
SYSC 5701
Operating System Methods
for Real-Time Applicationsfor Real-Time Applications

Real-Time Java

Winter 2014

Real-Time Java
http://www.rtj.org/

� relevant parts of “traditional” Java = Java
– threads, monitors, memory access, garbage

collection

terminology
in slides

Mar 20/14 22

� real-time Java solution = RTJava
– “battle” between 2 proposals

� RTJava Specification = RTJS
– the “winner” � 2000

� industrial status? – Mars rover?

Warning!
� The following slides have Java details that were

relevant at the time of the conception of RTJava
(circa 2000)

� Java’s concurrency support made some
improvements in Java 5 (circa 2004)improvements in Java 5 (circa 2004)
– e.g. semaphores

Mar 20/14 3

Java Virtual Machine

Mar 20/14 44

Java
� concurrency � threads
� synchronization � monitors
� Java language spec � vague in many spots

– under-specified � allows many possible
implementations

Mar 20/14 55

implementations
� OK for soft real-time

– not appropriate for hard real-time

Java Threads

� priority driven scheduler
– unknown scheduling algorithm
– may be time sliced

� unknown number of priorities

under-specified!

Mar 20/14 66

unknown number of priorities
� allows mapping to a wide variety of native

threading models (Windows, Unix, etc.)
� in general, not safe to explicitly transfer control

from one thread to another
– killing threads, asynchronous control transfer

Thread LifeCycle

� new Thread � an empty Thread object

� no system resources allocated to it
� in this state, can only start the thread,

:

Mar 20/14 77

� start :
– creates system resources needed to run the thread
– schedules the thread to run
– calls the thread's run method

� return from start � thread is Runnable

thread
state

to Not Runnable

� A thread becomes Not Runnable when:
– its sleep method is invoked
– thread calls wait � wait for a specific

condition to be satisifed
monitors!

Mar 20/14 88

– thread is blocked on I/O

back to Runnable
� if thread is sleeping and the specified number of

milliseconds elapse
� if thread is waiting for a condition and another

object notifies the thread of a change in condition
– call to notify or notifyAll

if thread is blocked on I/O and the I/O completes
monitors!

Mar 20/14 99

� if thread is blocked on I/O and the I/O completes
� stop a thread: run method terminates

Thread Example (Sun Doc’s)
public class SimpleThread extends Thread {

public SimpleThread(String str) {
super(str);

}

public void run () {

constructor

super class constructor

Mar 20/14 1010

public void run () {

/* … thread’s execution code goes here … */

}

} this example:
subclasses Thread and overrides run

Creating Instances of Threads
public class ThreadsDemo {

public static void main (String[] args) {

new SimpleThread(“AThread").start();
new SimpleThread(“BThread").start();

}

Mar 20/14 1111

}

Inheritance Problem
� how can a class X be extended with thread

behaviour if it does not already have threads?
� Java does not support multiple class inheritance

– e.g. inherit from X and Thread
� add runnable interface to class X

Mar 20/14 1212

� add runnable interface to class X

Runnable Example �
public class ThreadedX extends X implements Runnable {

private Thread MyXThread = null;
public void start() { if (MyXThread == null) {
MyXThread = new Thread(this, “MyXThread");

MyXThread . start (); }
}

public void run () {

Thread myThread = Thread. currentThread();

this example: implements runnable

Mar 20/14 13Nov 23/09 13

while (MyXThread == myThread) {
/* … do stuff approx every second … */

try { Thread.sleep(1000); }
(InterruptedException e)

{ /*stop sleep, get back to work */ } }

}
public void stop () {

// stop MyXThread
MyXThread = null;

}

“asynchronous
stop” ? � ?

what happens to “Thread” ?

Thread Synchronization

� synchronized � monitor

� only one thread at a time can be executing a
synchronized block in an object
– managed by runtime environment

well … sort of

Mar 20/14 1414

� not really a monitor ?
– managing other threads in monitor?

Synchronized Methods
public class SharedQ {

public synchronized int get () { ... }

public synchronized void put (int value) { ... }

}

� SharedQ object locked automatically during

Mar 20/14 1515

� SharedQ object locked automatically during
get & put calls

� prevents interference
� what about put when full (get when empty)?

Wait / Notify Conditions

� wait – allows thread to block self

� notify – signals one thread that is waiting on
object
– But choice of thread is arbitrary !?!

Mar 20/14 1616

� notifyAll – signals all threads that are
waiting on object

SharedQ Revisited
public class SharedQ {

… synchronized … as before
boolean SpaceAvailable = true;
boolean DataAvailable = false;

public synchronized int get() {
while (DataAvailable == false) {
try {

Mar 20/14 1717

try {
// wait for data
wait();

} catch (InterruptedException e) { ... }
}

here … get value from queue and adjust state variables
notifyAll(); // let others in!
return value; }

}

release all? busy
wait? ugly!?

why not just
“notify” ?

not really
monitor!?

InterruptedException

� thrown when a thread is waiting, sleeping, or
“otherwise paused for a long time” (?) and
another thread interrupts it using the
interrupt method in class Thread

revisit on slide 44

Mar 20/14 1818

� maybe this could be used to implement
thread management in “monitors” ?!
– backdoor? using “exception” mechanism for

planned “normal” operation �

Memory Issues

Mar 20/14 1919

Lifetime of Variables

� Java allows variables to be:
– Globally available for the life of the

program
– Local to functions: exist for the life of a

function call
– Local to objects: exist for the life of an

object

Mar 20/14 20

Java Memory Access

� no “physical memory” access by
address
– no pointers !!!

� abstract references only

Mar 20/14 2121

� objects created in heap
– create objects using new

– cannot explicitly delete!
� automatic garbage collection (GC)
� reclaim object when no longer in use

Java Stack

� each thread has its own “Java stack”
� Java stack frames for local data needs:

– local variables, arguments, return values,
intermediate calculations

Mar 20/14 2222

intermediate calculations
– unavailable to Java programmers

� managed by virtual machine

Garbage Collection

� run by virtual machine when free heap
space goes below some “low” level

� all details are managed by virtual
machine

Mar 20/14 2323

machine
� garbage collection thread is often

non-preemptible by other threads
� a significant problem for real-time

deadlines!
overhead vs. program robustness

Garbage Collection
Implementation

� find at least one reference to object
� if no references, object “dead” � collect

object
� possible sources of references:

Mar 20/14 2424

– from variable in stack frame
– from a static variable
– from a field in a live object
– from a virtual machine internal variable

� search for references? � no time
guarantees!

Real-Time Java Battle

the armies:
1. backward compatible with Java

– minimize expansion of language
� extend existing Java classes

Mar 20/14 2525

� extend existing Java classes

2. new language
– target real-time systems

� don’t require backward compatibility

The Winner:
backward compatible

� RTJ Experts Group
� started work ~ 1998
� RTJ Specification v1.0, 2000
� November 2001, reference

Mar 20/14 2626

� November 2001, reference
implementation
– TimeSys

Guiding Approach

� general applicability
� backward compatibility with Java
� Write Once Carefully, Run Anywhere

Conditionally (WOCRAC ?)

Mar 20/14 2727

WORA ?
Conditionally (WOCRAC ?)

� reflect current practice
� predictable execution
� no syntactic extensions
� allow implementation variation/customization

– documented!

Key Advances

� thread scheduling and dispatching
� synchronization
� memory management
� asynchronous actions

Mar 20/14 2828

� asynchronous actions
� time, clocks & timers

Priority

� stricter notion of priority
– (original) Java threads – “low” priority
– garbage collector – dividing line
– higher than garbage collector – real-time!

Mar 20/14 2929

– higher than garbage collector – real-time!

� priority inversion control!
–default = priority inheritance

� 28 unique priorities

Realtime Threads

� extend Thread � RealtimeThread
– priority overlaps with Java threads,

garabage collector & “higher”
� can be run higher than GC!

Mar 20/14 3030

– can access new memory types (later)
– can also allocate in heap �

� potential priority inversion with GC!

No Heap Realtime Threads

� extend RealtimeThread �
NoHeapRealtimeThread

– priority always higher than GC
– cannot access heap or references to heap

Mar 20/14 3131

– cannot access heap or references to heap
� never priority inversion with GC! ☺

Can NoHeapRealtime Threads
Interact with Java Thread?

� cannot allow Java thread to block
NoHeapRealtimeThread !
– unbounded priority inversion!

� wait-free queuing to pass messages

Mar 20/14

32

Nov 23/09

32

� wait-free queuing to pass messages

Queues

Java Threads – can be blocked

NoHeapRealtimeThreads – cannot be blocked

Scheduling
� introduce:

– Schedulable entities: RealTimeThreads
– Scheduler – manages Schedulable objects
– API is scheduling discipline independent

Mar 20/14 3333

Scheduler

Scheduler
� methods for:

– feasibility analysis
– admission control
– dispatching
– asynchronous event handling

Mar 20/14 3434

– asynchronous event handling

� extend Scheduler � PriorityScheduler
– customize – override methods above, e.g.:

� RMAScheduler extends Scheduler
� EDFScheduler extends Scheduler

Schedulable Interface

� objects that implement Schedulable

are scheduled by Scheduler
� RealTimeThreads and

AsyncEventHandlers implement

Mar 20/14 3535

AsyncEventHandlers implement
Schedulable

� Schedulable object includes reference
to Scheduler to be used

Scheduling Parameters

� priority & importance
� periodic, aperiodic, sporadic
� memory demands

Mar 20/14 3636

Scheduling

Scheduler

ReleaseParameters

 cost : RelativeTime
 deadline : RelativeTime

«interface»
Schedulable

schedules

Mar 20/14 3737

 deadline : RelativeTime
 overrunHandler : AsyncEventHandler
 missHandler : AsyncEventHandler

PeriodicParameters

 start : HighResolutionTime
 period : RelativeTime

parameterizes

AperiodicParameters SporadicParameters

 minInterarrival : RelativeTime

Memory Management

� object lifetime control:
– manual � under explicit program control
– automatic � visibility (scope)

� memory areas

Mar 20/14 3838

� memory areas
– not managed by garbage collector !
– immortal � persistent for life of application
– scoped � life of run()

Memory Areas

MemoryArea

+enter(thread : Runnable)
+size() : long

PhysicalMemoryFactory

+ALIGNED : CONST
+BYTESWAP : CONST
+DMA : CONST
+SHARED : CONST

Mar 20/14 3939

HeapMemory ImmortalMemory ImmortalPhysicalMemoryScopedMemory

creates

dynamic memory for
NoHeapRealtimeThreads

Immortal Memory Example
import javax.realtime.*;

/** Example of the use of "Immortal" memory in a periodic
processing context. No heap allocation, avoids garbage
collection overhead! */

/** Class that performs processing in Immortal memo ry */

Mar 20/14 4040

/** Class that performs processing in Immortal memo ry */

class Runner implements Runnable {

public void run() {

// Processing code goes here

}

public static void main (String[] Args) {

NoHeapRealtimeThread t = null;

// Set up periodic processing

PeriodicParameters timeParams = new PeriodicParameters();

// 1 msec computation

timeParams. cost = new RelativeTime(1, 0);

// 10 msec period

timeParams. period = new RelativeTime(10, 0);

Mar 20/14 4141

timeParams. period = new RelativeTime(10, 0);

// Set up immortal memory; size given in RealtimeSy stem

MemoryParameters memParams = new

MemoryParameters(ImmortalMemory. instance());

// Processing is encapsulated in a Runnable object

Runner r = new Runner ();

/* Create a NoHeapRealtimeThread with Periodic

scheduling parameters and ImmortalMemory memory
parameters. */

try {

t = new NoHeapRealtimeThread(timeParams,

memParams, r);

} catch (AdmissionControlException e) { }

Mar 20/14 4242

} catch (AdmissionControlException e) { }

// Start processing

t .start();

}

} // end of main

Scoped Memory Area
ScopedMemory

+enter(thread : Runnable)

PhysicalMemoryFactory

creates

Mar 20/14 4343

LTMemory VTMemory ScopedPhysicalMemory

Variable
allocation time

Linear
allocation time

Asynchronous Event Handling
� AsyncEvent objects

� instance represents an event that can happen
� AsyncEventHandler implements Schedulable

– logic to process AsyncEvent
– execute with semantics of threads

as if it was
a thread

Mar 20/14 4444

– execute with semantics of threads

� handlers bound to events:
AsyncEvent.addHandler(AsyncEventHandler a);

� may be bound to external events, or invoked
internally:
AsyncEvent.fire()

a thread

Asynchronous Transfer of
Control

� "throws" clause including
AsynchronouslyInterruptedException (AIE)
– exception raised by the JVM when the

interrupt() method for thread is called

� mechanism extends the current semantics of

Mar 20/14 4545

� mechanism extends the current semantics of
the interrupt() method from only certain
blocking calls to straight-line code

� can be used to fudge “killing” a thread �

recall slide 18

AsyncEvents & Interrupts
Example

import javax.realtime.*;

/** Example of using Asynchronous Event/Event Handling facility
to provide an interface to hardware events, i.e. interrupts. A
hardware interrupt conceptually fires an AsyncEvent, which
causes the associated handler to run. */

public class HardwareEventExample extends AsyncEvent {

private int interruptNum;
define event

Mar 20/14 4646

/** Construct a new Hardware Event for a given interrupt. */

public HardwareEventExample(int num) { interruptNum = num; }

/** Bind a handler to the interrupt. */

public void setHandler (AsyncEventHandler h) {

super.setHandler(h);

Hardware.bind (interruptNum, h);

}

}

define event

Interrupt Example (con’t)
class HardwareEventHandler extends AsyncEventHandler {

private int interruptCount = 0;

/** Interrupt handler method. */

public void handleAsyncEvent() {

interruptCount++;

// Driver code

define handler

Mar 20/14 4747

}

}

bind this handler to interrupt using
previous setHandler method

Industry Status?
� TimeSys has commercial RTJS compliant

compiler product – built over RTLinux
– Mars Rover
– Team Jefferson in DAPRA Grand Challenge 2007

� still missing many of the higher-level real-time

Mar 20/14 4848

� still missing many of the higher-level real-time
language features Halang & Stoyenko would
like to see!

� long-term ?
� Distributed RTJ movement already in progress!

