
SYSC 5701
Operating System Methods for

Real-Time ApplicationsReal-Time Applications

Priority-Driven Scheduling
for Periodic Tasks

Winter 2014

Assumptions (Liu Ch. 6)

1. no aperiodic or sporadic tasks
2. tasks are independent
3. uniprocessor
� will relax assumptions 1 & 2 later

Feb 25/14 2

� will relax assumptions 1 & 2 later
– aperiodic & sporadic � Liu Ch. 7
– interdependency � Liu Ch. 8

� Already seen “Access Control”!

Uniprocessor

� why not relax this assumption?
� multiprocessor typically managed by

allocating a set of tasks to each processor
– static: once allocated, task handled only by that

Feb 25/14 3

– static: once allocated, task handled only by that
processor

– tasks do not migrate among processors

� have a fixed task set for each processor

Priority-Driven Scheduling Algorithms

� Static-(or Fixed-)Priority – assigns the
same priority to all jobs in a task.

� Dynamic-Priority – may assign different
priorities to individual jobs within each task

Feb 25/14 4

priorities to individual jobs within each task
– e.g., earliest-deadline-first (EDF) algorithm

Feb 25/14 5

Processor Utilization
� recall that for a periodic task Ti , the ratio

ui = ei / pi � utilization of task T i

� the total utilization U of all tasks in a
system is the sum of the utilizations of all
individual tasks:

Feb 25/14 6

individual tasks:

∑
=

=
n

i i

i

p

e
U

1

Fixed-Priority Scheduling
of Periodic Tasks

1. consider some examples
2. consider some methods that can be used

to determine the schedulability of a task
set:

Feb 25/14 7

set:
� Utilization-based test
� Response-time (or time-based) test

Task Period Deadline Run-Time
Ti p i Di ei

--
A 2 2 1
B 5 5 1

Example #1

(High Priority)

(Low Priority)

U = 1/2 + 1/5 = 0.7

Feb 25/14 8

A

B

20 4 5 10 15

U = 1/2 + 1/5 = 0.7

priority

processor
idle

Task Period Deadline Run-Time
Ti p i Di ei

A 2 2 1
B 5 5 1

Example #2

(High Priority)

(Low Priority)

Feb 25/14 9

A

B

20 4 5 10 15

U = 1/2 + 1/5 = 0.7

priority

Task Period Deadline Run-Time
Ti p i Di ei

--
A 2 2 1
B 5 5 2

Example #3

(High Priority)

(Low Priority)

U = 1/2 + 2/5 = 0.9

Feb 25/14 10

A

B

20 4 5 10 15

U = 1/2 + 2/5 = 0.9

priority

Task Period Deadline Run-Time
Ti p i Di ei

--
A 2 2 1
B 5 5 2

Example #4

(High Priority)

(Low Priority)

U = 1/2 + 2/5 = 0.9

Feb 25/14 11

A

B

20 4 5 10 15

U = 1/2 + 2/5 = 0.9

priority

Example #5
Task Period Deadline Run-Time

Ti p i Di ei
--
A 2 2 1
B 5 5 2.2

(High Priority)

(Low Priority)

U = 1/2 + 2.2/5 =

Feb 25/14 12

A

B

20 4 5 10 15

U = 1/2 + 2.2/5 =
0.94

priority

Is There a Feasible Schedule
for Example 5?

A

B

20 4 5 10 15

Feb 25/14 13

20 4 5 10 15

A

B

20 4 5 10 15

EDF?

Analysis of Examples
� Changing the static priorities assigned to

each task can impact the task set’s feasibility
– e.g., examples 3 and 4.

� Even if the total task utilization is less than
1.0, the task set may not have a feasible

Feb 25/14 14

1.0, the task set may not have a feasible
(static) priority assignment
– e.g., example 5

Is there an upper bound on processor
utilization that ensures schedulability?

Issues in Fixed Priority
Assignment

� How to assign priorities?
� How to determine which assignment is the

best; e.g., how to evaluate a priority
assignment algorithm (method)?

Feb 25/14 15

assignment algorithm (method)?
� How to compare different priority

assignment algorithms?

Fixed Priority Assignment
Methods

� According to execution times (ei)
– smallest/largest execution time first

� According to periods (pi)
– smallest/largest period first

Feb 25/14 16

– smallest/largest period first

� According to task utilization (ei / pi)
– smallest/ largest task utilization first

� Other? Deadlines (DMA) , etc.

Rate-Monotonic Algorithm (RM)
� rate (frequency) of task is inverse of its period

fi = 1 / pi

� higher rate (shorter period) = higher priority

C. L. Liu and J. W. Layland,
classic paper � posted!

read it!

Feb 25/14 17

C. L. Liu and J. W. Layland,
“Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment”, JACM, Vol. 20, No. 1,
pages 46-61, 1973.

read it!

Deadline-Monotonic Algorithm (DM)

� tasks with shorter relative deadlines are
assigned higher priorities .

� when relative deadlines (Di) equal to their
periods (pi), the rate-monotonic algorithm
is the same as the deadline-monotonic

Feb 25/14 18

is the same as the deadline-monotonic
algorithm.

Rate-Monotonic Assumptions

� tasks may be preempted
� tasks are periodic
� tasks execution times (ei) are constant

Feb 25/14 19

Optimal Priority Assignment
� a given priority assignment algorithm is

optimal if whenever a task set can be
scheduled by some fixed priority assignment,
then it can also be scheduled by the given
algorithm

Feb 25/14 20

algorithm
� Liu and Layland show that:

– rate-monotonic algorithm is optimal

Maximum Achievable Utilization
A task set is fully utilized if any increase in run-
time of any task would result in a missed deadline.

Total
Utilization

(U) 100 %

unschedulable
task sets

Feb 25/14 21

0 %

schedulable
task sets

Task Period Deadline Run-Time
Ti p i Di ei

--
A 2 2 1
B 2 2 1

Example #6

(High Priority)

(Low Priority)

Feb 25/14 22

A

B

20 4 6 108

U = 1/2 + 1/2 = 1.0 = 100 %
The task set is fully utilized.
...

Task Period Deadline Run-Time
Ti p i Di ei

--
A 2 2 1
B 3 3 1

Example #7

(High Priority)

(Low Priority)

Feb 25/14 23

A

B

20 4 6 108

U = 1/2 + 1/3 = 0.8333
The task set is fully utilized,

even though U < 1.0....

increase eA?

increase eB?

Fully utilized task sets

different algorithms have different
“fully utilized” curves

Total
Utilization

(U) 100 %
fully utilized

unschedulabl
e

#6

Feb 25/14 24

0 %

schedulable
task sets

fully utilized
task sets

#6

#7

#5

Utilization-Based Test

� A sufficient, but not necessary, test for
schedulability of a task set that is assigned
priorities using the rate-monotonic algorithm.

� Compute total task utilization U(n) = U.

Feb 25/14 25

� Compute total task utilization U(n) = U.

Liu and Layland’s Results
Theorem 2: If a feasible fixed priority

assignment exists for some task set, then
the rate-monotonic priority assignment is
feasible for that task set.

Feb 25/14 26

Theorem 4: For a set of n tasks with fixed
priority assignment, the least upper bound to
the processor utilization factor is

URM(n) = n (21/n - 1)

Values for U RM(n)

� U(1) = 1.0
� U(2) = 0.828
� U(3) = 0.779
� U(4) = 0.756

Feb 25/14 27

� U(4) = 0.756
� U(∞) = 0.69 (ln 2)

RM Utilization Test
Utilization vs worst-case utilization bound

� also called schedulable utilization

URM(n) U

– If U > 1 , then the task set is not schedulable

Feb 25/14 28

– If U > 1 , then the task set is not schedulable

– If U ≤ URM(n) , then the task set is schedulable

– Otherwise: URM(n) < U ≤ 1

� no conclusion can be made

� try more detailed analysis

Response Time Tests

� for use when URM(n) < U ≤ 1
� analyze tasks to determine the worst case

response time for jobs
� if worst case response of a job exceeds its

Feb 25/14 29

� if worst case response of a job exceeds its
deadline, then no feasible schedule

� for independent tasks, only delays are due
to preemption by higher priority tasks

Worst-Case Simulation

� assume a critical instant for all tasks
� construct schedule according to the

scheduling algorithm
� only need to consider largest task period

Feb 25/14 30

� only need to consider largest task period
� if all tasks meet their deadlines

– then tasks are feasibly schedulable

Time-Demand Analysis
� tasks place incremental demands on

processor time
– let ωi(t) be demand from task i and all higher

priority tasks

� processor delivers (processing) linearly

Feb 25/14 31

� check each task i, to be feasible:
ωi(t) = t for some t ≤ p i

� how is this different from worst-case
simulation?

schedule vs.
calculation !

Example #8

T1 : e1 = 50 p1 = 75 u1 = 0.666
T2 : e2 = 25 p2 = 150 u2 = 0.167
T3 : e3 = 25 p3 = 300 u3 = 0.083

Feb 25/14 32

U = ∑ ui = 0.916 > 0.779 � U(3)
∴ does not meet utilization bound!

Time-Demand Visualization

ωi(t)

150

225

300

ω1(t)

ω2(t)

.

ω3(t)

Feb 25/14 33

t75 150 225 300

75

150 processor
delivery

. .
.

How to Solve ?

For each task:
� consider demand at each scheduling point

� before next demand

� if task’s demand ≤ delivery before deadline,

Feb 25/14 34

� if task’s demand ≤ delivery before deadline,
– then feasible !

Example 9

T1 : C1 = 30 p1 = 70 u1 = 0.429
T2 : C2 = 60 p2 = 200 u2 = 0.3
T : C = 78 p = 375 u = 0.208

Feb 25/14 35

T3 : C3 = 78 p3 = 375 u3 = 0.208

U = ∑ ui = 0.937 > 0.779 (U(3))
∴ does not meet utilization bound! �

Consider Each Task
� Task 1: highest priority � meets deadline

30 (execution1) ≤ 70 (period1)

� Will need to know Scheduling Points:

Feb 25/14 36

� Will need to know Scheduling Points:
– periods: 70, 200, 375
– scheduling points: (when new demand is

released)
0, 70, 140, 200, 210, 280, 350, 375

all released

Continue (Task 2)

� Task 2: can only be delayed by Task 1
– first scheduling point: t = 70 (T1)

� demand = 30 + 60 = 90 �

Feb 25/14 37

– second scheduling point: t = 140 (T1)
� demand = 2*30 + 60 = 120 ☺

before next release! i.e. before T1 scheduled

Continue (Task 3)

Now for Task 3:
� first scheduling point: t = 70 (T1)

– demand = 30 + 60 + 78 = 168 �

� second scheduling point: t = 140 (T1)

Feb 25/14 38

� second scheduling point: t = 140 (T1)
– demand = 2*30 + 60 + 78 = 198 �

� third scheduling point: t = 200 (T2)
– demand = 3*30 + 60 + 78 = 228 �

Continue (Task 3 con’t)

� fourth scheduling point: t = 210 (T1)
– demand = 3*30 + 2*60 + 78 = 288 �

� fifth scheduling point: t = 280 (T1)
– demand = 4*30 + 2*60 + 78 = 318 �

Feb 25/14 39

– demand = 4*30 + 2*60 + 78 = 318 �

� sixth scheduling point: t = 350 (T1)
– demand = 5* 30 + 2*60 + 78 = 348 ☺

� whew! all tasks feasible

Easier way?

� why not just check demand at end of p3?
– if T3 meets deadline,

then should have slack then?

� scheduling point: t = 375 (T3)

Feb 25/14 40

� scheduling point: t = 375 (T3)
– demand = 6* 30 + 2*60 + 78 = 378 �

HUH?

200

50

300

50

400

.

Feb 25/14 41

Example 9
Visualization

50 100 50 200 50 300 50 400

50

100

50

200

.
.

Alternative ?
� let Ii be the delay in task i’s response time

due to higher priority tasks
� response time Ri = ei + Ii (Equ. 1)
� worst case response time: task i and all

higher priority tasks release a job at the same

Feb 25/14 42

higher priority tasks release a job at the same
instant
Ii = sum of all higher priority jobs execution times

� suppose: periodic task j:
� number of jobs in [0, R) =

of Jobs Over an Interval

 
R
p j

“ceiling” function:
integer round-up

Feb 25/14 43

� delay to lower priority tasks due to these
jobs is:

 p j

 
R
p j

ej

Consider Task with period p i
Over Time Interval P: p i < P
� pi = 66, ei = 10, P = 300

� work associated with task is “requested” at
the beginning of each period

300

66 132 198 2640 330

Feb 25/14 44

� there are P/p i (max.) requests in interval
e.g. 300 / 66 = 4.54, rounds up to 5

� to meet deadline P, must perform work
P/pi times during P

of Higher Priority Jobs Over
an Interval

� suppose: i periodic tasks, all with phase 0
� rate monotonic priority assignment
� total delay to task i due to higher priority

tasks is:

Feb 25/14 45

tasks is:

 
Ri
p j

ejΣ
j = 0

i-1

Ii = (Equ. 2)

Response Time Equ.
� Substitute Equ 2 into Equ 1:

 
Ri
p j

ejΣ
j = 0

i-1

(Equ. 3)Ri = ei +

Feb 25/14 46

� can solve using a recurrence relation:
– initially, estimate Ri

0 = ei (no delay)
– use estimate to calculate better estimate,

recurse
– stop when solution found

Recurrence Relation

 
Ri

n

p j
ejΣ

j = 0

i-1

Ri
n+1 = ei +

Ri
0 = ei

substitute Ri
0

solve for Ri
1

substitute R n

...

Feb 25/14 47

j = 0

stop when Ri
n+1 = Ri

n

if Ri
n ≤ Di then task i meets deadline!

substitute Ri
n

solve for Ri
n+1

Recurrence Relation:
Conceptually

� initial estimate = execution time of task i
– during this time, there will be delay from higher

priority tasks
� how much?
� add this delay to estimate

Feb 25/14 48

� add this delay to estimate
� results in “larger” time estimate

� stop when estimate does not increase

Recurrence Relation
Visualization

Ri
0

Ii0

Ri
1

Ii1

R 2

ei

increase:
Ii1 - Ii0

no increase:

no delay

Feb 25/14 49

Ri
2

...
Ri

n

Iin

Ri
n+1

no increase:
Iin – Iin-1 = 0

Scheduling Visualization
� what does each estimate mean in terms of

delay vs. the amount of task i execution ?
� what does each increase between estimates

represent (in these terms) ?
� when the recursion stops, what does the

Feb 25/14 50

� when the recursion stops, what does the
absence of increase represent (in these
terms) ?

� convince yourself that you understand this ☺

Response Time Analysis
� For each task, Ti , compute worst-case

response time (Ri).
� If (Ri ≤ Di) for each task Ti , then the task

set is feasible (schedulable).
� Response Time Analysis is both necessary

Feb 25/14 51

� Response Time Analysis is both necessary
and sufficient .

� How does this relate to Time-Demand
Analysis?

Recall Example #8

T1 : e1 = 50 p1 = 75 u1 = 0.666
T2 : e2 = 25 p2 = 150 u2 = 0.167
T3 : e3 = 25 p3 = 300 u3 = 0.083

Feb 25/14 52

let’s work the recursive response time analysis on the board !

U = ∑ ui = 0.916 > 0.779 � U(3)
∴ does not meet utilization bound!

What about Assumptions?

1. deadline = period
� now!

2. strictly periodic tasks (Liu Ch. 7)
� next (Aperiodic)

Feb 25/14 53

� next (Aperiodic)
2. tasks are independent (Liu Ch. 8)

� next next (Access Control)

Arbitrary Response Times

� Di ≠ pi

� if Di < pi � tighter deadline
� if Di > pi � may have more than one

released & ready job for task i

Feb 25/14 54

released & ready job for task i
– in these jobs assume FIFO scheduling of task i

� will use concept of level-πi busy interval

Level- πi Busy Interval (t 0 , t]
� task subset Ti – all tasks with priority πi or

higher
� starts at t0 , when:

– all jobs in Ti released before t0 have
completed

Feb 25/14 55

completed
– a job in Ti is released

� ends at t :
– first instant after t0 when all jobs in Ti released

since t0 have completed

Conceptually
� no pending work from Ti when interval

starts
� during interval, no slack time & processor

always executing jobs with priority πi or
higher

Feb 25/14 56

higher
� no pending work from Ti when interval ends

time

t0 t

processor executing
jobs from Ti

=

Critical Instant?

� Worst case load when all tasks in Ti release
a job at t0

� then critical instant!

Feb 25/14 57

Task i Schedulability Test
Assume:
� critical instant for Ti at t0
� Ti contains all tasks with priority πi or higher
� all tasks in Ti other than task i meet deadlines

Feb 25/14 58

1. If first job of each task (including Ti)completes
before end of its period , and Ji,1 meets
deadline � schedulable!

� if Ji,1 misses deadline � not schedulable

Ti Schedulability Test (con’t)

2. If first job of some task does not complete
before end of its period :

a) compute length of level-πi busy interval
� solve recurrence relation:

Feb 25/14 59

 
Ri

n

p j
ejΣ

j = 0

i

Ri
n+1 =

Ti Schedulability Test (step 2 con’t)

b) compute response time for each task i job
in level-πi busy interval – for response time
of jth job, solve:

 
Ri

n

p ekΣ
i - 1

Ri
n+1 = je i +

Feb 25/14 60

– if all task i jobs meet deadlines
� schedulable

 pk
ekΣ

k = 0

Ri = je i +

Is Test Finite?

� YES! U ≤ 1 (has to be!) AND no slack
time in level-πi busy interval (by definition of
interval)

� level-πi busy interval is finite

Feb 25/14 61

� level-πi busy interval is finite
� can find length of interval
� can find job response times

