SYSC 5701
Operating System Methods for
Real-Time Applications

Priority-Driven Scheduling
for Periodic Tasks
Winter 2014

Assumptions (Liu Ch. 6)

no aperiodic or sporadic tasks
tasks are independent
uniprocessor
will relax assumptions 1 & 2 later
— aperiodic & sporadic - Liu Ch. 7
— interdependency - Liu Ch. 8
e Already seen “Access Control”!

e w N B+

Feb 25/14 2

Uniprocessor

e why not relax this assumption?
e multiprocessor typically managed by
allocating a set of tasks to each processor

- static: once allocated, task handled only by that
processor

— tasks do not migrate among processors
- have a fixed task set for each processor

Feb 25/14 3

Priority-Driven Scheduling Algorithms

e Static-(or Fixed-)Priority — assigns the
same priority to all jobs in a task.

e Dynamic-Priority — may assign different
priorities to individual jobs within each task
- e.g., earliest-deadline-first (EDF) algorithm

Feb 25/14 4

Static-Priority vs. Dynamic Priority

« Static-Priority: All jobs in task have same priority.
* example:
Rate-Maonotonic: “The shorter the period, the higher the priority.”

T =(5315) oladmt=anl

a1 Ay = = L = = |

L =102 L 3) hp'y I i N A I e A
+ Dynamic-Priority: May assign different priorities to individual jobs,

* example:
Earliest-Deadline-First: “The nearer the absolute deadline,

the higher the priority.” here we break te

e h e
sbnb.b. ol

T, is ot preempled

Feb 25/14 5

Processor Utilization

e recall that for a periodic task T;, the ratio
u, = €/p, -> utilizationoftask T ;
e the total utilization U of all tasks in a

system is the sum of the utilizations of all
individual tasks:

u=y2

iz Pi

Feb 25/14 6

Fixed-Priority Scheduling

of Periodic Tasks
1. consider some examples
2. consider some methods that can be used
to determine the schedulability of a task
set:
e Utilization-based test
e Response-time (or time-based) test

Example #1
Task Period Deadline Run-Time
Ti P; D; €
A(High Priority) 2 2 1
B (Low Priority) 5 5 1

U=12+1/5 =07

P S T
‘= kb

L= !:'\\5':'/

0 2 45 15
processor
Feb 25/14 7 Feb 25/14 idle 8
Example #2 Example #3
Task Period Deadline Run-Time Ta_?k FE Dea(liDIine RO
T; Pi D € i \ Pi b €
]

A (High Priority) 2 2 1

A (Low Priority) 2 2 1 . /
B (High Priority) ‘{ 5 1 B (owprioityy 5 5 2
Uu=1/2 +2/5=0.9

Uu=1/2 +1/5=0.7

AR==R=RER-REE R RS
B " m

oty bhbbpb b

5 S W

priority B
: 5 f 0 2 45 10
0 2 45 10 15 15
Feb 25/14 9 Feb 25/14 10
Example #4 Example #5
Task Period Deadline Run-Time Task Period Deadline Run-Time
T Pi D g T Pi D &
A (Low Priority) 2 2 1 A (High Priority) 2 2 1
B (High Priority) «~ 5 5 2 B (towPprioiity) 5 5 2.2/
U=1/2 +2/5=0.9 U=1/2 +2.2/5=
CI=R=RE==R " 1=R=] -
Alm o m O ol mE mmE e
IR e R e D v e i e I R B .. 1
[1 1] 1 11 1 [Bl @@ | @'m |
0 2 45 10 15 0 2 45 10 15
Feb 25/14 1 Feb 25/14 12

Is There a Feasible Schedule
for Example 57

1313l L

B -ﬁﬁﬁﬁﬁ-\hﬂ- [Il Hn hﬁﬁ-

0 2 45 10 15

T E LRI llill cor

0 2 45 10 15

Feb 25/14 13

Analysis of Examples

e Changing the static priorities assigned to
each task can impact the task set’s feasibility
- e.g., examples 3 and 4.

e Even if the total task utilization is less than
1.0, the task set may not have a feasible
(static) priority assignment
- e.g., example 5

Is there an upper bound on processor

utilization that ensures schedulability?

Feb 25/14 14

Issues in Fixed Priority
Assignment

e How to assign priorities?

e How to determine which assignment is the
best; e.g., how to evaluate a priority
assignment algorithm (method)?

e How to compare different priority
assignment algorithms?

Feb 25/14 15

Fixed Priority Assignment
Methods

e According to execution times (e;)
— smallest/largest execution time first

e According to periods (p;)
- smallest/largest period first

e According to task utilization (e;/p;)
- smallest/ largest task utilization first

e Other? Deadlines (DMA) , etc.

Feb 25/14 16

Rate-Monotonic Algorithm (RM)
e rate (frequency) of task is inverse of its period
fi=1/p
e higher rate (shorter period) = higher priority
classic paper - posted!
C. L. Liuand J. W. Layland, read it!

“Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment”, JACM, Vol. 20, No. 1,
pages 46-61, 1973.

Feb 25/14 17

Deadline-Monotonic Algorithm (DM)

e tasks with shorter relative deadlines are
assigned higher priorities

e when relative deadlines (D;) equal to their
periods (p;), the rate-monotonic algorithm
is the same as the deadline-monotonic
algorithm.

Feb 25/14 18

Rate-Monotonic Assumptions

e tasks may be preempted
e tasks are periodic

e tasks execution times (e;) are constant

Feb 25/14 19

Optimal Priority Assignment

e a given priority assignment algorithm is
optimal if whenever a task set can be
scheduled by some fixed priority assignment,
then it can also be scheduled by the given
algorithm

e Liu and Layland show that:
— rate-monotonic algorithm is optimal

Feb 25/14 20

Maximum Achievable Utilization

Example #6
Atask set is fully utilized if any increase in run- Task Period Deadline Run-Time
time of any task would result in a missed deadline. T, P D, €
ITotal 4 nschedulable A (High Priority) 2 2 1
Utilization ow Pricri
) 100 % l task sets B owprioriy) 2 2 1
A l \:I |:| ‘:I U=1/2+1/2=1.0=100%
lEl The task set is fully utilized.
schedulable i J
task sets Bl & =
0% B] 0 2 4 6 8 10
Feb 25/14 21 Feb 25/14 22
Example #7 Fully utilized task sets
Ta_?k Period Dea?)"”e Run-Time different algorithms have different
i Pi i € “fully utilized” curves
A (High Priority) 2 2 1 Total 4 unschedulabl
B (owPrioity 3 3 1 Utilization e

U=1/2+1/3=0.8333
A \:| \:| }:| I:l The task set is fully utilized,
...even though U < 1.0.
mlm W

increase e,?

0 2 4 6 8 10 .
increase eg?

Feb 25/14 23

V)

fully utilized
task sets

schedulable
task sets

Feb 25/14 24

Utilization-Based Test

e A sufficient, but not necessary, test for
schedulability of a task set that is assigned

priorities using the rate-monotonic algorithm.

e Compute total task utilization U(n) = U.

Feb 25/14 25

Liu and Layland’s Results
Theorem 2: If a feasible fixed priority
assignment exists for some task set, then
the rate-monotonic priority assignment is
feasible for that task set.

Theorem 4: For a set of n tasks with fixed
priority assignment, the least upper bound to
the processor utilization factor is

Ugu(n) =n (2" -1)

Feb 25/14 26

Values for U g(n)

eU(l) = 10

eU(2) = 0.828

eUB) = 0.779

eU(4) = 0.756

eU(®) = 0.69 (In 2)

Feb 25/14 27

RM Utilization Test
Utilization vs worst-case utilization bound
e also called schedulable utilization
Ugm(n) — U
—1If U> 1, then the task set is not schedulable
—If U< Ugy(n), then the task set is schedulable
— Otherwise: Ugy(n) <U < 1
- no conclusion can be made
-> try more detailed analysis

Feb 25/14 28

Response Time Tests

e for use when Ug,(n) <U < 1

e analyze tasks to determine the worst case
response time for jobs

e if worst case response of a job exceeds its
deadline, then no feasible schedule

e for independent tasks, only delays are due
to preemption by higher priority tasks

Feb 25/14 29

Worst-Case Simulation

e assume a critical instant for all tasks

e construct schedule according to the
scheduling algorithm

e only need to consider largest task period

e if all tasks meet their deadlines
— then tasks are feasibly schedulable

Feb 25/14 30

Time-Demand Analysis
e tasks place incremental demands on
processor time
— let w\(t) be demand from task i and all higher
priority tasks
e processor delivers (processing) linearly
e check each task i, to be feasible:
w(t) =t for some t < p,
e how is this different from worst-case
simulation?

schedulevs.
Feb 25/14 calculation'!

31

Example #8

U= Xu =0916 > 0.779 < U(3)
O does not meet utilization bound!

Feb 25/14 32

Time-Demand Visualization

How to Solve ?

300} (1)
W) T “ w,(Y) For each task:
2251 e consider demand at each scheduling point
wy(t) « before next demand

150l e if task’s demand < delivery before deadline,

1 pracessor — then feasible !

/ delivery !
75 \\ \
: 75 — 150I : 225 — 300 t
Example 9 Consider Each Task

T,: C,=30 p,=70 u,=0.429
T,: C,=60 p,=200 u,=0.3
T,: C;=78 p,=375 u,=0.208

U= Yu =0937 > 0.779 (U(@3))

O does not meet utilization bound! ®

Feb 25/14

35

e Task 1. highest priority - meets deadline
30 (execution,) < 70 (period,)

o Will need to know Scheduling Points:
- periods: 70, 200, 375

— scheduling points: (when new demand is
released)

0, 70, 140, 200, 210, 280, 350, 375

all released

Feb 25/14 36

Continue (Task 2)

e Task 2: can only be delayed by Task 1
— first scheduling point: t=70 (T,)
edemand = 30 + 60 = 90 ®

- second scheduling point: t = 140 (T,)
edemand =2*30+ 60 =120 ©

AN before next release! i.e. before T, scheduled

Feb 25/14

37

Continue (Task 3)

Now for Task 3:

e first scheduling point: t = 70 (T,)
—demand=30+60+78=168 ®

e second scheduling point: t = 140 (T,)
—demand =2*30+60+78=198 ®

e third scheduling point: t = 200 (T,)
—demand =3*30+60+78=228 ®

Feb 25/14 38

Continue (Task 3 con’t)

e fourth scheduling point: t = 210 (T,)
—demand =3*30 +2*60+ 78 =288 ®
e fifth scheduling point: t = 280 (T,)
—demand =4*30 +2*60+78=318 ®
e sixth scheduling point: t = 350 (T,)
—demand =5*30+2*60+78=348 ©
e whew! all tasks feasible

Feb 25/14

39

Easier way?

e why not just check demand at end of p;?
— if T3 meets deadline,
then should have slack then?
e scheduling point: t = 375 (T,)
—demand =6*30+2*60 + 78 =378 ®

HUH?

Feb 25/14 40

400
50-¢

300}

zomi_/_]i7

50}

_

100

Example 9

o Visualization

41

Alternative ?

e let |, be the delay in task i's response time
due to higher priority tasks

e response time R;=e¢;+1; (Equ.1)

e worst case response time: task i and all
higher priority tasks release a job at the same
instant

I, = sum of all higher priority jobs execution times

Feb 25/14 42

of Jobs Over an Interval

® suppose: periodic task j:
* number of jobs in [E)f/),://“ceiling" function:
|_B —I integer round-up
Pi
e delay to lower priority tasks due to these

jobs is: |—B —|ej
Pi

Feb 25/14

Consider Task with period p |

Over Time Interval P: p ;, < P
ep =66, =10, P=300
0 0 0 0 30
0 66 132 198 264 | 330
e work associated with task is “requested” at
the beginning of each period
e there are |_P/pi-| (max.) requests in interval
e.g. 300/66 = 4.54, roundsupto 5
e to meet deadline P, must perform work
[P/p,|times during P

Feb 25/14

of Higher Priority Jobs Over
an Interval

e suppose: i periodic tasks, all with phase 0

e rate monotonic priority assignment

e total delay to task i due to higher priority
tasks is:

| = il_gi—lej (Equ. 2)
j=o

Feb 25/14 45

Response Time Equ.
e Substitute Equ 2 into Equ 1:

R, = ei+i|_§.i—|ei (Equ.3)
=0

e can solve using a recurrence relation:
- initially, estimate R°=¢; (no delay)
— use estimate to calculate better estimate,
recurse
— stop when solution found

Feb 25/14

Recurrence Relation

substitute R0

RP=¢
. solve for R;*
- R .
1 — A .
R™ = ¢ + I_pj—|ej

j=0

substitute R;"
solve for R;"*!

stop when Rj"™*1 = R"

if R"<D; then taskimeets deadline!

Feb 25/14 47

Recurrence Relation:

Conceptually
e initial estimate = execution time of task i
— during this time, there will be delay from higher
priority tasks
— e how much?
« add this delay to estimate
e results in “larger” time estimate

e stop when estimate does not increase

Feb 25/14 48

Recurrence Relation
no delay . . .
Noe Visualization

increase:

no increase:

49

Scheduling Visualization

e what does each estimate mean in terms of
delay vs. the amount of task i execution ?

e what does each increase between estimates
represent (in these terms) ?

e when the recursion stops, what does the
absence of increase represent (in these
terms) ?

e convince yourself that you understand this ©

Feb 25/14 50

Response Time Analysis
e For each task, T, , compute worst-case
response time (R;).
o If (R, < D;) for each task T, then the task
set is feasible (schedulable).

e Response Time Analysis is both necessary
and sufficient .

e How does this relate to Time-Demand
Analysis?

Feb 25/14 51

Recall Example #8

U=2u =0916 > 0.779 < U(3)
O does not meet utilization bound!

let's work the recursive response time analysis on the board !

Feb 25/14 52

What about Assumptions?

1. deadline = period
- now!

2. strictly periodic tasks (Liu Ch. 7)
- next (Aperiodic)

2. tasks are independent (Liu Ch. 8)
-> next next (Access Control)

Feb 25/14 53

Arbitrary Response Times

oD % p
eoif D,< p, -> tighter deadline

eif D,> p, —> may have more than one
released & ready job for task i
- in these jobs assume FIFO scheduling of task i

e will use concept of level-tg busy interval

Feb 25/14 54

Level- 15 Busy Interval (t), t]

e task subset T, — all tasks with priority 15 or
higher
e starts at t,, when:

—all jobs in T, released before t, have
completed

—ajobinT,is released
eendsatt:

— first instant after t, when all jobs in T, released
since t, have completed

Feb 25/14 55

Conceptually

e no pending work from T, when interval
starts

e during interval, no slack time & processor
always executing jobs with priority 1t or
higher

e no pending work from T, when interval ends
t, t
| I

!

D = processor executing time
jobs from T;

Feb 25/14 56

Critical Instant?
e Worst case load when all tasks in T, release

ajob att,
> then critical instant!

Feb 25/14 57

Task i Schedulability Test

Assume:

e critical instant for T, at t,

e T, contains all tasks with priority T or higher

e all tasks in T, other than task i meet deadlines

1. If first job of each task (including T;)completes
before end of its period , and J; ; meets
deadline - schedulable!

o if J;; misses deadline - not schedulable

Feb 25/14 58

T, Schedulability Test (con't)

2. Iffirst job of some task does not complete
before end of its period :

a) compute length of level-t; busy interval
e solve recurrence relation:

RN
Rt = } |—B.I—|ei
j=0 "

Feb 25/14 59

T, Schedulability Test (step 2 con't)
b) compute response time for each task i job

in level-tg busy interval — for response time
of jt" job, solve:

. .
e S5,
k=0 X

— if all task i jobs meet deadlines
- schedulable

Feb 25/14 60

Is Test Finite?

e YES! U<1 (hastobe!) AND no slack
time in level-tg busy interval (by definition of
interval)

- level-Ty busy interval is finite
—> can find length of interval
- can find job response times

Feb 25/14 61

