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Assumptions    (Liu Ch. 6)

1. no aperiodic or sporadic tasks 
2. tasks are independent
3. uniprocessor
� will relax assumptions 1 & 2 later
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� will relax assumptions 1 & 2 later
– aperiodic & sporadic � Liu Ch. 7
– interdependency � Liu Ch. 8

� Already seen “Access Control”!

Uniprocessor

� why not relax this assumption?
� multiprocessor typically managed by 

allocating a set of tasks to each processor
– static:  once allocated, task handled only by that 
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– static:  once allocated, task handled only by that 
processor

– tasks do not migrate among processors

� have a fixed task set for each processor

Priority-Driven Scheduling Algorithms

� Static-(or Fixed-)Priority – assigns the 
same priority to all jobs in a task.

� Dynamic-Priority – may assign different 
priorities to individual jobs within each task
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priorities to individual jobs within each task
– e.g., earliest-deadline-first (EDF) algorithm
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Processor Utilization
� recall that for a periodic task Ti , the ratio

ui =  ei / pi � utilization of task T i

� the total utilization U of all tasks in a 
system is the sum of the utilizations of all 
individual tasks:
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individual tasks:
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Fixed-Priority Scheduling
of Periodic Tasks

1. consider some examples
2. consider some methods that can be used 

to determine the schedulability of a task 
set:

Feb 25/14 7

set:
� Utilization-based test
� Response-time (or time-based) test

Task Period Deadline Run-Time
Ti p i Di ei

------------------------------------------------------------
A 2 2 1
B 5 5 1

Example #1

(High Priority)

(Low Priority)

U =  1/2  + 1/5  =  0.7
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A

B

20 4 5 10 15

U =  1/2  + 1/5  =  0.7

priority

processor 
idle

Task Period Deadline Run-Time
Ti p i Di ei

-----------------------------------------------------------
A 2 2 1
B 5 5 1

Example #2

(High Priority)

(Low Priority)
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A

B

20 4 5 10 15

U = 1/2  + 1/5 = 0.7

priority

Task Period Deadline Run-Time
Ti p i Di ei

------------------------------------------------------------
A 2 2 1
B 5 5 2

Example #3

(High Priority)

(Low Priority)

U = 1/2  + 2/5 = 0.9
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A

B

20 4 5 10 15

U = 1/2  + 2/5 = 0.9

priority

Task Period Deadline Run-Time
Ti p i Di ei

------------------------------------------------------------
A 2 2 1
B 5 5 2

Example #4

(High Priority)

(Low Priority)

U = 1/2  + 2/5 = 0.9
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A

B

20 4 5 10 15

U = 1/2  + 2/5 = 0.9

priority

Example #5
Task Period Deadline Run-Time

Ti p i Di ei
------------------------------------------------------------
A 2 2 1
B 5 5 2.2

(High Priority)

(Low Priority)

U = 1/2  + 2.2/5 = 
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A

B

20 4 5 10 15

U = 1/2  + 2.2/5 = 
0.94

priority



Is There a Feasible Schedule 
for Example 5?

A

B

20 4 5 10 15
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20 4 5 10 15

A

B

20 4 5 10 15

EDF?

Analysis of Examples
� Changing the static priorities assigned to 

each task can impact the task set’s feasibility
– e.g., examples 3 and 4.

� Even if the total task utilization is less than 
1.0, the task set may not have a feasible 
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1.0, the task set may not have a feasible 
(static) priority assignment
– e.g., example 5

Is there an upper bound on processor 
utilization that ensures schedulability?

Issues in Fixed Priority 
Assignment

� How to assign priorities?
� How to determine which assignment is the 

best; e.g., how to evaluate a priority 
assignment algorithm (method)?
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assignment algorithm (method)?
� How to compare different priority 

assignment algorithms?

Fixed Priority Assignment 
Methods

� According to execution times ( ei )
– smallest/largest execution time first

� According to periods ( pi )
– smallest/largest period first
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– smallest/largest period first

� According to task utilization ( ei / pi )
– smallest/ largest task utilization first

� Other? Deadlines (DMA) , etc.

Rate-Monotonic Algorithm (RM)
� rate (frequency) of task is inverse of its period     

fi = 1 / pi

� higher rate (shorter period) = higher priority

C. L. Liu and J. W. Layland, 
classic paper � posted!

read it!
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C. L. Liu and J. W. Layland, 
“Scheduling Algorithms for Multiprogramming in a 
Hard Real-Time Environment”,  JACM, Vol. 20, No. 1, 
pages 46-61, 1973.

read it!

Deadline-Monotonic Algorithm (DM)

� tasks with shorter relative deadlines are 
assigned higher priorities .

� when relative deadlines ( Di ) equal to their 
periods ( pi ), the rate-monotonic algorithm 
is the same as the deadline-monotonic 
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is the same as the deadline-monotonic 
algorithm. 



Rate-Monotonic Assumptions

� tasks may be preempted
� tasks are periodic
� tasks execution times ( ei ) are constant 
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Optimal Priority Assignment
� a given priority assignment algorithm is 

optimal if whenever a task set can be 
scheduled by some fixed priority assignment, 
then it can also be scheduled by the given 
algorithm
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algorithm
� Liu and Layland show that:

– rate-monotonic algorithm is optimal

Maximum Achievable Utilization
A task set is fully utilized if any increase in run-
time of any task would result in a missed deadline.

Total
Utilization

(U) 100 %

unschedulable
task sets
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0 %

schedulable
task sets

Task Period Deadline Run-Time
Ti p i Di ei

------------------------------------------------------------
A 2 2 1
B 2 2 1

Example #6

(High Priority)

(Low Priority)
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A

B

20 4 6 108

U = 1/2 + 1/2 = 1.0 = 100 %
The task set is fully utilized.
...

Task Period Deadline Run-Time
Ti p i Di ei

------------------------------------------------------------
A 2 2 1
B 3 3 1

Example #7

(High Priority)

(Low Priority)
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A

B

20 4 6 108

U = 1/2 + 1/3 = 0.8333
The task set is fully utilized,

even though U < 1.0....

increase eA?

increase eB?

Fully utilized task sets

different algorithms have different 
“fully utilized” curves

Total
Utilization

(U) 100 %
fully utilized

unschedulabl
e

#6
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0 %

schedulable
task sets

fully utilized
task sets

#6

#7

#5



Utilization-Based Test

� A sufficient, but not necessary, test for 
schedulability of a task set that is assigned 
priorities using the rate-monotonic algorithm.

� Compute total task utilization U(n) = U.
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� Compute total task utilization U(n) = U.

Liu and Layland’s Results
Theorem 2: If a feasible fixed priority

assignment exists for some task set, then
the rate-monotonic priority assignment is 
feasible for that task set.
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Theorem 4: For a set of n tasks with fixed 
priority assignment, the least upper bound to 
the processor utilization factor is 

URM(n) = n ( 21/n - 1 )

Values for U RM(n)

� U(1) = 1.0
� U(2) = 0.828
� U(3) = 0.779
� U(4) = 0.756
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� U(4) = 0.756
� U(∞) = 0.69 (ln 2)

RM Utilization Test
Utilization vs worst-case utilization bound  

� also called schedulable utilization

URM(n)        U

– If  U > 1 , then the task set is not schedulable
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– If  U > 1 , then the task set is not schedulable

– If  U ≤ URM(n) , then the task set is schedulable

– Otherwise: URM(n) < U  ≤ 1

� no conclusion can be made 

� try more detailed analysis

Response Time Tests 

� for use when URM(n) < U  ≤ 1
� analyze tasks to determine the worst case 

response time for jobs
� if worst case response of a job exceeds its 
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� if worst case response of a job exceeds its 
deadline, then no feasible schedule

� for independent tasks, only delays are due 
to preemption by higher priority tasks

Worst-Case Simulation

� assume a critical instant for all tasks
� construct schedule according to the 

scheduling algorithm
� only need to consider largest task period
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� only need to consider largest task period
� if all tasks meet their deadlines 

– then tasks are feasibly schedulable



Time-Demand Analysis
� tasks place incremental demands on 

processor time
– let ωi(t) be demand from task i and all higher 

priority tasks

� processor delivers (processing) linearly
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� check each task i, to be feasible:
ωi(t) = t for some t ≤ p i

� how is this different from worst-case 
simulation?

schedule vs.
calculation !

Example #8

T1 :    e1 = 50 p1 = 75 u1 = 0.666
T2 :    e2 = 25 p2 = 150 u2 = 0.167
T3 :    e3 = 25 p3 = 300 u3 = 0.083
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U =  ∑ ui = 0.916 > 0.779 � U(3)
∴ does not meet utilization bound!

Time-Demand Visualization

ωi(t)

150

225

300

ω1(t)

ω2(t)

.

ω3(t)
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t75 150 225 300

75

150 processor 
delivery

. .
.

How to Solve ?

For each task:
� consider demand at each scheduling point

� before next demand

� if task’s demand ≤ delivery before deadline, 
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� if task’s demand ≤ delivery before deadline, 
– then feasible !

Example 9

T1 : C1 = 30 p1 = 70 u1 = 0.429
T2 : C2 = 60 p2 = 200 u2 = 0.3
T : C = 78 p = 375 u = 0.208
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T3 : C3 = 78 p3 = 375 u3 = 0.208

U =  ∑ ui = 0.937   > 0.779 ( U(3) )
∴ does not meet utilization bound!   �

Consider Each Task
� Task 1: highest priority � meets deadline

30 (execution1) ≤ 70 (period1)

� Will need to know Scheduling Points:
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� Will need to know Scheduling Points:
– periods:  70, 200, 375
– scheduling points: (when new demand is 

released)
0, 70, 140, 200, 210, 280, 350, 375

all released



Continue (Task 2)

� Task 2: can only be delayed by Task 1
– first scheduling point: t = 70 (T1)

� demand =  30 + 60 = 90 �
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– second scheduling point: t = 140 (T1)
� demand = 2*30 + 60 = 120 ☺

before next release!  i.e. before T1 scheduled

Continue (Task 3)

Now for Task 3:
� first scheduling point: t = 70 (T1)

– demand = 30 + 60 + 78 = 168 �

� second scheduling point: t = 140 (T1)
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� second scheduling point: t = 140 (T1)
– demand = 2*30 + 60 + 78 = 198 �

� third scheduling point: t = 200 (T2)
– demand = 3*30 + 60 + 78 = 228 �

Continue (Task 3 con’t)

� fourth scheduling point: t = 210 (T1)
– demand = 3*30 + 2*60 + 78 = 288 �

� fifth scheduling point: t = 280 (T1)
– demand = 4*30 + 2*60 + 78 = 318 �
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– demand = 4*30 + 2*60 + 78 = 318 �

� sixth scheduling point: t = 350 (T1)
– demand = 5* 30 + 2*60 + 78 = 348 ☺

� whew!  all tasks feasible

Easier way?

� why not just check demand at end of p3?
– if T3 meets deadline, 

then should have slack then?

� scheduling point: t = 375 (T3)
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� scheduling point: t = 375 (T3)
– demand = 6* 30 + 2*60 + 78 = 378 �

HUH?

200

50

300

50

400

.
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Example 9    
Visualization

50 100 50 200 50 300 50 400

50

100

50

200

.
.

Alternative ?
� let Ii be the delay in task i’s response time 

due to higher priority tasks
� response time    Ri = ei + Ii (Equ. 1)
� worst case response time: task i and all 

higher priority tasks release a job at the same 
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higher priority tasks release a job at the same 
instant
Ii = sum of all higher priority jobs execution times



� suppose: periodic task j:
� number of jobs in [0, R) =

# of Jobs Over an Interval

 
R
p j

“ceiling” function:   
integer round-up
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� delay to lower priority tasks due to these 
jobs is:

 p j

 
R
p j

ej

Consider Task with period p i
Over Time Interval P:  p i <  P
� pi = 66,  ei = 10,     P = 300

� work associated with task is “requested” at 
the beginning of each period

300

66 132 198 2640 330
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� there are  P/p i (max.) requests in interval 
e.g.  300 / 66  =  4.54,   rounds up to  5

� to meet deadline P,  must perform work 
P/pi times during P

# of Higher Priority Jobs Over 
an Interval

� suppose: i periodic tasks, all with phase 0
� rate monotonic priority assignment
� total delay to task i due to higher priority 

tasks is:
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tasks is:

 
Ri
p j

ejΣ
j = 0

i-1

Ii = ( Equ. 2 )

Response Time Equ.
� Substitute Equ 2 into Equ 1:

 
Ri
p j

ejΣ
j = 0

i-1

( Equ. 3 )Ri = ei +
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� can solve using a recurrence relation:
– initially, estimate  Ri

0 = ei   ( no delay)
– use estimate to calculate better estimate, 

recurse
– stop when solution found 

Recurrence Relation

 
Ri

n

p j
ejΣ

j = 0

i-1

Ri
n+1 = ei +

Ri
0 = ei

substitute Ri
0

solve for Ri
1

substitute R n

...
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j = 0

stop when Ri
n+1 = Ri

n

if   Ri
n ≤ Di then task i meets deadline!

substitute Ri
n

solve for Ri
n+1

Recurrence Relation:
Conceptually

� initial estimate = execution time of task i
– during this time, there will be delay from higher 

priority tasks
� how much?
� add this delay to estimate

Feb 25/14 48

� add this delay to estimate
� results in “larger” time estimate

� stop when estimate does not increase



Recurrence Relation
Visualization

Ri
0

Ii0

Ri
1

Ii1

R 2

ei

increase:
Ii1 - Ii0 

no increase: 

no delay
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Ri
2

...
Ri

n

Iin

Ri
n+1

no increase: 
Iin – Iin-1 = 0

Scheduling Visualization
� what does each estimate mean in terms of 

delay vs. the amount of task i execution ?
� what does each increase between estimates 

represent (in these terms) ?
� when the recursion stops, what does the 
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� when the recursion stops, what does the 
absence of increase represent (in these 
terms) ?

� convince yourself that you understand this ☺

Response Time Analysis
� For each task, Ti , compute worst-case 

response time ( Ri ).
� If ( Ri ≤ Di ) for each task Ti , then the task 

set is feasible (schedulable).
� Response Time Analysis is both necessary
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� Response Time Analysis is both necessary
and sufficient .

� How does this relate to Time-Demand 
Analysis?

Recall Example #8

T1 :    e1 = 50 p1 = 75 u1 = 0.666
T2 :    e2 = 25 p2 = 150 u2 = 0.167
T3 :    e3 = 25 p3 = 300 u3 = 0.083
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let’s work the recursive response time analysis on the board !

U =  ∑ ui = 0.916   > 0.779 � U(3)
∴ does not meet utilization bound!

What about Assumptions?

1. deadline = period
� now!

2. strictly periodic tasks (Liu Ch. 7)
� next (Aperiodic)
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� next (Aperiodic)
2. tasks are independent (Liu Ch. 8)

� next next (Access Control)

Arbitrary Response Times

� Di ≠ pi

� if   Di < pi � tighter deadline
� if   Di > pi � may have more than one 

released & ready job for task i
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released & ready job for task i
– in these jobs assume FIFO scheduling of task i

� will use concept of level-πi busy interval



Level- πi Busy Interval  (t 0 , t]
� task subset Ti – all tasks with priority πi or 

higher
� starts at t0 , when: 

– all jobs in Ti released before t0 have 
completed  
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completed  
– a job in Ti is released

� ends at t :
– first instant after t0 when all jobs in Ti released 

since t0 have completed

Conceptually
� no pending work from Ti when interval 

starts
� during interval, no slack time & processor 

always executing jobs with priority πi or 
higher
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higher
� no pending work from Ti when interval ends

time

t0 t

processor executing 
jobs from Ti

=

Critical Instant?

� Worst case load when all tasks in Ti release 
a job at t0

� then critical instant!
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Task i Schedulability Test
Assume:
� critical instant for Ti at t0
� Ti contains all tasks with priority πi or higher
� all tasks in Ti other than task i meet deadlines
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1. If first job of each task (including Ti)completes 
before end of its period , and Ji,1 meets 
deadline � schedulable!

� if Ji,1 misses deadline � not schedulable

Ti Schedulability Test (con’t)

2. If first job of some task does not complete 
before end of its period :

a) compute length of level-πi busy interval
� solve recurrence relation:
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 
Ri

n

p j
ejΣ

j = 0

i

Ri
n+1 = 

Ti Schedulability Test (step 2 con’t)

b) compute response time for each task i job 
in level-πi busy interval – for response time 
of jth job, solve:

 
Ri

n

p ekΣ
i - 1

Ri
n+1 =  je i +
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– if all task i jobs meet deadlines
� schedulable

 pk
ekΣ

k = 0

Ri =  je i +



Is Test Finite?

� YES!   U ≤ 1 (has to be!)  AND no slack 
time in level-πi busy interval (by definition of 
interval)

� level-πi busy interval is finite
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� level-πi busy interval is finite
� can find length of interval
� can find job response times


