dormant to ready (or running):

[schedule] activate task-name [priority positive-int]

Mar 20/14

[schedule] activate task-name [priority positive-int]
� ready (or running) to dormant:

terminate task-name
� ready (or running) to suspended:

suspend task-name

49

Pearl
Task State Transition Control (con’t)

� suspended to ready (or running):
[simple-event-schedule] continue task-name

� running to suspend then back to ready (or running):
simple-event-schedule resume

Mar 20/14

� all synchronization is tightly controlled
– Programs explicitly mange task states
– No general semaphore mechanism

� Could semaphores be built using forced
transitions in a monitor-like structure?

50

Pearl refs

eds. GI-working group 4.4.2
PEARL 90, Language report, Version 2.2
Technical report GI (1998)
http://www.irt.uni-hannover.de/pearl/pub/report.pdf

Mar 20/14

D. Stoyenko, ``Real-Time Euclid: Concepts Useful for the Further
Development of PEARL,'' in Proceedings PEARL 90 --- Workshop uber

Realzeitsysteme, W. Gerth and P. Baacke (Eds.), In-for-ma-tik-Fach-be
rich-te 262, pp. 12 -- 21, Berlin-Heidelberg-New York: Springer-Verlag,
1990

51

Real-Time Euclid

� research project – U. of Toronto
Euclid → Turing → Real-Time Euclid

� Stoyenko (PhD. 1987)
� schedulability analysis� schedulability analysis
� some academic application

– no industry experience (as of 1995)

Mar 20/14 52

Real-Time Euclid
Features:
� procedural aspects – Pascal-like, strongly-typed
� processes : run concurrently

– each process is sequential
– statically allocated

Mar 20/14

– statically allocated
– program terminates when all processes terminate

� modules : package data together with processes
and subprograms (procedures & functions) that use
the data

53

Real-Time Euclid

� can import/export subprograms, types and
constants
– cannot export modules or variables

� each module can contain an initially section

Mar 20/14

� each module can contain an initially section
– executed before any processes (in program) are

run
– allows convenient initialization of program

� monitors : allow only one active process inside
– wait/signal on condition variables (Hoare, 1974)

54

Real-Time Euclid
Time?
� time managed as “real time” value!
� program defines time increment:
� RealTimeUnit (timeInSeconds)

– e.g. RealTimeUnit(25e-3)

Mar 20/14

– e.g. RealTimeUnit(25e-3)
� one real time unit = 25 milliseconds

� function Time : returns elapsed time from
startup in real time units
– e.g. Time = 10 � 10 * 25e-3

55

Real-Time Euclid

Constraints to make schedulability
analysis possible

� no dynamic data structures (e.g. heap)
– allocation/deallocation time bound at compile-time
– memory needed for a subprogram to be called and

executed is bound

Mar 20/14

executed is bound
– can guarantee at compile-time that system has

enough memory for processes to execute
� bounded loops

– maximum number of iterations fixed at compile-time

56

Real-Time Euclid

Constraints to make schedulability
analysis possible (con’t)

� looping construct:
for [decreasing] id: compIntExpr. . compIntExpr

declarations and statements
[invariant BoolExpr]

variable name

compile-time
BNF snytax:
[optional]

Mar 20/14

[invariant BoolExpr]
end for

� can also terminate loop (early) using:
exit [when BoolExpr]

– but must still have max. iteration bound !!

compile-time
integer values!

[optional]

57

Real-Time Euclid

Constraints to make schedulability
analysis possible (con’t)

� no recursion
� can analyse subprogram call trees (a priori)

– determine memory required (local variables, stack)
– determine execution times

Mar 20/14

– determine execution times

58

Side Note: MISRA C
� There other “constraint standards” to make C more

deterministic, predictable and analyzable
� e.g. MISRA C Guidelines

� MISRA = Motor Industry Software Reliability Assoc.
� Rules for programming in C � Rules for programming in C

– code safety, portability and reliability
� Target: embedded systems programmed in ISO C
� Also a set of guidelines for MISRA C++

Mar 20/14 59

Real-Time Euclid

Processes
� static
� can be declared to be periodic or aperiodic
� activation by : time, other processes, interrupts
� syntax:

process id : activationInfo

Mar 20/14

process id : activationInfo
[importList]
[exceptionHandler]
declarations and statements

end id

60

Real-Time Euclid

Processes (con’t)
� forms of activation info :

– aperiodic :
� atEvent conditionId frameInfo

– periodic :
� period frameInfo first activation timeOrEvent

condition variable
or interrupt

time info

condition variable
and/or timed

Mar 20/14

� frame info : scheduling time frame (e.g. period)
– frame compIntExpr

� absolute frame
– relative frame compIntExpr

� relative to frames of other processes

61

Real-Time Euclid

Processes (con’t)
� timeOrEvent :

(first activation of periodic process)
– atTime compIntExpr
– atEvent conditionId
– atTime compIntExpr or atEvent conditionId

Mar 20/14

– atTime compIntExpr or atEvent conditionId
� scheduling constraints:

– deadline = frame
– cannot activate more than once per frame

62

Real-Time Euclid

Condition Variables
� similar to semaphore, but no “counter”:

– wait : always block in queue
– signal : always unblocks from the queue

� two types: inside monitor and outside monitor

Mar 20/14

� two types: inside monitor and outside monitor
� inside monitors:

– used for synchronization when data must be
shared

– programmer responsible for ensuring mutex!!

63

Real-Time Euclid

Condition Variables (con’t)

� deferred signal form: (for inside monitor only!)
– unblocked process is ready to execute in monitor

but must wait for mutex turn

Mar 20/14

– caller remains running in monitor
� outside monitors:

– used for synchronization without sharing data

64

Real-Time Euclid

Condition Variables (con’t)
� syntax:

var conditionId :
[deferred] condition [atLocation intAddress]

noLongerThan compIntExpr : timeoutReason

only for inside monitor form

Mar 20/14

� intAddress: allows an interrupt to be the signal
mechanism
– i.e. performing the signal is part of the ISR

� noLongerThan : max. block time – if time out, then
timeoutReason is passed to exception handler

65

� signal : signal conditionId
� wait : wait conditionId

[noLongerThan compIntExpr : timeoutReason]
– if timebound not specified – uses condition variable’s time

bound and timeoutReason

Real-Time Euclid

Condition Variables (con’t)

Mar 20/14

bound and timeoutReason
– if in monitor and timeout occurs: after processing by

exception handler, process is outside monitor and must
re-queue if monitor access is desired

� broadcast: broadcast conditionId
– for outside monitor condition variables

– signals all processes in queue simultaneously

66

Real-Time Euclid

Exception Handling

kill : kill processId : killReason
� termination (done, dead, caput: no reactivation)

– part of program is shut down

passed to processId’s exception handler

Mar 20/14

– part of program is shut down
– (possibly) raise an exception and terminate
– if “victim” (processId) is idle – i.e. completed

frame and not ready, then no exception raised
and victim is terminated

– process can kill self

67

Real-Time Euclid

Exception Handling (con’t)

deactivate : deactivate processId : deactivateReason
terminate process in the current frame of the victim
(possibly self)
– reactivated in next frame
– used for fault recovery in a frame

Mar 20/14

– used for fault recovery in a frame
– if victim not idle – exception raised in victim

except : except processId : exceptReason
raise an exception in processId and continue
– no effect on ready-to-run status

68

Real-Time Euclid

Exception Handling (con’t)

exception handler:
handler (exceptionReason)

exceptions (exceptionNumber [: maxRaised]
{ , exceptionNumber [:maxRasied] })

Mar 20/14

{ , exceptionNumber [:maxRasied] })
[importList]
declarations and statements

end handler

69

Real-Time Euclid

Exception Handling (con’t)

� some default exception handlers are built-in
– programmer can replace/override defaults with

specific handlers
– e.g. divide by zero

each process has an associated exception handler

Mar 20/14

� each process has an associated exception handler
� when an exception is raised to the process – the

handler is “ready”
� if no exceptions raised – handler has no effect

70

Real-Time Euclid

Exception Handling (con’t)

Ready :
� if the process is running, the handler is executed

like a software interrupt in the context of the
process
if process is not running, then handler is invoked

Mar 20/14

� if process is not running, then handler is invoked
when process begins to run (unless process was
idle while kill ed or deactivate d)

� handler has priority in process’s context

71

Real-Time Euclid

Schedulability Analysis
� uses techniques similar to hard real-time analysis

discussed previously (but more comprehensive!)
� built tools to support analysis
� two parts: front end & back end
front end :

Mar 20/14

front end :
� extracts timing and calling info from compilation units
� execution times of individual statements,

subprograms and process bodies
– does not account for process contention (blocking)
– gives lower bounds on execution times

72

Real-Time Euclid

Schedulability Analysis (con’t)

back end :
� maps system onto a real-time model –

includes:
– platform dependent (h/w) characteristics

Mar 20/14

– process contention
– uses front-end info + analysis of model to

arrive at worst-case response times
– solves for worst-case schedulability

73

Real-Time Euclid

Schedulability Analysis (con’t)

What if resulting processes are not schedulable?
� front-end info may help to identify pure

processing bottlenecks – candidates for
optimization

� back -end info may help to highlight contention

Mar 20/14

� back -end info may help to highlight contention
hot-spots – may need some redesign to eliminate

74

RT-Euclid refs

"Real-Time Euclid: A Language for
Reliable Real-Time Systems", E.
Kligerman et al, IEEE Transactions on
Software Engineering SE-12(9):941-949

Mar 20/14

Software Engineering SE-12(9):941-949
(Sept 1986)

75

