Operating System Methods for
Real-Time Applications

Priority -Driven Scheduling
for Periodic Tasks

Assumptions (Liu Ch. 6)

no aperiodic or sporadic tasks
tasks are independent

uniprocessor
will relax assumptions 1 & 2 later
— aperiodic & sporadic = Liu Ch. 7

— Interdependency - Liu Ch. 8
o Already seen “Access Control”!

Feb 25/14 g% Carleton

— UNIVERSITY

Uniprocessor

e Why not relax this assumption?
e multiprocessor typically managed by
allocating a set of tasks to each processor

— static: once allocated, task handled only by that
processor

— tasks do not migrate among processors
- have a fixed task set for each processor

Feb 25/14 g% Carleton

— UNIVERSITY

Priority -Driven Scheduling Algorithms

e Static -(or Fixed -)Priority — assigns the
same priority to all jobs in a task.

e Dynamic -Priority — may assign different
priorities to individual jobs within each task
— e.g., earliest-deadline-first (EDF) algorithm

Feb 25/14 g% Carleton

— UNIVERSITY

Static-Priority vs. Dynamic Priority

L]

L]

Static-Priority:

example:

Rate-Monotonic:

3
X

Dynamic-Priority:

example:

All jobs in task have same priority.

“The shorter the period, the higher the priority.”

) I

>

) | 111 | | [
3) T, .|_|.|_|.|_|.|_|.,,

May assign different priorities to individual jobs.

Earliest-Deadline-First: “The nearer the absolute deadline.

Feb 25/14

the higher the priority.” here we hreak fie

H T
-1—|.lr||—|.—|.|r|

Ty 15 not preempted

ﬁ Carleton

UNIVERSITY

Processor Utilization

e recall that for a periodic task 7, the ratio
9

e the of all tasks In a
system Is the sum of the utilizations of all

Individual tasks:

Feb 25/14

Fixed -Priority Scheduling

of Periodic Tasks
consider some examples

consider some methods that can be used
to determine the schedulability of a task

-based test
-time (or time-based) test

Feb 25/14 g% Carleton

Example #1

Task Period Deadline Run-Time

A(High Priority)
B (Low Priority)

. processor
Feb 25/14 ‘g Carleton Idle

UNIVERSITY

Example #2

Period Deadline Run-Time

A (Low Priority)
B (High Priority

A

A\ 4

priority B F

0

Feb 25/14 ﬂ Carleton

UNIVERSITY

Example #3

Task Period Deadline Run-Time

A (High Priority) 2
B (Low Priority) 5

U=1/2 +2/5=0.9

priority A [l h h h h h h

B | []

Feb 25/14 ﬂ Carleton

UNIVERSITY

Example #4

Task Period Deadline Run-Time

A (Low Priority)

B (High Priority)/g
U=1/2 +2/5=0.9

om eEpoE e .
oy

4 5

Feb 25/14 ﬂ Carleton

UNIVERSITY

Example #5

Task Period Deadline Run-Time

A (High Priority)

B (Low Priority)

U=1/2 +2.2/5=

mwuhhhlrhhh

B

0 2 4 5 10 15
Feb 25/14 ﬂ Carleton

UNIVERSITY

IS There a Feasible Schedule
for Example 57?

N

4 5

HE E HE BN N HEN_
HE B E N EEN =B

Feb 25/14 ﬁ Carleton

Analysis of Examples

e Changing the static priorities assigned to
each task can impact the task set’s feasibllity

— e.g., examples 3 and 4.

e Even If the total task utilization Is less than
1.0, the task set may not have a feasible

(static) priority assignment
—e.g., example 5

|s there an upper bound on processor
utilization that ensures schedulability?

Feb 25/14 g% Carleton

— UNIVERSITY

Issues In Fixed Priority
Assignment

ow to assign priorities?

ow to determine which assignment is the
best; e.g., how to evaluate a priority
assignment algorithm (method)?

e How to compare different priority
assignment algorithms?

Feb 25/14 g% Carleton

Fixed Priority Assignment
Methods

e According to (e)
— smallest/largest execution time first

e According to (pi)
— smallest/largest period first

e According to (e/p)
— smallest/ largest task utilization first

e Other? , etc.

Feb 25/14 g% Carleton

— UNIVERSITY

Rate-Monotonic Algorithm (RM)

(frequency) of task Is inverse of its period

):

classic paper - posted!
C. L. Liuand J. W. Layland, read it!
“Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment”, JACM, Vol. 20, No. 1,
pages 46-61, 19/3.

Feb 25/14 g% Carleton

— UNIVERSITY

Deadline -Monotonic Algorithm (DM)

e tasks with are
assigned

e when relative deadlines (D;) equal to their
periods (p;), the rate-monotonic algorithm
IS the same as the deadline-monotonic
algorithm.

Feb 25/14 g% Carleton

— UNIVERSITY

Rate-Monotonic Assumptions

e tasks may be preempted
e tasks are periodic
e tasks execution times (e;) are constant

Feb 25/14 g% Carleton

Optimal Priority Assignment

® a given priority assignment algorithm Is
whenever a task set can be
scheduled by some fixed priority assignment,
It can also be scheduled by the given
algorithm

e Liu and Layland show that:
— rate-monotonic algorithm is optimal

Feb 25/14 g% Carleton

Maximum Achievable Utilization

Atask set Is If any increase In run-
time of any task would result in a missed deadline.

Total 4 | nschedulable

Utilization task sets
)

schedulable
task sets

Feb 25/14 g% Carleton

— UNIVERSITY

Example #6

Task Period Deadline Run-Time

A (High Priority)
B (Low Priority)

Lol oL U=1/2+1/2=1.0=100%
[] B The task set is fully utilized.

nEn
A 4 \ 4 A\ 4 \ 4

2 4 6 8 10

Feb 25/14 ﬂ Carleton

UNIVERSITY

Example #7

Period Deadline Run-Time

A (High Priority)
B (Low Priority)

U=1/2+1/3=0.8333

Al h hl The task set is fully utilized,

h even though U < 1.0.

B |

increase e,?

0
increase eg?

Feb 25/14 ﬂ Carleton

UNIVERSITY

Fully utilized task sets

different algorithms have different
“fully utilized” curves

Total unschedulabl
Utilization e

) 3
fully utilized
< task sets

schedulable
task sets

Feb 25/14 g% Carleton

— UNIVERSITY

Utilization -Based Test

L AN test for
schedulabllity of a task set that Is assigned
priorities using the rate-monotonic algorithm.

e Compute total task utilization U(n) = U.

Feb 25/14 g% Carleton

Liu and Layland’s Results

Theorem 2. |1 a feasible fixed priority
assignment exists for some task set,
the rate-monotonic priority assignment Is
feasible for that task set.

Theorem 4: For a set of n tasks with fixed
priority assignment, the least upper bound to
the processor utilization factor Is

Ugm() =N (210 - 1)

Feb 25/14 g% Carleton

Values for Ugy,(n)

1.0
0.828
0.779
0.756
0.69 (In 2)

- g% Carleton

RM Utilization Test

Utilization vs worst-case utilization bound

e also called schedulable utilization
Ugm(n) — U

— If , then the task set schedulable
— If , then the task set 1= schedulable
— Otherwise:

- can be made

—> try more detailed analysis

Feb 25/14 g% Carleton

— UNIVERSITY

Response Time Tests

e for use when

e analyze tasks to determine the worst case
response time for jobs

e If worst case response of a job exceeds its
deadline, then no feasible schedule

e for Independent tasks, only delays are due
to by higher priority tasks

Feb 25/14 g% Carleton

Worst-Case Simulation

® assume a critical instant for all tasks

e construct schedule according to the
scheduling algorithm

e only need to consider largest task period

e If all tasks meet their deadlines
— then tasks are feasibly schedulable

Feb 25/14 g% Carleton

— UNIVERSITY

Time-Demand Analysis

e tasks place incremental demands on
processor time

— let w(t) be demand from task 1 and all higher
priority tasks

e processor delivers (processing) linearly

e check each task I,
w(t) =t for somet < p.

e how Is this different from worst-case
simulation?

| schedule vs.
Feb 25/14 ﬂ Carleton calculation! 31

— UNIVERSITY

Example #8

e, =90 p,=75 u,=0.666
e,=25 p,=150 u,=0.167
e, =25 p;, =300 u,=0.083

U= 2u =0.916 > 0.779 < U(3)
does not meet utilization bound!

Feb 25/14

Time-Demand Visualization

oo.(sooi LREYC

225+

0 (t)

\\

150 225 300 {
Feb 25/14 g Carleton

How to Solve ?

For each task:

e consider demand at each scheduling point
e before next demand

e If task’s demand < delivery before deadline,
— then feasible !

Feb 25/14 g% Carleton

— UNIVERSITY

Example 9

=30 p,=70 u,=0.429
=60 p,=200 u,=0.3
C,=78 p,=375 u,=0.208

U= >u =0.937 > 0.779 (U(3))
[1 does not meet utilization bound! ®

Feb 25/14 g% Carleton

Consider Each Task

e Task 1: highest priority > meets deadline
30 (execution,) < 70 (period,)

e Will need to know Scheduling Points:
— periods: 70, 200, 375

— scheduling points: (when new demand is
released)

0, 70, 140, 200, 210, 280, 350, 375

all released

Feb 25/14 g% Carleton

— UNIVERSITY

Continue (Task 2)

e Task 2: can only be delayed by Task 1
— scheduling point: t=70 (T,)
edemand = 30 + 60 = ®

scheduling point: t = 140 (T,)
edemand =2*30+60 =120 ©

N before next release! i.e. before T, scheduled

Feb 25/14 g% Carleton

— UNIVERSITY

Continue (Task 3)

Now for Task 3:
o scheduling point: t = 70 (T,)
— demand =30 + 60 + 78 = ®
scheduling point: t = 140 (T,)

_ demand = 2*30 + 60 + 78 = ®
scheduling point: t = 200 (T,)
_ demand = 3*30 + 60 + 78 = ®

Feb 25/14 g‘ Carleton

Continue (Task 3 con't)

scheduling point: t = 210 (T,)
— demand = 3*30 + 2*60 + 78 = ®
scheduling point: t = 280 (T,)
— demand = 4*30 + 2*60 + 78 = ®
scheduling point: t = 350 (T,)
— demand = 5* 30 + 2*60 + 78 = 348
e whew! all tasks feasible

Feb 25/14 g% Carleton

Easier way?

e Wwhy not just check demand at end of p5?
—1f T, meets deadline,
then should have slack then?

e scheduling point: t = 375 (Ty)
—demand = 6* 30 + 2*60 + 78 =

HUH?

Feb 25/14 g% Carleton

— UNIVERSITY

ample 9
lalization

| I I | |
50 400 4l

Alternative ?

e let | be the delay In task I's response time
due to higher priority tasks

® response time =+ 1 ()
® \WOrst case response time: task 1 and all

higher priority tasks release a job at the same
Instant

l. = sum of all higher priority jobs execution times

Feb 25/14 g% Carleton

— UNIVERSITY

of Jobs Over an Interval

® suppose: periodic task j:

e number of jobs In [0, R) =
R
P
e delay to lower priority tasks due to these

jobs Is: I_B —‘ej
P;

Feb 25/14 g% Carleton

Consider Task with period p
<

Over Time Interval P: p .
ep =66, e =10, P =300

] [[[[
0 66 132 198 264 330

e work associated with task is “requested” at
the beginning of each period

e there are | P/p. | (max.) requests in interval
e.g. 300/66 = 454, roundsupto 5

e {0 meet deadline P, must perform work
rP/pﬂ times during P

|
»

Feb 25/14 ﬂ Carleton

A WNIVERSITY

of Higher Priority Jobs Over

an Interval
e suppose: | periodic tasks, all with phase 0O

e rate monotonic priority assignment

e total delay to task i due to higher priority
tasks Is:

B.

P;

Feb 25/14 g% Carleton

Response Time Equ.

e Substitute

e can solve using a recurrence relation:
— initially, estimate R°=-¢, (no delay)

— use estimate to calculate better estimate,
recurse

— stop when solution found

Feb 25/14 g% Carleton

— UNIVERSITY

Recurrence Relation

RO = substitute R.°
solve for R; 1

e $TET

substitute R."
1
stop when R"*1 = R." solve for R;"*

if R" <D, then taskimeets deadline!

Feb 25/14 ﬂ Carleton

UNIVERSITY

Recurrence Relation:

Conceptually
@ Initial estimate = execution time of task I

— during this time, there will be delay from higher
priority tasks

e how much?
e add this delay to estimate
o results In “larger” time estimate

e stop when estimate does not increase

Feb 25/14 g% Carleton

— UNIVERSITY

Recurrence Relation
Visualization

no delay

INcrease:
|1 - 10

Nno Increase:
N —1"1=0

';n“

n+1|
Ri

Feb 25/14 g% Carleton

Scheduling Visualization

e what does each estimate mean in terms of
delay vs. the amount of task | execution ?

e Wwhat does each increase between estimates
represent (in these terms) ?

e when the recursion stops, what does the
absence of increase represent (in these
terms) ?

e convince yourself that you understand this ©

Feb 25/14 g% Carleton

— UNIVERSITY

Response Time Analysis

e For each task, T, , compute worst-case
response time (R,).

o If (R <D,) for each task T, then the task
set Is feasible (schedulable).

e Response Time Analysis Is

e How does this relate to Time-Demand
Analysis?

Feb 25/14 g% Carleton

Recall Example #8

e, =90 p, =75 u,=0.666
e,=25 p,=150 u,=0.167
e, =25 p;, =300 u,=0.083

U= 2u =0.916 > 0.779 < U(3)
does not meet utilization bound!

let’'s work the recursive response time analysis on the board !

Feb 25/14 52

What about Assumptions?

deadline = period
- now!

strictly periodic tasks (Liu Ch. 7)
- next (Aperiodic)

tasks are independent (Liu Ch. 8)
-> next next (Access Control)

Feb 25/14 g% Carleton

Arbitrary Response Times

oD, 7 p
oif D,<p

- tighter deadline
oif D,> p

. —> may have more than one
released & ready job for task |

— In these jobs assume FIFO scheduling of task |
e Will use concept of level-1t busy interval

Feb 25/14 g% Carleton

Level- 1t Busy Interval (t ,,]

e task subset T, — all tasks with priority 1t or
higher

e starts at ¢, when:

— all jobs In T, released before t, have

completed
—ajobin T, is released
e ends at

— first instant after t, when all jobs in T, released
since |, have completed

Feb 25/14 g% Carleton

— UNIVERSITY

Conceptually

e no pending work from T, when interval
starts

e during interval, no slack time & processor
always executing jobs with priority Tt or

higher

e no pending work from T, when interval ends
t t

- |5 R
T

= processor executing time
jobs from T,

Feb 25/14 g Carleton

UNIVERSITY

Critical Instant?

e \Worst case load when all tasks in T, release
a job at t,
> then critical instant!

Feb 25/14 g% Carleton

— UNIVERSITY

Task | Schedulabllity Test

Assume:

e critical instant for T, at t,
T, contains all tasks with priority 1t or higher
all tasks Iin T, other than task | meet deadlines

If first job of each task (including T))completes
before end of its , and J;; meets
deadline = schedulable!

e IfJ;; misses deadline = not schedulable

Feb 25/14 g% Carleton

— UNIVERSITY

T. Schedulability Test (con’t)

2. Iffirst job of some task does not complete
before end of its period :

a) compute length of level-1t busy interval
e Solve recurrence relation:

R
Ri™ = ZI_E.'—‘eJ
j=0

Feb 25/14 g% Carleton

— UNIVERSITY

T. Schedulabllity Test (step 2 con't)

b) compute response time for each task | job
In level-1t busy interval — for response time
of jt" job, solve:

Rin+l — Jel + I_BI—‘ ek
i Pk
k=0

— If all task 1 jobs meet deadlines
-> schedulable

Feb 25/14 g% Carleton

— UNIVERSITY

IS

Test Finite?

e YES! U<1 (hasto bel) AND no slack
time in level-t busy interval (by definition of

Interval)

- level-T

- can fino
- can fino

Feb 25/14

ousy Interval Is finite
ength of interval

job response times

s Carleton

