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Process Model
� an abstract model for concurrent systems 

design, which provides:
– appropriate blend of sequential (simple) and 

event-driven (realistic) mindsets
– concurrency framework for identifying and 

describing concurrent activities 
– mechanisms for concurrent interaction
– mechanisms to ensure that high-priority work is 

not delayed by low-priority work
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Abstraction of Platform
� want platform semi -independence,  ignore:

– machine-level details where possible
� e.g.  processor register use

– implementation details of process model 

� BUT …maintain necessary links to machine
� e.g. h/w interrupts

I/O  h/w

exception mechanisms
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Must Be Practical !
� must have practical & understandable  

execution expectations !!
if practical implementation not possible

then resulting models must be 
redesigned for implementation 

� Is an understand implementation an issue?  
– Will people ever look at the underlying 

implementation?
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Process Model Implementation
(Kernel)
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Process
� basic unit of concurrency in process model

– Contain sequential program code

� processes may execute concurrently
– Concurrency: physical and/or apparent

� a semi-autonomous program fragment 
– process interactions (IPC)

� identifiable as an artifact in both the design 
and implementation

� FreeRTOS � tasks

Periodic Processes in
Theory vs. Practice?

� Process vs. Liu’s tasks?
� Process vs. Liu’s jobs?

� Concern:  

– How is periodic release managed?
�By process model or by code design?

� later!
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Process Control State

� each process has a control state, e.g.:
– running currently executing
– blocked not eligible to run

� NOTE: list of possible states will grow 
during implementation discussions!
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InterProcess
Communication   (IPC)

� IPC mechanisms are part of process model
– Managed by the kernel

� allows processes to interact
– synchronize :    e.g. semaphore
– communicate :    e.g. message-passing

� can processes share memory space?
– lightweight � yes
– heavyweight � no

� heavyweight typically needs MMU h/w
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Lightweight Process (Thread) 
vs. Heavyweight Process

� differences will be discussed later
� do not get tripped up (bogged down) in 

concern over differences at this point

� lets assume lightweight processes for now
� can share memory space

� can share variables 
�FreeRTOS tasks are lightweight
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Semaphore
� An IPC object in the process model 
� used for 

– mutual exclusion : programmed control 
over access to shared resources

�e.g. to avoid interference
– synchronization : coordinate progress

�e.g. consumer waits for producer

�FreeRTOS has semaphores
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Semaphore Concept
� abstract synchronization gate
� process requests permission to pass gate

� either:  allowed to pass the gate (continue 
executing) or blocked at the gate until 
permission is granted later

� multiple concurrent requests to pass gate 
are serialized by the semaphore

– only one at a time through gate
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Operational Model of Semaphore
� internal resources:

– protected counter
� initialized to some non-negative value 

– default or specified at creation
– blocked_Q : process queue – initially empty

� current value of counter  =  number of processes 
that may pass gate before gate closed

� counter  =  0 � gate closed!
� blocked processes "wait" in blocked_Q

yields processor!

no busy waiting! Jan 16, 2014 16

Semaphore Operations
� wait and   signal
� wait : request permission to pass gate

� signal : allow one more process to pass gate
� operations share counter and blocked Q

� must be interference free !
– process model implementation (Kernel) must 

serialize wait & signal code and protect 
internal data structures
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Wait Operation
Wait //  request permission to pass gate
//   this is serialized (protected) code!
if counter  >  0

then // gate is open – so pass
decrement counter
// decrement may close the gate!

else // gate is closed
block process (pause execution) and
enqueue process in blocked_Q
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Signal Operation
Signal // allow one more process to pass gate

//   this is serialized (protected) code!
if blocked_Q is empty

then // no processes are waiting to pass
increment counter
// allows a future process to pass

else // at least one process waiting
dequeue process from blocked_Q and
resume execution of the (unblocked) process
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Protected Semaphore Operations
� Kernel implements internal protection
� Application developers do not have to 

worry about how this is done
� Makes implementing protected application 

code easier!
– Protect using semaphores
– Reduce the development gap!
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Mutual Exclusion (mutex)
� recall Stream-2-Pipe example:  want 

mutually exclusive access to packet_Q

Add Remove

Packet_Q

W

S

mutex

producer consumer

1

2
3

1

2

3

mutex counter 
intial value = 1

semaphore
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Adding to Packet_Q

Protected_Add (  P :  packet_buffer )
{ mutex.Wait;           // gain exclusive access

Packet_Q.Add ( P ); // add to Q
mutex.Signal;     // release exclusive access

}
� Application code uses mutex semaphore to 

protect access to shared Packet_Q
– Packet_Add is protected! (serialized access)

3

2

1
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Removing from Packet_Q

Protected_Remove ( var P :  packet_buffer )
{ mutex.Wait; // gain exclusive access

Packet_Q.Remove ( P );     // remove from Q
mutex.Signal;      // release exclusive access

}
� Application code uses mutex semaphore to 

protect access to shared Packet_Q
� Packet_Remove is protected! (serialized access)

3

2

1
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Synchronization

� recall Stream-2-Pipe – only want to allow:
Remove : only when a packet is available

Add : only when there is space for the packet

� need more semaphores to synchronize!
– will introduce 2 more semaphores …
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Additional Semaphores

packets_in_Q : semaphore  =  0;  
// used to block Removers until a packet ready
// initially no packets ready  count = 0
//  gate is closed!

free_space : semaphore = Q_Size; 
// used to block Adders until space is available
// initially all spaces in Packet_Q are available
// count = Q_Size … gate is open!
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Packet_QAdd Remove

mutex
W

S

free_space

S

packets_in_Q
W

S

Protected_Add Protected_Remove

1

2

3

4

5 1

2

3

4

5

W

NB:  calling the 
Protected operations 
can result in the caller 
being blocked ! 
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Revised Add to Packet_Q
Protected_Add (  P :  packet_buffer )
{ free_space.Wait;  // get space in Packet_Q

mutex.Wait; // gain exclusive access
Packet_Q.Add( P ); // add to Q

mutex.Signal;   // release exclusive access
packets_in_Q.Signal; // packet now ready!

}

1

2

3

4

5
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Revised Remove From 
Packet_Q

Protected_Remove ( var P :  packet_buffer )
{ packets_in_Q.Wait; // wait for packet

mutex.Wait; // gain exclusive access
Packet_Q.Remove ( P );   // remove from Q

mutex.Signal;   // release exclusive access
free_space.Signal;   // one more freed space!

}

1

2

3

4

5
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Common Synchronization Bug
DEADLOCK !

� suppose Remove as above, but this Add :
Protected_Add(  P :  packet_buffer )
{ mutex.Wait; // gain exclusive access

free_space.Wait; // get space in Packet_Q
Packet_Q.Add( P ); // add to Q
packets_in_Q.Signal; // packet now ready!
mutex.Signal;   // release exclusive access

}
can a process be blocked 

in a protected region?      ����

Jan 16, 2014 29

Add/Remove Deadlock 
Scenario

� suppose Packet_Q is full
� producer has another packet � Add

1. mutex.Wait;   � passes
2. free_space.Wait;   � blocked!

� now consumer tries to remove
1. packets_in_Q.Wait;   � passes
2. mutex.Wait;     � blocked!

DEADLOCK!
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Process Model Implementation
Kernel (a.k.a.  Nucleus )

� run-time support for process model
� reduces req/impl gap

� typically:  small, efficient, fast
� often highly configurable

– operating environment & functionality
� central core of an “operating system” for a 

real-time embedded system
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Basic Kernel Functionality
� process management services:

– scheduling of processes to processor(s) 

– context switching : block a process, remove 
it from processor(s) and install new process 
on processor(s)

� IPC services (e.g. semaphores)

� may provide additional services (configurable?)

– e.g. resource management such as process-
related memory management  (MMU)
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Kernel Services Impl’n
� services re-entrant and internally protected

(re-entrant vs. recursive ?)

� invoke services using software interrupt
– (a.k.a.  trap, supervisor call)
– similar behaviour to hardware interrupt

�save state, transfer to Kernel ISR
�can change processor protection mode

– flexible run-time vs. link-time resolution 
dynamic vs. static
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Kernel’s View of  a Process
� each process requires memory resources:

– executable code – read-only – can be shared 
– local data variables – read / write – not 

shared
– stack – each process must have own stack!

�separate “threads of control”
� processes can share global variables and I/O 

resources
– share with care !!!
– heap ??  heap manager ??
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Kernel Keeps Information 
About Each Process

� process id – to uniquely identify the process
� current logical state (running, blocked, etc.)

– needed for scheduling decisions
� allocated resources – memory, I/O devices, 

o/s resources  (e.g. semaphores)
– needed for process management

� processor execution state – register values 
– needed for context switch

� priority – needed for scheduling
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Process Control Block: PCB

� data record (e.g. struct) used by kernel to 
manage info relevant to one process
– each process has a corresponding PCB

� fields for relevant process info

� may also include link fields used to 
manage PCB in various dynamic lists 
maintained by kernel
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Process ID

� to identify and refer to process at run-time
– IDs must be unique

– want to use ID to gain efficient access to 
PCBs

– cheap solution:   
ID = pointer to process’ PCB
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Process List
� list of PCB’s of all processes that currently 

exist
– often: list uses PCB pointers

� often implemented using a single head pointer 
variable and a “next” field in each PCB

� PCBs in a linked list

PCBPCB
head

PCB
… 
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Process State

� state transitions are due to kernel scheduling
� running and blocked are no longer sufficient

– what if running, but not on a processor?
– (i.e. waiting for a turn on a processor)

� introduce ready state – eligible to run, but not 
currently on a processor
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Process State Transitions

ready running

blocked

waitsignal

these transitions are due to kernel 
scheduling based on priority

these transitions are due 
to scheduling during
semaphore calls
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Ready Processes
� kernel maintains ready-to-run queue

���� RTR
� queue (using PCB pointers) of ready processes
� need:

– head pointer variable in kernel
– field in each PCB for linking into RTR queue  

� just like field for linking into process list

Jan 16, 2014 41

Running Processes
� kernel maintains a running_P variable 

– uniprocessor: ID of currently running process

�often just use PCB at head of RTR queue
– multiprocessor:  multiple running process IDs 

�can’t use (single) head of RTR queue 
� one running_P variable per processor
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Semaphore Management
� semaphore control block for each semaphore

– count
– blocked_Q

� semaphore runtime ID  

� pointer to control block
� kernel maintains sema4_list

� list of all semaphore control blocks
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Blocked Processes
� how to implement blocked_Q ?
� one possible solution:

– semaphore control block contains 
blocked_Q head pointer

– each PCB contains a field for linking 
into appropriate blocked_Q

– Link all processes blocked on 
semaphore into a list
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Multiple Lists and Queues

head … 

head … 

RTR head running_P

process list

semaphore list
blocked_Q
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Process Creation
to set up environment for process, need to know:
� stack requirements (for stack creation)

– alternative: default size 
� let process create bigger stack if needed
� BUT difficult to delete process and recover 

used memory if stack is not known to kernel
� static data memory required ?
� execution start address
� priority
� set up PCB � save process creation info
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Process Initialization
� process initial state? ready?

– system initialization concerns!  (more later!)

� ensure process queued in appropriate 
queue(s)

– process list
– ready-to-run? other? depends on state?

� process deletion is more complex – later!
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Process State Modification
� these events may require the kernel to 

change the state of a process:
– running process finishes scheduled work
– running process calls wait or signal

– an interrupt results in another process 
becoming ready

�e.g. an I/O interrupt that releases an I/O 
related process
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Scheduling Points

� when a process changes state, kernel must 
make a scheduling decision  (dynamic!)

� has the state change resulted in a situation 
where a context switch should be 
performed?

� if yes � do a context switch
� if no � leave current process running
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Non-Preemptive
� run process until blocked or completion  

– process (i.e. application programmer) 
decides when process relinquishes 
processor

– for run to completion – need to be able to 
delete process when complete, or 
introduce new state = done

� priority inversion – a higher priority 
process is ready, but waiting because a 
lower priority process is running �
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Priority Preemption

� when a higher priority process becomes 
ready – switch! event-driven ☺

� if running process is removed from 
processor at an “arbitrary” time (from 
process’ perspective)  

� should remain ready
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Context Switch
1. remove currently running process from 

processor
– save execution context
– manipulate process PCB accordingly   

2. select ready process from RTR queue
3. install selected process on processor

– manipulate process PCB
– dispatch (or launch) process
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1.   Remove the Currently 
Running Process 

� save processor register values
– where to save register values? PCB?  �
– process’ stack?  ☺

� after registers saved in stack
� save SP in process’ PCB for later re-install

� change process state accordingly (ready? blocked?) 
� enqueue process PCB as appropriate
� what stack space is used for kernel execution?
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2.  Select a Ready Process
� select process at head of ready-to-run queue

– assumes that processes ordered in RTR queue 
based on scheduling criteria
� e.g. priority: highest (head) to lowest (tail) 

� does selected process require a specific 
processor?
– if yes: � if processor now available – OK 

otherwise?  may have to pick another process?
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What if No Process is Ready?
� all are blocked ? perhaps waiting for some I/O 

activity?
� eventually some h/w interrupt will result in a 

condition that causes a process to become ready
� kernel typically maintains idle process:  idle_P

– idle_P does nothing but loop wasting time
� alternatives?  halt the processor? soft jobs?

� run idle_P until application process becomes ready
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3. Install Selected Process 
on Processor

� dequeue process from RTR
� record process ID in  running_P
� change process state to  running
� get stack pointer (SP) from process’ PCB

– restore saved registers 
� once PSW and IP are restored  � launched

process is executing!
� NB: MUST release any internal kernel 

protection before PSW and IP are restored
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H/W Interrupt Events

� kernel provides (at least initial) handling of 
h/w interrupts

� device handlers are typically implemented 
as processes above the kernel 

� device handler priority is a design issue –
often priority is higher than application 
processes
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Kernel Services for H/W Interrupts
� application supplied h/w interrupt service 

routine (ISR) associated with (bound -to) a 
h/w interrupt

� special IPC functionality to allow ISRs to 
interact with processes (e.g. device handlers)
– kernel code takes advantage of 

assumptions associated with h/w ISRs
– not handled the same way as process 

invoked IPC requests
�optimize speed and efficiency
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..
.application

ISRs

services

Process Model Abstraction

application

code processes

semaphores

application

code

ISR services

application

device 

handlers

virtual 

machine

interrupts
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Process Model 
Implementation

kernel

process 

list

ready-to-run queue

running_ID

sema4 list

idle_P

hardware

PCBs

sema4s

kernel ISR

manager

servicesISR services

…

…
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Some “Gnarly” Issues
gnarl•y Pronunciation: när'lE

adj.,  gnarl•i•er, gnarl•i•est.
Slang.  distasteful; distressing; offensive ;

1. periodic process release
2. memory for kernel managed objects
3. system initialization 
4. dynamic removal of kernel managed objects
5. exception handling
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Periodic Release via Code?

� Process implemented as a “do_forever” loop
while (true) {
… // do work
//   then wait until next “release”   how?

}
� To wait: use some o/s “sleep” function

– Assume: sleep uses relative time delay
e.g.  sleep(  300 );   // sleep for 300 ms
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G I 1

What Value to use for “Sleep”
� Constant? (relative time) const_t = period – e_t

while (true) {
… // do work
sleep(  const_t );  //   wait for next release
}

� Assumes start when released? Delayed start? 
Pre-emption? No … won’t work �
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G I 1

What Value to use for “Sleep”
� Calculate? (relative time)

while (true) {
Start_t = current_time( );
… // do work

Done_t = current_time( );
Sleep_t = period – (Done_t – Start_t );
sleep(  Sleep_t );  //   wait for next release
}

� Pre-emption after reading Done_t?  won’t work �
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G I 1 What Value to use for “Sleep”
� “Protected” Calculate? (relative time)

while (true) {

Start_t = current_time( );
… // do work

Disable;
Done_t = current_time( );
Sleep_t = period – (Done_t – Start_t );
sleep(  Sleep_t );  //   wait for next release
}

� Re-Enable? Call o/s with interrupts disabled? �
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What Value to use for “Sleep”
� Maybe if o/s supports absolute clock time?
� Calculate? (absolute time of next release)

Last_t // persistent variable = last release time
while (true) {

… // do work
Next_t = Last_t + period;
Last_t = Next_t;
sleep(  Next_t );  //   wait for next release
}

� ☺
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Periodic Release
� Much easier if o/s supports periodic release
� Period is included as a parameter when 

process created
� O/S manages releasing the process at start 

of every period ☺
� Despite “obvious” (?) value, many lean 

RTOSes do not support periodic release and 
support only relative time  �
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G I 1
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Memory for Kernel’s Use
� dynamically?  (from where?)   
� memory manager module?  

– part of o/s?   part of kernel?
– part of language support code?

– part of application code?
� is manager initialized before kernel needs it?
� what should kernel do if no memory  

available? � exception? 

G I 2
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Obtaining Memory (more)
�pre-allocate statically? 

– fixed number of system objects?   
– simple vs. limitations!

�shift responsibility to application ☺

– when app calls kernel to create object 
must pass pointer to block of memory to be 
used by kernel to manage object

G I 2
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Application Supplies 
Memory

e.g. sema4  create_sema4 ( 
initial_value: integer ;

sema4_control_block : pointer )
� returns runtime ID of created sema4 object

– pointer? trouble!
� application code has access to block!

G I 2
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System Initialization

� in real-time, embedded applications  � o/s & 
application code often linked into single load module  
(distributed system?  load modules?)

� what executes first?   application  vs. o/s?
– o/s must init before o/s can provide services

� default application init code? (“main”)
� high-level language-relevant init code too!?

– language’s run-time support code?

G I 3
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O/S Inititialization

�might include:
– initialize internal structures
– setup vectors for service calls
– timer h/w and ISR  

– other h/w? – e.g. memory manager?
– create idle process

G I 3
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Initial Creation of Processes 
and Semaphores

� process initial state? =   ready? 
� could a process run before other required 

processes and semaphores have been 
created? �

� careful attention to order of object creation
– ensure not possible for a process to be 

created before objects necessary for 
interaction have been created

– cyclic dependencies?
– can be complex – hard to modify/evolve

G I 3
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Initialization Mode?

� o/s does not dispatch any application 
processes until “go” call made to change 
mode to “normal”

� application init code creates objects needed, 
then calls “go” to release created processes

� system complexity too?  multiprocessor?  
network?

G I 3

Jan 16, 2014 74

Dynamic Process Removal 
� why delete a process?       done  vs. abort
� ran to completion – nothing more to do  (done)

– typically “safe” – application tidies up first
� application termination of activity – application no 

longer wishes to perform related work  (abort)
– e.g.  “cancel” button pressed

� recovering from exception – delete, then restart 
subset of system  (abort)

� terminating system in a controlled manner  (abort)

G I 4
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Why Might Abort-Deletion 
Be Difficult? 

� process might currently be using resources
– in a critical section?   release of mutex sema4?

� manipulating state-dependent h/w device? 
– preempt h/w access?
– leave h/w in unexpected state?

� other processes might be expecting 
participation

� will deletion upset cooperation patterns?

G I 4
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What About Objects Created 
By the Process?

� delete these too?
� memory allocation?  

� recall sema4 management blocks 
example
– dangling references to objects?

G I 4
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Permission to Delete a 
Process? 

� arbitrary?
� process can delete itself (terminate on completion)
� parent/child process creation tree

– parent: creates child processes
– process can only be deleted by a direct ancestor
– root of tree – can delete any process

� kernel vs. application?
� exception handlers?

G I 4

Jan 16, 2014 78

Exception Handling 

� (should be) major concern in real-time 
systems

� what to do if something goes wrong?
� fault tolerance? – recover and continue 

� reliability?
� hard to find solid discussions in generic texts! 

G I 5
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Examples of Exception 
Conditions 

� could be due to application  or  o/s  or  h/w
(or combinations)

� deadlock – application flaw?
� divide by zero

� stack overflow
– unexpected bursts of events
– stack use by ISRs?

G I 5
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More Exception Conditions

� memory protection fault
– accessing a dangling reference?

� hardware errors
– e.g. network communication failure

� too many events to process and still meet 
timing constraints
– event bursts, h/w failures

G I 5
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Sensing Exception 
Conditions 

� redundant s/w checks – e.g. CRC checks
� compiler inserts test code – performance?

– compilation switches

� h/w senses – interrupts

� timed services: “watchdog” timer

G I 5
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E.G Timed Sema4.Wait  Call 
� specify maximum time process can be blocked

– fixed maximum or parameter?
� if process blocked for specified time � timeout

– exception?
– kernel releases process?

� need return-code to indicate normal vs. 
timeout return from service call

G I 5
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Kernel Support of Timed Wait 
� kernel handles timer ISR – “tick”

– duration?  configuration parameter?
� kernel might maintain some notion of a “clock”

– accumulated ticks ?
– time-of-day ?

� PCB has timeout field
– unit resolution?
– ticks-until-timeout  count  vs. clock time
– clock time: absolute vs. relative time ?

G I 5
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Timed Wait (con’t)

� periodically (depends on resolution of 
timeout units) kernel extends behaviour of 
timer ISR to  handle service timing
– release processes if necessary 
– overhead !

G I 5
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More Timeout Issues

� how to manage return-code?
– ready + return-code field in PCB?

� priority of timed-out processes?
� what if application wants to use timer interrupt?

– daisy-chain after kernel’s use?
� jitter

G I 5
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What to do When an 
Exception Occurs?

� log details   – how? accessible if system crashes? 
� fix (if possible) and continue – ignore failure

– e.g.  I/O error:  reset h/w device
– hope protocols recover?

� re-attempt failed work
– preempt relevant processes

� roll back to a point before exception ?
� capability to rollback  = overhead!

– try again

G I 5
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More on What to Do

� re-attempt is often built into soft systems 
– e.g.  communication protocols

� continue with reduced capability
– restore capabilities when system repaired

� admin/operator interface to system

� crash and burn  �

G I 5
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Processing Exceptions

� functionality?
– application-specific    ☺
– kernel: generic            �

� attach application-specific handlers to kernel?

G I 5
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An Observation
(Pearce and others)

� exception handling in real-time applications 
adheres to Pareto Distribution:  20 / 80 split
– 20 % code � “normal” (80%) behaviour
– 80 % code � exception processing (20%) 

– tricky! 

� what were you trained to develop?

G I 5
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Grinding a Software 
Engineering Axe 

theoreticians often argue that design should be 
abstract & implementation independent
� nice in theory,  but

… in practice …
real-time system implementation quirks
associated with specific process model 
details and gnarly issues inevitably influence 
design decisions!



1/23/2014

16

Jan 16, 2014 91

Pearce’s Advice for Real-
Time Systems

the gnarly issues have system 
design implications – understand
them and  embrace them in your 
application and o/s design!

resistance is futile !

anecdote ☺


