SYSC 5701 Operating System Methods for Real-Time Applications

> Priority-Driven Scheduling for Periodic Tasks Winter 2014

Assumptions (Liu Ch. 6)

- 1. no aperiodic or sporadic tasks
- 2. tasks are independent
- 3. uniprocessor
- will relax assumptions 1 & 2 later
 - − aperiodic & sporadic \rightarrow Liu Ch. 7
 - interdependency \rightarrow Liu Ch. 8
 - Already seen "Access Control"!

Uniprocessor

- why not relax this assumption?
- multiprocessor typically managed by allocating a set of tasks to each processor
 - static: once allocated, task handled only by that processor
 - tasks do not migrate among processors
- \rightarrow have a fixed task set for each processor

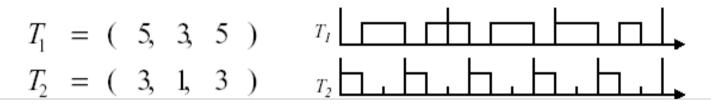
Priority-Driven Scheduling Algorithms

- Static-(or Fixed-)Priority assigns the same priority to all jobs in a task.
- Dynamic-Priority may assign different priorities to individual jobs within each task
 – e.g., earliest-deadline-first (EDF) algorithm

Static-Priority vs. Dynamic Priority

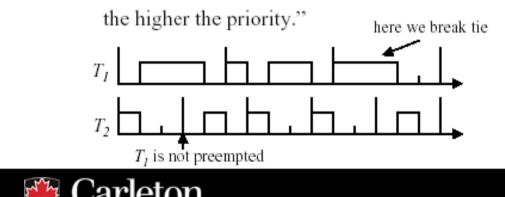
- Static-Priority: All jobs in task have same priority.
- example:

Rate-Monotonic: "The shorter the period, the higher the priority."



- Dynamic-Priority: May assign different priorities to individual jobs.
- example:

Earliest-Deadline-First: "The nearer the absolute deadline,

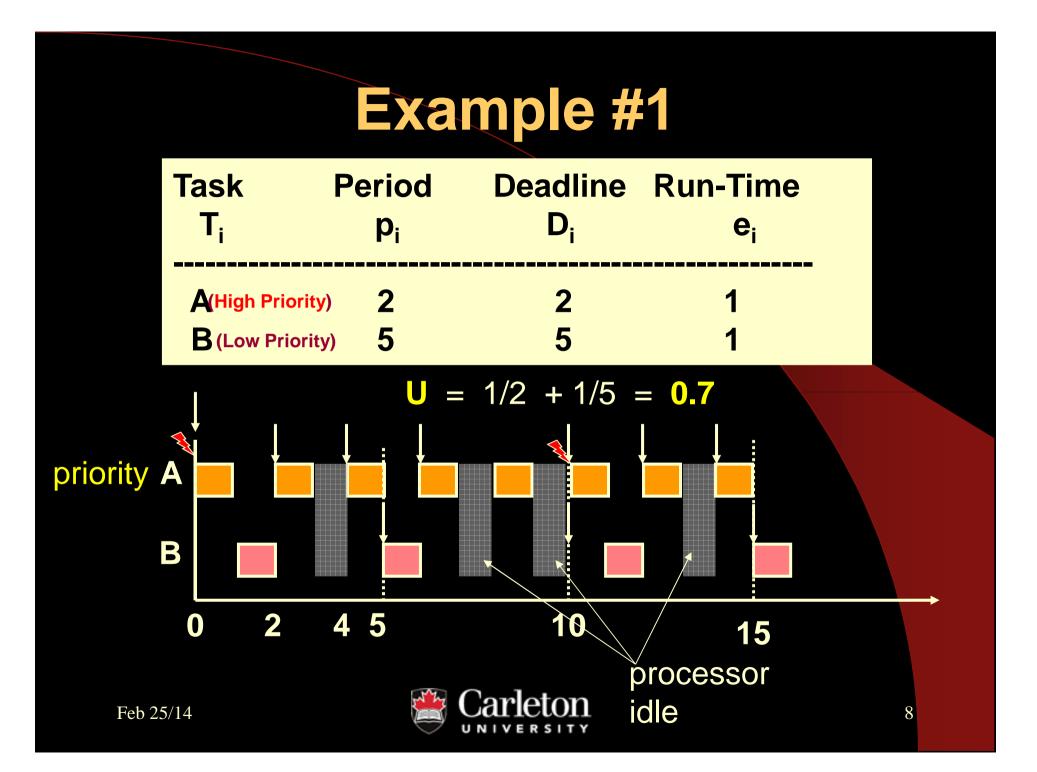


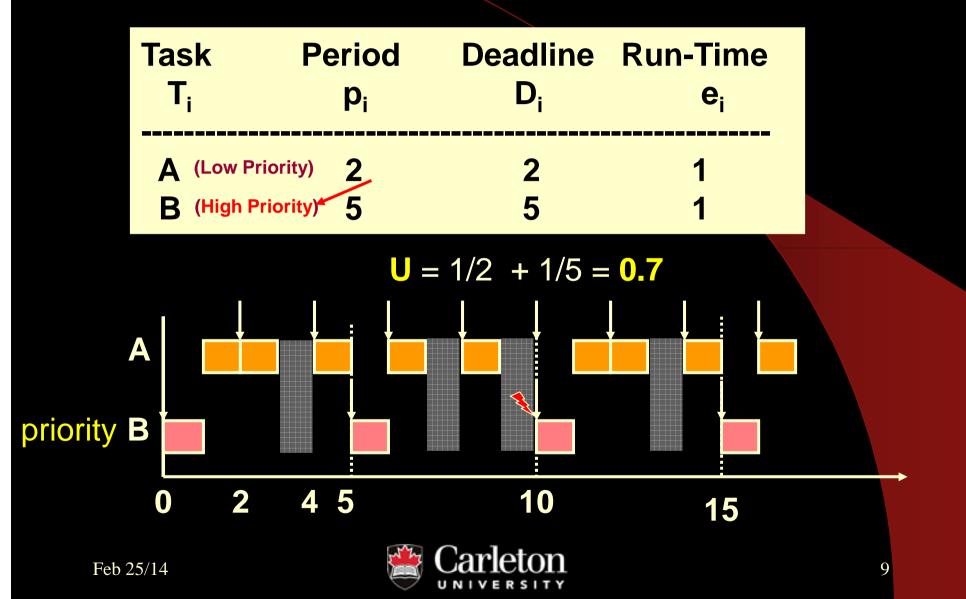
Processor Utilization • recall that for a periodic task T_i, the ratio u_i = e_i / p_i → utilization of task T_i • the total utilization U of all tasks in a system is the sum of the utilizations of all individual tasks:

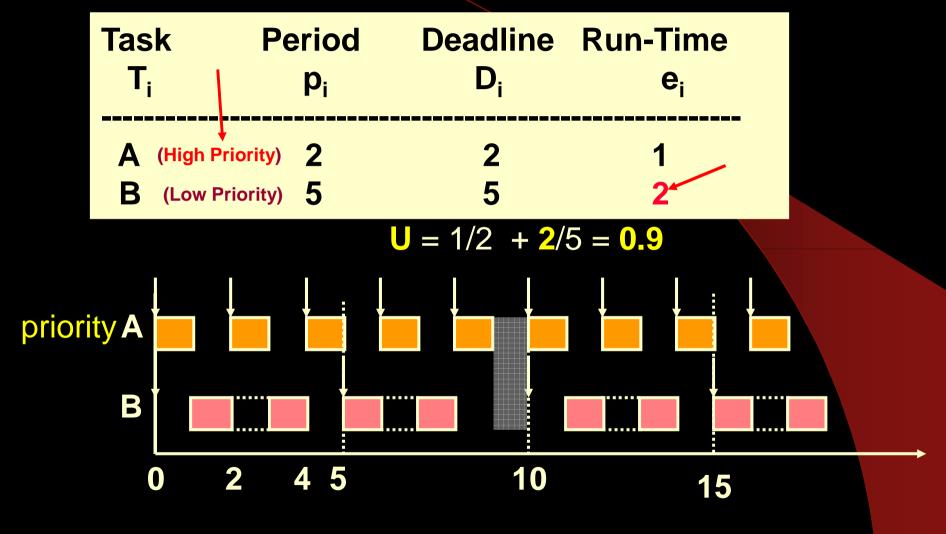
$$U = \sum_{i=1}^{n} \frac{e_i}{p_i}$$

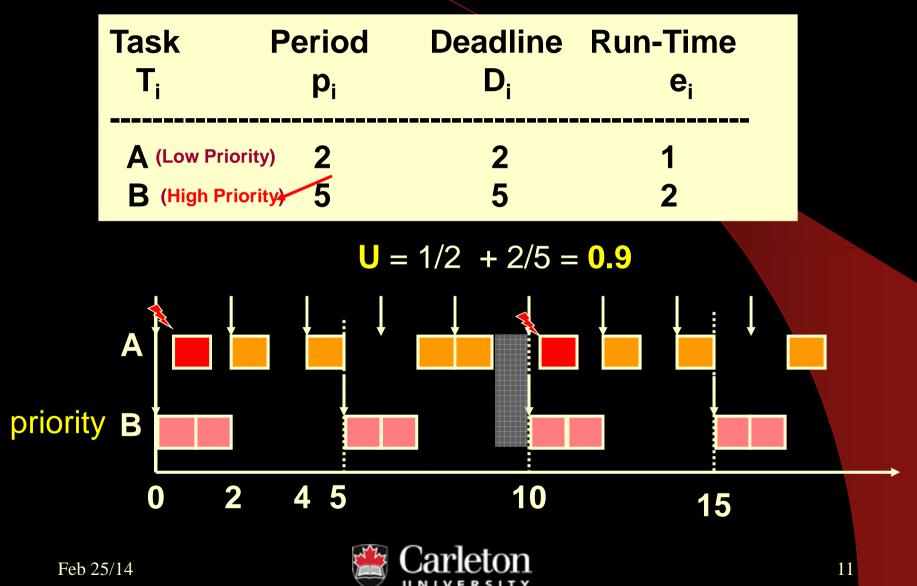
Fixed-Priority Scheduling of Periodic Tasks

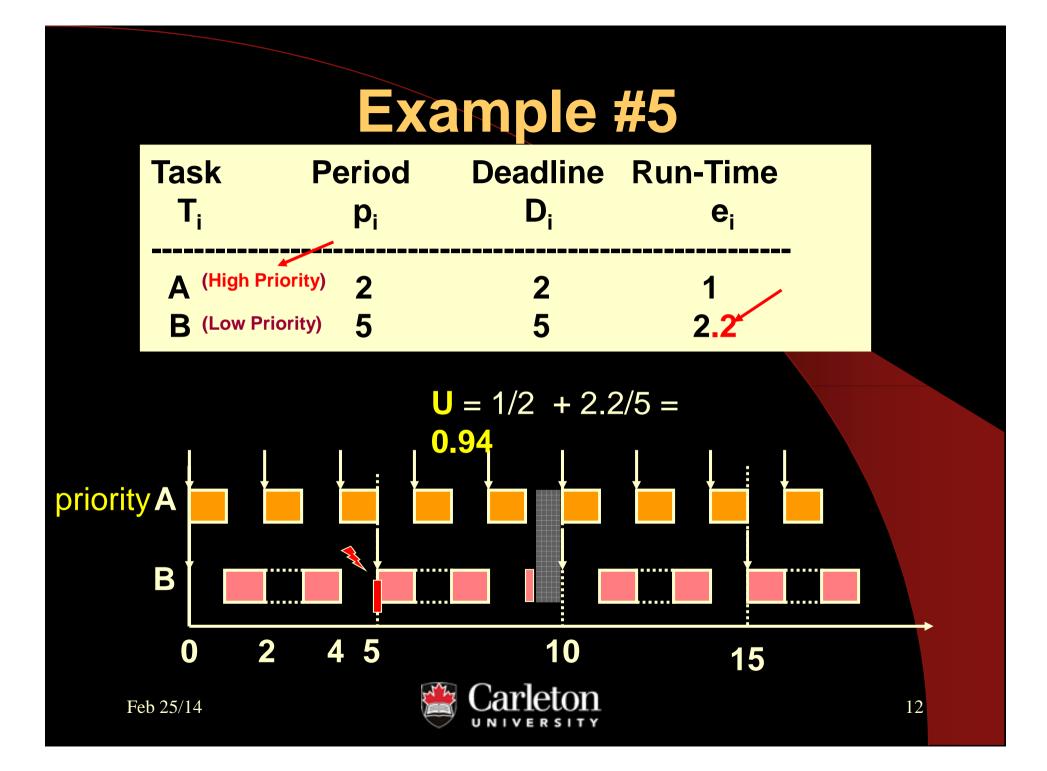
- 1. consider some examples
- 2. consider some methods that can be used to determine the schedulability of a task set:
 - Utilization-based test
 - Response-time (or time-based) test

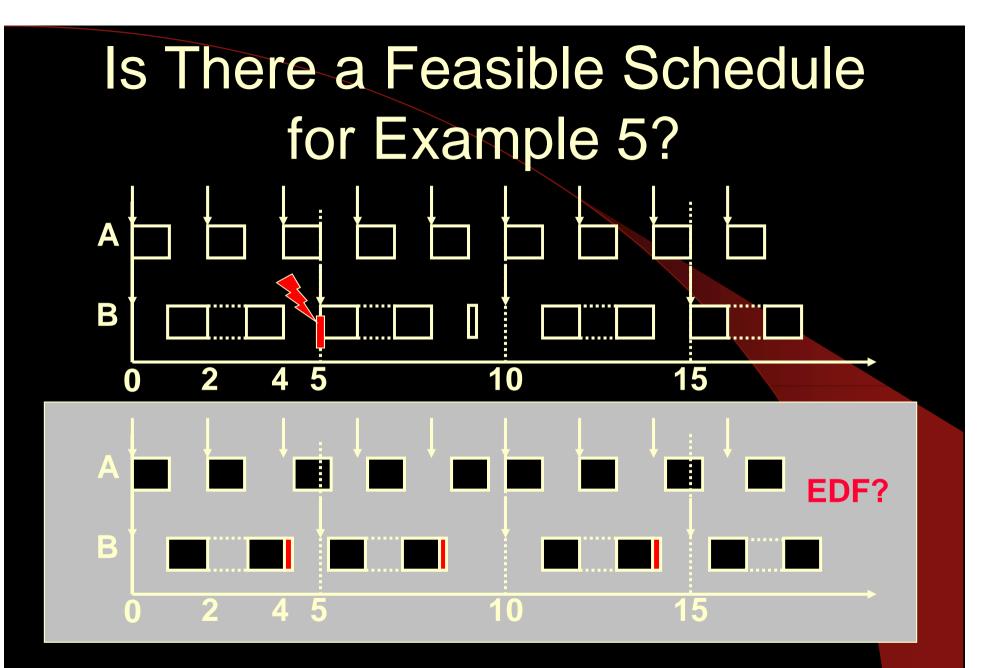












Analysis of Examples

- Changing the static priorities assigned to each task can impact the task set's feasibility – e.g., examples 3 and 4.
- Even if the total task utilization is less than 1.0, the task set may not have a feasible (static) priority assignment

- e.g., example 5

Is there an upper bound on processor utilization that ensures schedulability?

Issues in Fixed Priority Assignment

- How to assign priorities?
- How to determine which assignment is the best; e.g., how to evaluate a priority assignment algorithm (method)?
- How to compare different priority assignment algorithms?

Fixed Priority Assignment Methods

According to execution times (e_i)

smallest/largest execution time first

According to periods (p_i)

smallest/largest period first

According to task utilization (e_i / p_i)

smallest/largest task utilization first

Other? Deadlines (DMA), etc.

Rate-Monotonic Algorithm (RM) • rate (frequency) of task is inverse of its period $f_i = 1 / p_i$ • higher rate (shorter period) = higher priority classic paper \rightarrow posted! C. L. Liu and J. W. Layland, read it! "Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment", JACM, Vol. 20, No. 1, pages 46-61, 1973.

Deadline-Monotonic Algorithm (DM)

- tasks with shorter relative deadlines are assigned higher priorities.
- when relative deadlines (D_i) equal to their periods (p_i), the rate-monotonic algorithm is the same as the deadline-monotonic algorithm.

Rate-Monotonic Assumptions

- tasks may be preempted
- tasks are periodic
- tasks execution times (e_i) are constant

Optimal Priority Assignment

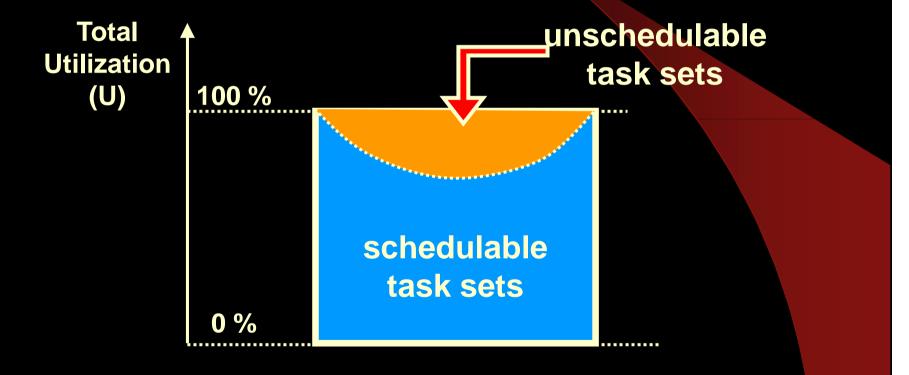
 a given priority assignment algorithm is optimal if whenever a task set can be scheduled by some fixed priority assignment, then it can also be scheduled by the given algorithm

• Liu and Layland show that:

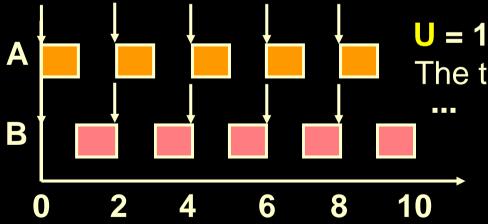
- rate-monotonic algorithm is optimal

Maximum Achievable Utilization

A task set is **fully utilized** if any increase in runtime of any task would result in a missed deadline.

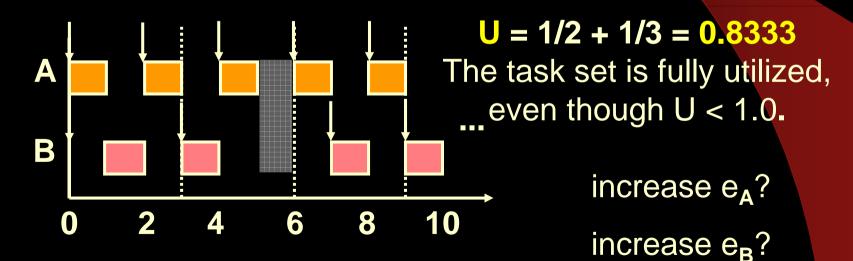


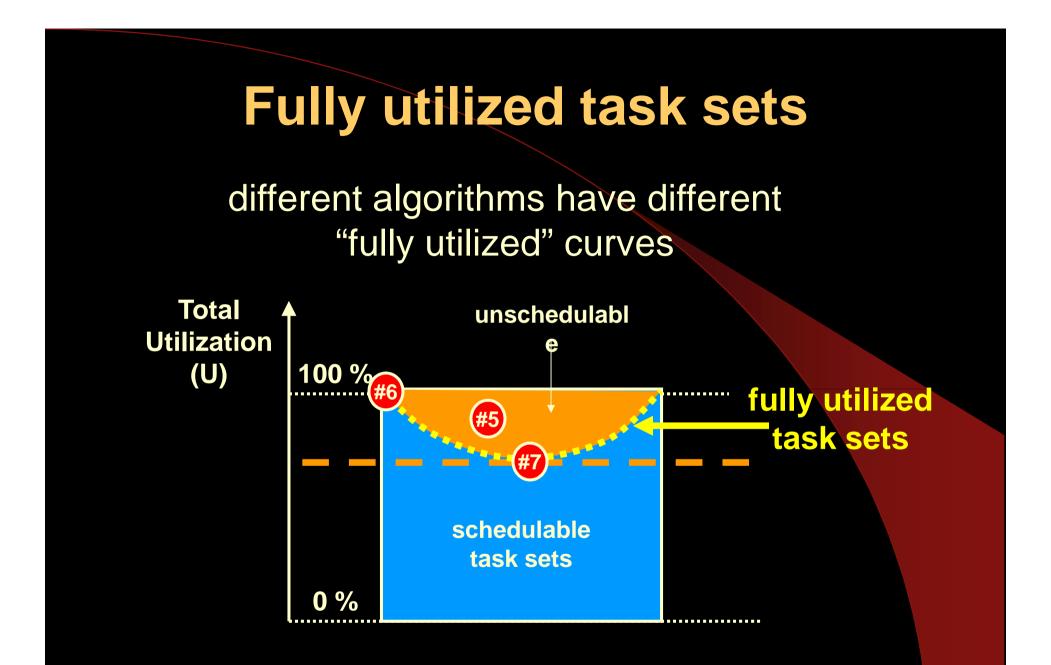
Task	Period	Deadline	Run-Time
T _i	p _i	D _i	e _i
A (High Priori	_	2	1
B (Low Priorit		2	1



U = 1/2 + 1/2 = 1.0 = 100 %The task set is fully utilized.

Task	Period	Deadline	Run-Time
T _i	p _i	D _i	e _i
A (High Prie	ority) 2	2	1
B (Low Pri	ority) 3	3	1





Utilization-Based Test

- A sufficient, but not necessary, test for schedulability of a task set that is assigned priorities using the <u>rate-monotonic</u> algorithm.
- Compute total task utilization U(n) = U.

Liu and Layland's Results Theorem 2: If a feasible fixed priority assignment exists for some task set, then the rate-monotonic priority assignment is feasible for that task set.

Theorem 4: For a set of n tasks with fixed priority assignment, the least upper bound to the processor utilization factor is $U_{RM}(n) = n (2^{1/n} - 1)$

Values for U_{RM}(n)

- U(1) = 1.0
- U(2) = 0.828
- U(3) = 0.779
- U(4) = 0.756
- $U(\infty) = 0.69$

(ln 2)

RM Utilization Test

Utilization vs worst-case utilization bound

also called schedulable utilization

$U_{RM}(n) \leftarrow U$

- If U > 1, then the task set is not schedulable
- If $U \leq U_{RM}(n)$, then the task set is schedulable
- Otherwise: $U_{RM}(n) < U \leq 1$
 - \rightarrow no conclusion can be made
 - \rightarrow try more detailed analysis

Response Time Tests

- for use when $U_{RM}(n) < U \leq 1$
- analyze tasks to determine the worst case response time for jobs
- if worst case response of a job exceeds its deadline, then no feasible schedule
- for independent tasks, only delays are due to preemption by higher priority tasks

Worst-Case Simulation

- assume a critical instant for all tasks
- construct schedule according to the scheduling algorithm
- only need to consider largest task period
- if all tasks meet their deadlines
 - then tasks are feasibly schedulable

Time-Demand Analysis

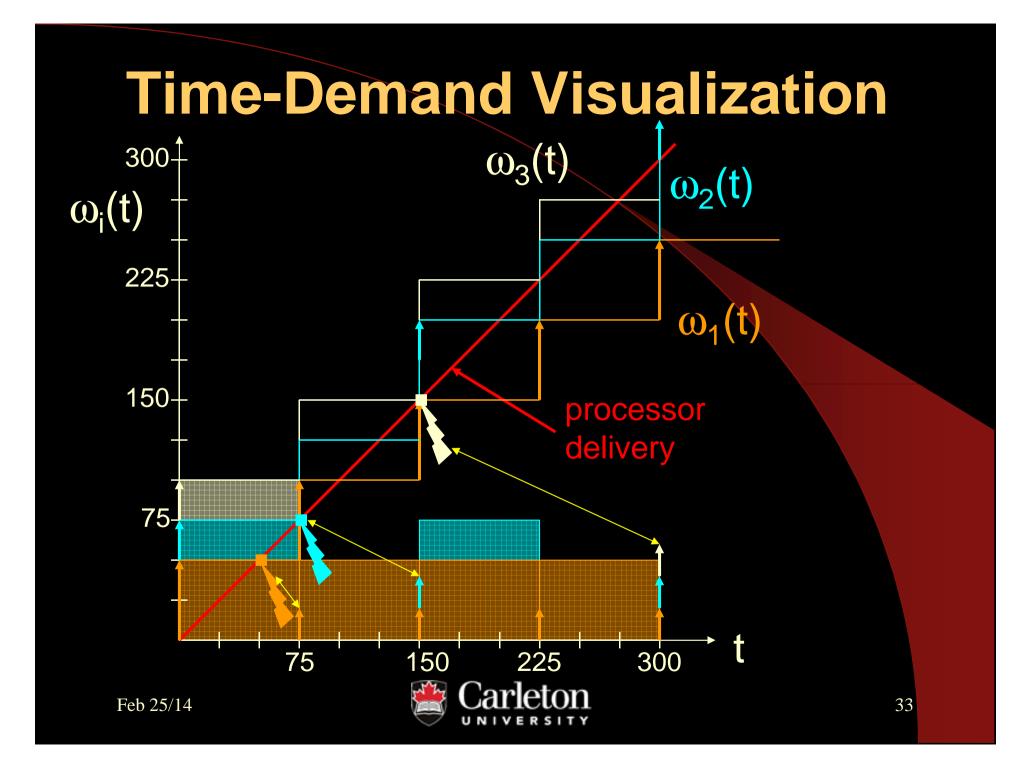
- tasks place incremental demands on processor time
 - let o_i(t) be demand from task i and <u>all higher</u> priority tasks
- processor delivers (processing) linearly
- check each task i, to be feasible:

 $\omega_i(t) = t$ for some $t \le p_i$

how is this different from worst-case simulation?

$$e_1 = 50$$
 $p_1 = 75$ $u_1 = 0.666$ $e_2 = 25$ $p_2 = 150$ $u_2 = 0.167$ $e_3 = 25$ $p_3 = 300$ $u_3 = 0.083$

$U = \sum u_i = 0.916 > 0.779 \quad \leftarrow U(3)$.:. does not meet utilization bound!



How to Solve ?

- For each task:
- consider demand at <u>each</u> scheduling point
 - <u>before</u> next demand
- if task's demand ≤ delivery before deadline,
 then feasible !

Example 9

 $U = \sum u_i = 0.937 > 0.779 \quad (U(3))$ $\therefore \text{ does not meet utilization bound!} \otimes$

Consider Each Task

Task 1: highest priority → meets deadline
 30 (execution₁) ≤ 70 (period₁)

Will need to know <u>Scheduling Points</u>:

- periods: 70, 200, 375
- scheduling points: (when new demand is released)

0, 70, 140, 200, 210, 280, 350, **375**

all released

Continue (Task 2)

second scheduling point: t = 140 (T₁)
demand = 2*30 + 60 = 120 ③

before next release! i.e. before T₁ scheduled

Continue (Task 3)

Now for Task 3:

- first scheduling point: $t = 70 (T_1)$
 - demand = 30 + 60 + 78 = 168 \otimes
- second scheduling point: $t = 140 (T_1)$
 - $\text{demand} = 2^*30 + 60 + 78 = 198$ \otimes
- third scheduling point: $t = 200 (T_2)$
 - demand = 3*30 + 60 + 78 = 228 \otimes

Continue (Task 3 con't) • fourth scheduling point: $t = 210 (T_1)$ - demand = 3*30 + 2*60 + 78 = 288 $(\mathbf{\dot{o}})$ • fifth scheduling point: $t = 280 (T_1)$ - demand = 4*30 + 2*60 + 78 = 318 $(\mathbf{\dot{c}})$ • sixth scheduling point: $t = 350 (T_1)$ - demand = 5* 30 + 2*60 + 78 = 348 \odot • whew! all tasks feasible

Easier way?

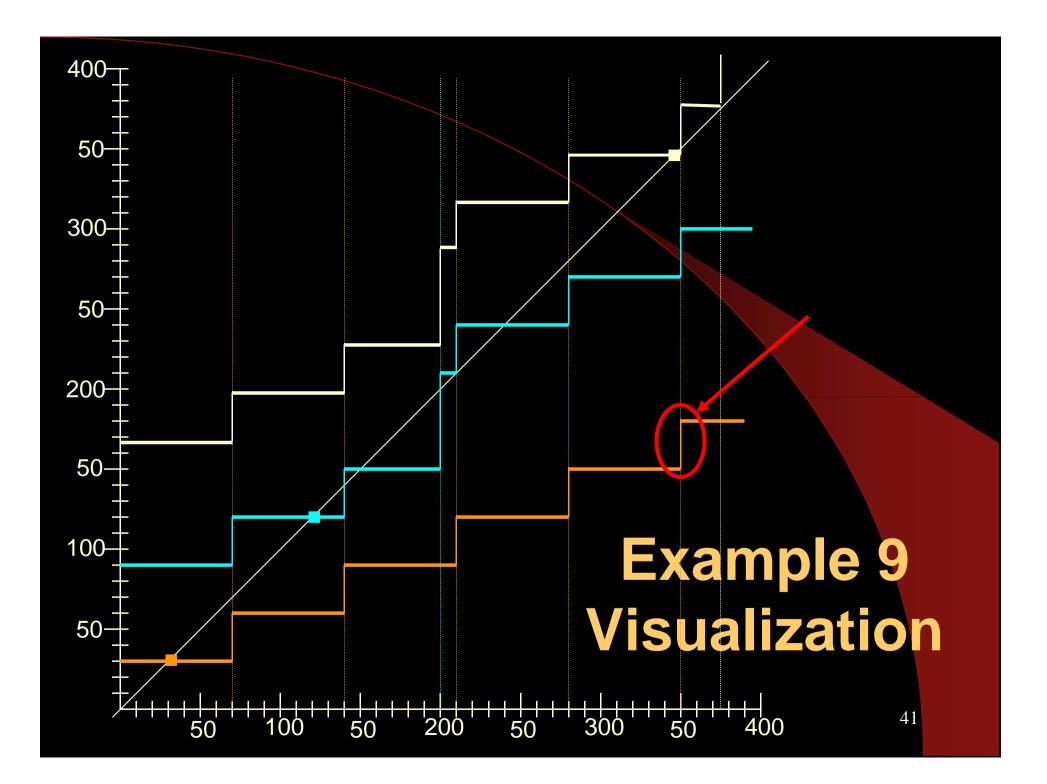
- why not just check demand at end of p₃?

 if T₃ meets deadline,
 then should have slack then?

 scheduling point: t = 375 (T₃)
 - demand = 6* 30 + 2*60 + 78 = 378

HUH?

 $(\mathbf{\dot{s}})$



Alternative ?

- let l_i be the delay in task i's response time due to higher priority tasks
- response time $R_i = e_i + I_i$ (Equ. 1)
- worst case response time: task i and all higher priority tasks release a job at the same instant
 - I_i = sum of all higher priority jobs execution times

of Jobs Over an Interval

suppose: periodic task j:
 number of jobs in [0, R) =

 "ceiling" function: integer round-up

delay to lower priority tasks due to these jobs is:
 R 7 e.

Consider Task with period p Over Time Interval P: p_i < • $p_i = 66$, $e_i = 10$, P = 300300 $\mathbf{0}$ 66 132 198 264 330 work associated with task is "requested" at the beginning of each period • there are **P/p**; (max.) requests in interval e.g. 300 / 66 = 4.54, rounds up to 5 to meet deadline P, must perform work P/p, times during P

of Higher Priority Jobs Over an Interval

- suppose: i periodic tasks, all with phase 0
- rate monotonic priority assignment
- total delay to task i due to higher priority tasks is:

$$I_{i} = \sum_{j=0}^{i-1} \left[\frac{R_{i}}{p_{j}} \right] e_{j}$$
 (Equ

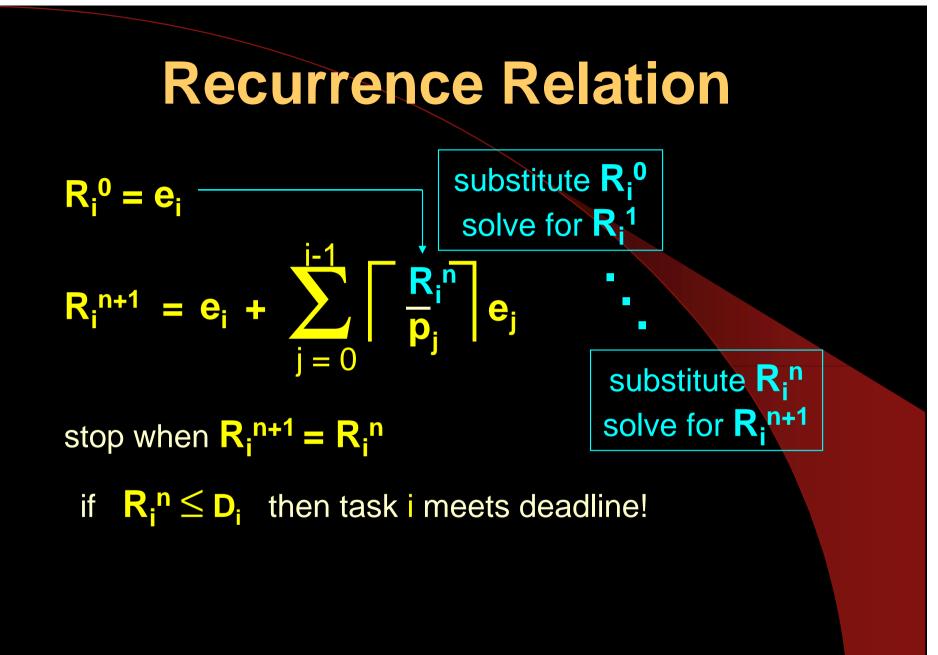
Response Time Equ.

Substitute Equ 2 into Equ 1:

$$\mathbf{R}_{i} = \mathbf{e}_{i} + \sum_{j=0}^{i-1} \left[\frac{\mathbf{R}_{i}}{\mathbf{p}_{j}} \right] \mathbf{e}_{j} \quad (\text{Equ. 3})$$

can solve using a recurrence relation:

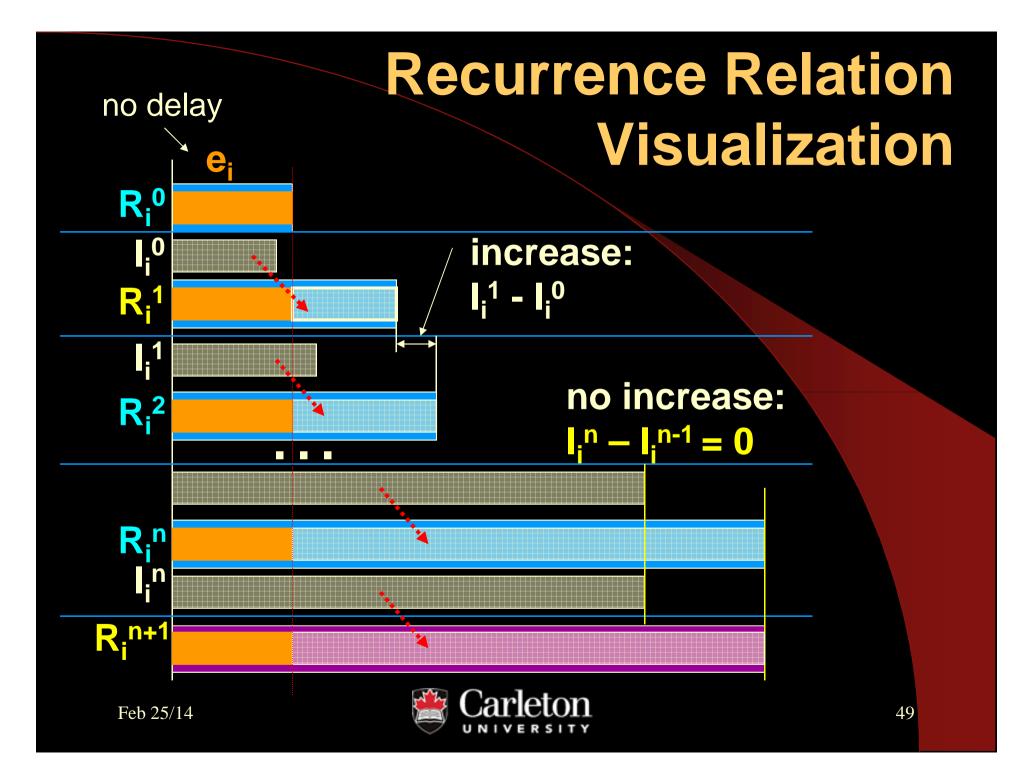
- initially, estimate $R_i^0 = e_i$ (no delay)
- use estimate to calculate better estimate, recurse
- stop when solution found



Recurrence Relation: Conceptually

- initial estimate = execution time of task i
 - during this time, there will be delay from higher priority tasks
 - how much?
 - add this delay to estimate
 - results in "larger" time estimate

stop when estimate does not increase



Scheduling Visualization

- what does each estimate mean in terms of delay vs. the amount of task i execution ?
- what does each increase between estimates represent (in these terms) ?
- when the recursion stops, what does the absence of increase represent (in these terms) ?
- convince yourself that you understand this

Response Time Analysis

- For each task, T_i, compute worst-case response time (R_i).
- If (R_i ≤ D_i) for each task T_i, then the task set is feasible (schedulable).
- Response Time Analysis is both <u>necessary</u> and <u>sufficient</u>.
- How does this relate to Time-Demand Analysis?

Recall Example #8

$$T_1$$
: $e_1 = 50$ $p_1 = 75$ $u_1 = 0.666$ T_2 : $e_2 = 25$ $p_2 = 150$ $u_2 = 0.167$ T_3 : $e_3 = 25$ $p_3 = 300$ $u_3 = 0.083$

$U = \sum u_i = 0.916 > 0.779 \quad \leftarrow U(3)$.:. does not meet utilization bound!

let's work the recursive response time analysis on the board !

What about Assumptions?

- 1. deadline = period \rightarrow now!
- 2. strictly periodic tasks (Liu Ch. 7)
 → next (Aperiodic)
- 2. tasks are independent (Liu Ch. 8)

 \rightarrow next next (Access Control)

Arbitrary Response Times

- $D_i \neq p_i$ • if $D_i < p_i$ \rightarrow tighter deadline
- if D_i > p_i → may have more than one released & ready job for task i

in these jobs assume FIFO scheduling of task i

• will use concept of level- π_i busy interval

Level- π_i Busy Interval (t₀, t]

- task subset T_i all tasks with priority π_i or higher
- starts at t₀, when:
 - all jobs in T_i released before t₀ have completed
 - -a job in T_i is released
- ends at t :
 - first instant after t₀ when all jobs in T_i released since t₀ have completed

Conceptually

- no pending work from T_i when interval starts
- during interval, no slack time & processor always executing jobs with priority $\pi_{\rm i}$ or higher
- no pending work from T_i when interval ends

Critical Instant?

- Worst case load when all tasks in T_i release a job at t₀
 - → then critical instant!

Task i Schedulability Test

Assume:

- critical instant for T_i at t_0
- T_i contains all tasks with priority π_i or higher
- all tasks in T_i other than task i meet deadlines
- If first job of each task (including T_i)completes before end of its period, and J_{i,1} meets deadline → schedulable!
 - if $J_{i,1}$ misses deadline \rightarrow not schedulable

T_i Schedulability Test (con't)

- 2. If first job of some task does not complete before end of its period :
 - a) compute length of level- π_i busy interval
 - solve recurrence relation:

$$\mathbf{R}_{i}^{n+1} = \sum_{j=0}^{i} \left[\frac{\mathbf{R}_{i}^{n}}{\mathbf{p}_{j}} \right] \mathbf{e}_{j}$$

T_i Schedulability Test (step 2 con't)

b) compute response time for each task i job in level- π_i busy interval – for response time of jth job, solve:

$$R_i^{n+1} = je_i + \sum_{k=0}^{j-1} \left[\frac{R_i^n}{p_k} \right] e_k$$

if all task i jobs meet deadlines
 → schedulable

Is Test Finite?

 YES! U ≤ 1 (has to be!) AND no slack time in level-π_i busy interval (by definition of interval)

 \rightarrow level- π_i busy interval is finite

- \rightarrow can find length of interval
- \rightarrow can find job response times

