
1/23/2014

1

SYSC 5701
Operating System Methods for

Real-Time Applications

Event-Driven Process Model

Winter 2014

Jan 16, 2014

RECALL: Motivation
reduced

requirements/implementation gap

Requirements

Implementation

smaller
req / impl
gap !!

process model

application
designers
worry
about this

2

PROCESS
MODEL

o/s implements this!

Jan 16, 2014 3

Process Model
� an abstract model for concurrent systems

design, which provides:
– appropriate blend of sequential (simple) and

event-driven (realistic) mindsets
– concurrency framework for identifying and

describing concurrent activities
– mechanisms for concurrent interaction
– mechanisms to ensure that high-priority work is

not delayed by low-priority work

Jan 16, 2014 4

Abstraction of Platform
� want platform semi -independence, ignore:

– machine-level details where possible
� e.g. processor register use

– implementation details of process model

� BUT …maintain necessary links to machine
� e.g. h/w interrupts

I/O h/w

exception mechanisms

Jan 16, 2014 5

Must Be Practical !
� must have practical & understandable

execution expectations !!
if practical implementation not possible

then resulting models must be
redesigned for implementation

� Is an understand implementation an issue?
– Will people ever look at the underlying

implementation?

Jan 16, 2014 6

..
.application

ISRs

services

Process Model Abstraction

application

code

processes

semaphores

application

code

ISR services

virtual

machine

interrupts

Ideally, we want to get to this: … slide 50+

And …

application

device

handlers

kernel

1/23/2014

2

Jan 16, 2014 7

Process Model Implementation
(Kernel)

kernel

process

list

ready-to-run queue

running_ID

sema4 list

idle_P

hardware

PCBs

sema4s

kernel ISR

manager

servicesISR services

…

…

Jan 16, 2014 8

Process
� basic unit of concurrency in process model

– Contain sequential program code

� processes may execute concurrently
– Concurrency: physical and/or apparent

� a semi-autonomous program fragment
– process interactions (IPC)

� identifiable as an artifact in both the design
and implementation

� FreeRTOS � tasks

Periodic Processes in
Theory vs. Practice?

� Process vs. Liu’s tasks?
� Process vs. Liu’s jobs?

� Concern:

– How is periodic release managed?
�By process model or by code design?

� later!

Jan 16, 2014 9 Jan 16, 2014 10

Process Control State

� each process has a control state, e.g.:
– running currently executing
– blocked not eligible to run

� NOTE: list of possible states will grow
during implementation discussions!

Jan 16, 2014 11

InterProcess
Communication (IPC)

� IPC mechanisms are part of process model
– Managed by the kernel

� allows processes to interact
– synchronize : e.g. semaphore
– communicate : e.g. message-passing

� can processes share memory space?
– lightweight � yes
– heavyweight � no

� heavyweight typically needs MMU h/w
Jan 16, 2014 12

Lightweight Process (Thread)
vs. Heavyweight Process

� differences will be discussed later
� do not get tripped up (bogged down) in

concern over differences at this point

� lets assume lightweight processes for now
� can share memory space

� can share variables
�FreeRTOS tasks are lightweight

1/23/2014

3

Jan 16, 2014 13

Semaphore
� An IPC object in the process model
� used for

– mutual exclusion : programmed control
over access to shared resources

�e.g. to avoid interference
– synchronization : coordinate progress

�e.g. consumer waits for producer

�FreeRTOS has semaphores

Jan 16, 2014 14

Semaphore Concept
� abstract synchronization gate
� process requests permission to pass gate

� either: allowed to pass the gate (continue
executing) or blocked at the gate until
permission is granted later

� multiple concurrent requests to pass gate
are serialized by the semaphore

– only one at a time through gate

Jan 16, 2014 15

Operational Model of Semaphore
� internal resources:

– protected counter
� initialized to some non-negative value

– default or specified at creation
– blocked_Q : process queue – initially empty

� current value of counter = number of processes
that may pass gate before gate closed

� counter = 0 � gate closed!
� blocked processes "wait" in blocked_Q

yields processor!

no busy waiting! Jan 16, 2014 16

Semaphore Operations
� wait and signal
� wait : request permission to pass gate

� signal : allow one more process to pass gate
� operations share counter and blocked Q

� must be interference free !
– process model implementation (Kernel) must

serialize wait & signal code and protect
internal data structures

Jan 16, 2014 17

Wait Operation
Wait // request permission to pass gate
// this is serialized (protected) code!
if counter > 0

then // gate is open – so pass
decrement counter
// decrement may close the gate!

else // gate is closed
block process (pause execution) and
enqueue process in blocked_Q

Jan 16, 2014 18

Signal Operation
Signal // allow one more process to pass gate

// this is serialized (protected) code!
if blocked_Q is empty

then // no processes are waiting to pass
increment counter
// allows a future process to pass

else // at least one process waiting
dequeue process from blocked_Q and
resume execution of the (unblocked) process

1/23/2014

4

Protected Semaphore Operations
� Kernel implements internal protection
� Application developers do not have to

worry about how this is done
� Makes implementing protected application

code easier!
– Protect using semaphores
– Reduce the development gap!

Jan 16, 2014 19 Jan 16, 2014 20

Mutual Exclusion (mutex)
� recall Stream-2-Pipe example: want

mutually exclusive access to packet_Q

Add Remove

Packet_Q

W

S

mutex

producer consumer

1

2
3

1

2

3

mutex counter
intial value = 1

semaphore

Jan 16, 2014 21

Adding to Packet_Q

Protected_Add (P : packet_buffer)
{ mutex.Wait; // gain exclusive access

Packet_Q.Add (P); // add to Q
mutex.Signal; // release exclusive access

}
� Application code uses mutex semaphore to

protect access to shared Packet_Q
– Packet_Add is protected! (serialized access)

3

2

1

Jan 16, 2014 22

Removing from Packet_Q

Protected_Remove (var P : packet_buffer)
{ mutex.Wait; // gain exclusive access

Packet_Q.Remove (P); // remove from Q
mutex.Signal; // release exclusive access

}
� Application code uses mutex semaphore to

protect access to shared Packet_Q
� Packet_Remove is protected! (serialized access)

3

2

1

Jan 16, 2014 23

Synchronization

� recall Stream-2-Pipe – only want to allow:
Remove : only when a packet is available

Add : only when there is space for the packet

� need more semaphores to synchronize!
– will introduce 2 more semaphores …

Jan 16, 2014 24

Additional Semaphores

packets_in_Q : semaphore = 0;
// used to block Removers until a packet ready
// initially no packets ready count = 0
// gate is closed!

free_space : semaphore = Q_Size;
// used to block Adders until space is available
// initially all spaces in Packet_Q are available
// count = Q_Size … gate is open!

1/23/2014

5

Jan 16, 2014 25

Packet_QAdd Remove

mutex
W

S

free_space

S

packets_in_Q
W

S

Protected_Add Protected_Remove

1

2

3

4

5 1

2

3

4

5

W

NB: calling the
Protected operations
can result in the caller
being blocked !

Jan 16, 2014 26

Revised Add to Packet_Q
Protected_Add (P : packet_buffer)
{ free_space.Wait; // get space in Packet_Q

mutex.Wait; // gain exclusive access
Packet_Q.Add(P); // add to Q

mutex.Signal; // release exclusive access
packets_in_Q.Signal; // packet now ready!

}

1

2

3

4

5

Jan 16, 2014 27

Revised Remove From
Packet_Q

Protected_Remove (var P : packet_buffer)
{ packets_in_Q.Wait; // wait for packet

mutex.Wait; // gain exclusive access
Packet_Q.Remove (P); // remove from Q

mutex.Signal; // release exclusive access
free_space.Signal; // one more freed space!

}

1

2

3

4

5

Jan 16, 2014 28

Common Synchronization Bug
DEADLOCK !

� suppose Remove as above, but this Add :
Protected_Add(P : packet_buffer)
{ mutex.Wait; // gain exclusive access

free_space.Wait; // get space in Packet_Q
Packet_Q.Add(P); // add to Q
packets_in_Q.Signal; // packet now ready!
mutex.Signal; // release exclusive access

}
can a process be blocked

in a protected region? ����

Jan 16, 2014 29

Add/Remove Deadlock
Scenario

� suppose Packet_Q is full
� producer has another packet � Add

1. mutex.Wait; � passes
2. free_space.Wait; � blocked!

� now consumer tries to remove
1. packets_in_Q.Wait; � passes
2. mutex.Wait; � blocked!

DEADLOCK!
Jan 16, 2014 30

Process Model Implementation
Kernel (a.k.a. Nucleus)

� run-time support for process model
� reduces req/impl gap

� typically: small, efficient, fast
� often highly configurable

– operating environment & functionality
� central core of an “operating system” for a

real-time embedded system

1/23/2014

6

Jan 16, 2014 31

Basic Kernel Functionality
� process management services:

– scheduling of processes to processor(s)

– context switching : block a process, remove
it from processor(s) and install new process
on processor(s)

� IPC services (e.g. semaphores)

� may provide additional services (configurable?)

– e.g. resource management such as process-
related memory management (MMU)

Jan 16, 2014 32

Kernel Services Impl’n
� services re-entrant and internally protected

(re-entrant vs. recursive ?)

� invoke services using software interrupt
– (a.k.a. trap, supervisor call)
– similar behaviour to hardware interrupt

�save state, transfer to Kernel ISR
�can change processor protection mode

– flexible run-time vs. link-time resolution
dynamic vs. static

Jan 16, 2014 33

Kernel’s View of a Process
� each process requires memory resources:

– executable code – read-only – can be shared
– local data variables – read / write – not

shared
– stack – each process must have own stack!

�separate “threads of control”
� processes can share global variables and I/O

resources
– share with care !!!
– heap ?? heap manager ??

Jan 16, 2014 34

Kernel Keeps Information
About Each Process

� process id – to uniquely identify the process
� current logical state (running, blocked, etc.)

– needed for scheduling decisions
� allocated resources – memory, I/O devices,

o/s resources (e.g. semaphores)
– needed for process management

� processor execution state – register values
– needed for context switch

� priority – needed for scheduling

Jan 16, 2014 35

Process Control Block: PCB

� data record (e.g. struct) used by kernel to
manage info relevant to one process
– each process has a corresponding PCB

� fields for relevant process info

� may also include link fields used to
manage PCB in various dynamic lists
maintained by kernel

Jan 16, 2014 36

Process ID

� to identify and refer to process at run-time
– IDs must be unique

– want to use ID to gain efficient access to
PCBs

– cheap solution:
ID = pointer to process’ PCB

1/23/2014

7

Jan 16, 2014 37

Process List
� list of PCB’s of all processes that currently

exist
– often: list uses PCB pointers

� often implemented using a single head pointer
variable and a “next” field in each PCB

� PCBs in a linked list

PCBPCB
head

PCB
…

Jan 16, 2014 38

Process State

� state transitions are due to kernel scheduling
� running and blocked are no longer sufficient

– what if running, but not on a processor?
– (i.e. waiting for a turn on a processor)

� introduce ready state – eligible to run, but not
currently on a processor

Jan 16, 2014 39

Process State Transitions

ready running

blocked

waitsignal

these transitions are due to kernel
scheduling based on priority

these transitions are due
to scheduling during
semaphore calls

Jan 16, 2014 40

Ready Processes
� kernel maintains ready-to-run queue

���� RTR
� queue (using PCB pointers) of ready processes
� need:

– head pointer variable in kernel
– field in each PCB for linking into RTR queue

� just like field for linking into process list

Jan 16, 2014 41

Running Processes
� kernel maintains a running_P variable

– uniprocessor: ID of currently running process

�often just use PCB at head of RTR queue
– multiprocessor: multiple running process IDs

�can’t use (single) head of RTR queue
� one running_P variable per processor

Jan 16, 2014 42

Semaphore Management
� semaphore control block for each semaphore

– count
– blocked_Q

� semaphore runtime ID

� pointer to control block
� kernel maintains sema4_list

� list of all semaphore control blocks

1/23/2014

8

Jan 16, 2014 43

Blocked Processes
� how to implement blocked_Q ?
� one possible solution:

– semaphore control block contains
blocked_Q head pointer

– each PCB contains a field for linking
into appropriate blocked_Q

– Link all processes blocked on
semaphore into a list

Jan 16, 2014 44

Multiple Lists and Queues

head …

head …

RTR head running_P

process list

semaphore list
blocked_Q

Jan 16, 2014 45

Process Creation
to set up environment for process, need to know:
� stack requirements (for stack creation)

– alternative: default size
� let process create bigger stack if needed
� BUT difficult to delete process and recover

used memory if stack is not known to kernel
� static data memory required ?
� execution start address
� priority
� set up PCB � save process creation info

Jan 16, 2014 46

Process Initialization
� process initial state? ready?

– system initialization concerns! (more later!)

� ensure process queued in appropriate
queue(s)

– process list
– ready-to-run? other? depends on state?

� process deletion is more complex – later!

Jan 16, 2014 47

Process State Modification
� these events may require the kernel to

change the state of a process:
– running process finishes scheduled work
– running process calls wait or signal

– an interrupt results in another process
becoming ready

�e.g. an I/O interrupt that releases an I/O
related process

Jan 16, 2014 48

Scheduling Points

� when a process changes state, kernel must
make a scheduling decision (dynamic!)

� has the state change resulted in a situation
where a context switch should be
performed?

� if yes � do a context switch
� if no � leave current process running

1/23/2014

9

Jan 16, 2014 49

Non-Preemptive
� run process until blocked or completion

– process (i.e. application programmer)
decides when process relinquishes
processor

– for run to completion – need to be able to
delete process when complete, or
introduce new state = done

� priority inversion – a higher priority
process is ready, but waiting because a
lower priority process is running �

Jan 16, 2014 50

Priority Preemption

� when a higher priority process becomes
ready – switch! event-driven ☺

� if running process is removed from
processor at an “arbitrary” time (from
process’ perspective)

� should remain ready

Jan 16, 2014 51

Context Switch
1. remove currently running process from

processor
– save execution context
– manipulate process PCB accordingly

2. select ready process from RTR queue
3. install selected process on processor

– manipulate process PCB
– dispatch (or launch) process

Jan 16, 2014 52

1. Remove the Currently
Running Process

� save processor register values
– where to save register values? PCB? �
– process’ stack? ☺

� after registers saved in stack
� save SP in process’ PCB for later re-install

� change process state accordingly (ready? blocked?)
� enqueue process PCB as appropriate
� what stack space is used for kernel execution?

Jan 16, 2014 53

2. Select a Ready Process
� select process at head of ready-to-run queue

– assumes that processes ordered in RTR queue
based on scheduling criteria
� e.g. priority: highest (head) to lowest (tail)

� does selected process require a specific
processor?
– if yes: � if processor now available – OK

otherwise? may have to pick another process?

Jan 16, 2014 54

What if No Process is Ready?
� all are blocked ? perhaps waiting for some I/O

activity?
� eventually some h/w interrupt will result in a

condition that causes a process to become ready
� kernel typically maintains idle process: idle_P

– idle_P does nothing but loop wasting time
� alternatives? halt the processor? soft jobs?

� run idle_P until application process becomes ready

1/23/2014

10

Jan 16, 2014 55

3. Install Selected Process
on Processor

� dequeue process from RTR
� record process ID in running_P
� change process state to running
� get stack pointer (SP) from process’ PCB

– restore saved registers
� once PSW and IP are restored � launched

process is executing!
� NB: MUST release any internal kernel

protection before PSW and IP are restored

Jan 16, 2014 56

H/W Interrupt Events

� kernel provides (at least initial) handling of
h/w interrupts

� device handlers are typically implemented
as processes above the kernel

� device handler priority is a design issue –
often priority is higher than application
processes

Jan 16, 2014 57

Kernel Services for H/W Interrupts
� application supplied h/w interrupt service

routine (ISR) associated with (bound -to) a
h/w interrupt

� special IPC functionality to allow ISRs to
interact with processes (e.g. device handlers)
– kernel code takes advantage of

assumptions associated with h/w ISRs
– not handled the same way as process

invoked IPC requests
�optimize speed and efficiency

Jan 16, 2014 58

..
.application

ISRs

services

Process Model Abstraction

application

code processes

semaphores

application

code

ISR services

application

device

handlers

virtual

machine

interrupts

Jan 16, 2014 59

Process Model
Implementation

kernel

process

list

ready-to-run queue

running_ID

sema4 list

idle_P

hardware

PCBs

sema4s

kernel ISR

manager

servicesISR services

…

…

Jan 16, 2014 60

Some “Gnarly” Issues
gnarl•y Pronunciation: när'lE

adj., gnarl•i•er, gnarl•i•est.
Slang. distasteful; distressing; offensive ;

1. periodic process release
2. memory for kernel managed objects
3. system initialization
4. dynamic removal of kernel managed objects
5. exception handling

1/23/2014

11

Periodic Release via Code?

� Process implemented as a “do_forever” loop
while (true) {
… // do work
// then wait until next “release”  how?

}
� To wait: use some o/s “sleep” function

– Assume: sleep uses relative time delay
e.g. sleep(300); // sleep for 300 ms

Jan 16, 2014 61

G I 1

What Value to use for “Sleep”
� Constant? (relative time) const_t = period – e_t

while (true) {
… // do work
sleep(const_t); // wait for next release
}

� Assumes start when released? Delayed start?
Pre-emption? No … won’t work �

Jan 16, 2014 62

G I 1

What Value to use for “Sleep”
� Calculate? (relative time)

while (true) {
Start_t = current_time();
… // do work

Done_t = current_time();
Sleep_t = period – (Done_t – Start_t);
sleep(Sleep_t); // wait for next release
}

� Pre-emption after reading Done_t? won’t work �

Jan 16, 2014 63

G I 1 What Value to use for “Sleep”
� “Protected” Calculate? (relative time)

while (true) {

Start_t = current_time();
… // do work

Disable;
Done_t = current_time();
Sleep_t = period – (Done_t – Start_t);
sleep(Sleep_t); // wait for next release
}

� Re-Enable? Call o/s with interrupts disabled? �

Jan 16, 2014 64

G I 1

What Value to use for “Sleep”
� Maybe if o/s supports absolute clock time?
� Calculate? (absolute time of next release)

Last_t // persistent variable = last release time
while (true) {

… // do work
Next_t = Last_t + period;
Last_t = Next_t;
sleep(Next_t); // wait for next release
}

� ☺

Jan 16, 2014 65

G I 1

Periodic Release
� Much easier if o/s supports periodic release
� Period is included as a parameter when

process created
� O/S manages releasing the process at start

of every period ☺
� Despite “obvious” (?) value, many lean

RTOSes do not support periodic release and
support only relative time �

Jan 16, 2014 66

G I 1

1/23/2014

12

Jan 16, 2014 67

Memory for Kernel’s Use
� dynamically? (from where?)
� memory manager module?

– part of o/s? part of kernel?
– part of language support code?

– part of application code?
� is manager initialized before kernel needs it?
� what should kernel do if no memory

available? � exception?

G I 2

Jan 16, 2014 68

Obtaining Memory (more)
�pre-allocate statically?

– fixed number of system objects?
– simple vs. limitations!

�shift responsibility to application ☺

– when app calls kernel to create object
must pass pointer to block of memory to be
used by kernel to manage object

G I 2

Jan 16, 2014 69

Application Supplies
Memory

e.g. sema4 create_sema4 (
initial_value: integer ;

sema4_control_block : pointer)
� returns runtime ID of created sema4 object

– pointer? trouble!
� application code has access to block!

G I 2

Jan 16, 2014 70

System Initialization

� in real-time, embedded applications � o/s &
application code often linked into single load module
(distributed system? load modules?)

� what executes first? application vs. o/s?
– o/s must init before o/s can provide services

� default application init code? (“main”)
� high-level language-relevant init code too!?

– language’s run-time support code?

G I 3

Jan 16, 2014 71

O/S Inititialization

�might include:
– initialize internal structures
– setup vectors for service calls
– timer h/w and ISR

– other h/w? – e.g. memory manager?
– create idle process

G I 3

Jan 16, 2014 72

Initial Creation of Processes
and Semaphores

� process initial state? = ready?
� could a process run before other required

processes and semaphores have been
created? �

� careful attention to order of object creation
– ensure not possible for a process to be

created before objects necessary for
interaction have been created

– cyclic dependencies?
– can be complex – hard to modify/evolve

G I 3

1/23/2014

13

Jan 16, 2014 73

Initialization Mode?

� o/s does not dispatch any application
processes until “go” call made to change
mode to “normal”

� application init code creates objects needed,
then calls “go” to release created processes

� system complexity too? multiprocessor?
network?

G I 3

Jan 16, 2014 74

Dynamic Process Removal
� why delete a process? done vs. abort
� ran to completion – nothing more to do (done)

– typically “safe” – application tidies up first
� application termination of activity – application no

longer wishes to perform related work (abort)
– e.g. “cancel” button pressed

� recovering from exception – delete, then restart
subset of system (abort)

� terminating system in a controlled manner (abort)

G I 4

Jan 16, 2014 75

Why Might Abort-Deletion
Be Difficult?

� process might currently be using resources
– in a critical section? release of mutex sema4?

� manipulating state-dependent h/w device?
– preempt h/w access?
– leave h/w in unexpected state?

� other processes might be expecting
participation

� will deletion upset cooperation patterns?

G I 4

Jan 16, 2014 76

What About Objects Created
By the Process?

� delete these too?
� memory allocation?

� recall sema4 management blocks
example
– dangling references to objects?

G I 4

Jan 16, 2014 77

Permission to Delete a
Process?

� arbitrary?
� process can delete itself (terminate on completion)
� parent/child process creation tree

– parent: creates child processes
– process can only be deleted by a direct ancestor
– root of tree – can delete any process

� kernel vs. application?
� exception handlers?

G I 4

Jan 16, 2014 78

Exception Handling

� (should be) major concern in real-time
systems

� what to do if something goes wrong?
� fault tolerance? – recover and continue

� reliability?
� hard to find solid discussions in generic texts!

G I 5

1/23/2014

14

Jan 16, 2014 79

Examples of Exception
Conditions

� could be due to application or o/s or h/w
(or combinations)

� deadlock – application flaw?
� divide by zero

� stack overflow
– unexpected bursts of events
– stack use by ISRs?

G I 5

Jan 16, 2014 80

More Exception Conditions

� memory protection fault
– accessing a dangling reference?

� hardware errors
– e.g. network communication failure

� too many events to process and still meet
timing constraints
– event bursts, h/w failures

G I 5

Jan 16, 2014 81

Sensing Exception
Conditions

� redundant s/w checks – e.g. CRC checks
� compiler inserts test code – performance?

– compilation switches

� h/w senses – interrupts

� timed services: “watchdog” timer

G I 5

Jan 16, 2014 82

E.G Timed Sema4.Wait Call
� specify maximum time process can be blocked

– fixed maximum or parameter?
� if process blocked for specified time � timeout

– exception?
– kernel releases process?

� need return-code to indicate normal vs.
timeout return from service call

G I 5

Jan 16, 2014 83

Kernel Support of Timed Wait
� kernel handles timer ISR – “tick”

– duration? configuration parameter?
� kernel might maintain some notion of a “clock”

– accumulated ticks ?
– time-of-day ?

� PCB has timeout field
– unit resolution?
– ticks-until-timeout count vs. clock time
– clock time: absolute vs. relative time ?

G I 5

Jan 16, 2014 84

Timed Wait (con’t)

� periodically (depends on resolution of
timeout units) kernel extends behaviour of
timer ISR to handle service timing
– release processes if necessary
– overhead !

G I 5

1/23/2014

15

Jan 16, 2014 85

More Timeout Issues

� how to manage return-code?
– ready + return-code field in PCB?

� priority of timed-out processes?
� what if application wants to use timer interrupt?

– daisy-chain after kernel’s use?
� jitter

G I 5

Jan 16, 2014 86

What to do When an
Exception Occurs?

� log details – how? accessible if system crashes?
� fix (if possible) and continue – ignore failure

– e.g. I/O error: reset h/w device
– hope protocols recover?

� re-attempt failed work
– preempt relevant processes

� roll back to a point before exception ?
� capability to rollback = overhead!

– try again

G I 5

Jan 16, 2014 87

More on What to Do

� re-attempt is often built into soft systems
– e.g. communication protocols

� continue with reduced capability
– restore capabilities when system repaired

� admin/operator interface to system

� crash and burn �

G I 5

Jan 16, 2014 88

Processing Exceptions

� functionality?
– application-specific ☺
– kernel: generic �

� attach application-specific handlers to kernel?

G I 5

Jan 16, 2014 89

An Observation
(Pearce and others)

� exception handling in real-time applications
adheres to Pareto Distribution: 20 / 80 split
– 20 % code � “normal” (80%) behaviour
– 80 % code � exception processing (20%)

– tricky!

� what were you trained to develop?

G I 5

Jan 16, 2014 90

Grinding a Software
Engineering Axe

theoreticians often argue that design should be
abstract & implementation independent
� nice in theory, but

… in practice …
real-time system implementation quirks
associated with specific process model
details and gnarly issues inevitably influence
design decisions!

1/23/2014

16

Jan 16, 2014 91

Pearce’s Advice for Real-
Time Systems

the gnarly issues have system
design implications – understand
them and embrace them in your
application and o/s design!

resistance is futile !

anecdote ☺

