Course Web Page w

1. From Department HomePage:

2. Pick Course Materials (on left)

3. Pick SYSC 5701

protected content. user: sysc-5701
password: rtos

Jan 7, 2014 ‘g Carleton

SYSC 5701
Operating System Methods
for Real-Time Applications

Motivation

Winter 2014

¥ Carleton

Broad Background

® systems concepts, computer systems

e fime

e software engineering. development, design
® concurrency

® Interrupts

Jan 7, 2014 fﬂ Carleton

System

e a set of components that interact to
accomplish an objective

e can be applied to just about anything! ©

Jan 7, 2014 fﬂ Carleton

Uniprocessor Computer
System

Programmable! }

Computer System

e Objective : Involves maintaining input/output
relationships at the 1/O / External interface

n’, 014 & Carleton

Variations: Multiprocessor

e more than one processor - shared bus
e processors share global resources

® a processor may also have private local
resources connected via a secondary
(private) bus structure

(not shown below)

multicore!!

Jan 7, 2014 fﬂ Carleton

Multiprocessor (con’t)

\

multlcore N : -

Jan 7, 2014 @ Carleton

Variations: Network

e computer subsystems interconnected via
/O components

e subsystems do not share resources via
shared bus

e sharing a resource Is more complicated!
-=> requires co-operation of subsystems

® subsystems co-operate to accomplish
network-wide objective

Jan 7, 2014 ‘g Carleton

subsystems must Network (COn’t)

communicate to Cco-operate

\

. D
shared

resources?
ogram?

4

-w %
System (Network)
Objective

Jan 7, 2014 @ Carleton

. WNIVERSITY

Real-Time Systems

"

Objective :

e Mmaintain time-constrained input/output
relationships between computing system and
external devices/systems

e How should these be described ?

Jan 7, 2014 ;ﬁ uCﬂEII‘lBtOIl

IVERSITY

(Typical) Hard vs. Soft
Real-Time

e Hard Real-Time
— failure to meet time constraints is catastrophic
— recovery may be difficult, or futile
— e.g. reactor melt-down, plane crash, loss of life

Safety

e Soft Real-Time Critical

— occasional failure to meet time constraints iIs
Inconvenient but not catastrophic

— try again, or be patient
— e.g. no dial tone, lost voice packet

Jan 7, 2014 fﬂ Carleton

o UNMIVERSITY

Describing Systems

e Requirements : specify the objectives
In terms of behaviour at the interface to
the external devices/systems \

W

e Implementation : describes how the
computing system is utilized to meet the
requirements

e \WWhy Is It useful to describe both”? What
IS a system “design”?

n’, 014 & Carleton

Requirements vs.

Implementation

e “|deally ”: the requirements are
independent of the implementation

englneenng

Computer System

Jan 7, 2014 @ Carleton

Concurrent Activities

e are In progress at the same time

e dependent activities : interact to
complete a higher objective

e independent activities : do not interact

May have concurrency In the
requirements behaviour and in the
Implementation

Jan 7, 2014 ‘g Carleton

Stream-2-Pipe Example

concurrent activities at interface:
e Input (slow) data streams: A, B, C, D
e output (fast) data pipes: Pipel, Pipe2

n’, 014 & Carleton

Example (con’t)

g
=

e streams A and B are
compressed/multiplexed into stream Pipel

e streams C and D are
compressed/multiplexed into stream Pipe2

Jan 7, 2014 @ ucwflllv' !e“EJTI} 16

Example (con’t)

Concurrency at requirements level:

e A, B & Pipel are activities
e C,D &Pipe2 are activities
e { A, B, Pipel } activities are

of { C, D, Pipe2 } activities
Concurrency in implementation ?
How might the system be implemented?

Jan 7, 2014 fﬂ Carleton

Concurrency In Physical
Implementations

e real concurrency: active h/w
components that operate In parallel to
support concurrent activities

— e.g. processors, active I1/O components
e apparent concurrency: active devices
are shared to give the impression (over

time) that external activities are being
carried out concurrently

Jan 7, 2014 ‘g Carleton

Important Distinction!

® concurrency Iin reguirements iIs part of the
— cannot be altered by design decisions
® concurrency in implementation Is a
— not imposed by requirements

As a result: Concurrent activities in requirements
are often at a different granularity than concurrent
activities in implementation.

Jan 7, 2014 fﬂ Carleton

S UNMIVERSITY

Design for Concurrency

® mapping concurrency Iin requirements onto
Implementation resources Is a design decision

- . allocation of system (implementation)
resources to achieve concurrency in requirements

e many tough design issues here!
(more later!)

Jan 7, 2014 ‘g Carleton

- UNMIVERSITY

Development Problem:

Physical -
Implementation

Jan 7, 2014 @ Carleton

. WNIVERSITY

To reduce/manage the

® introduce an intermediate level between
requirements and implementation

— resides “above” implementation
e virtual machine: deals with concurrency explicitly!
e Introduce an abstract process model
e design implementation in terms of the process model
e operating system provides process model support

Jan 7, 2014 ‘g Carleton

- UNMIVERSITY

Modified Development Problem:

1

Process Model Impl.

o
WindRiver

Implementation QNX
FreeRTOS
many more

Jan 7, 2014 'ﬁ Carleton

UNMIVERSITY

Before & After

Process Model
Impl.
Physical
Impl.

Jan 7, 2014 -ﬁ} Carleton

. UNMIVERSITY

What SYSC 5701 Is

e concerned with using a process model to
help reduce the development challenges for
real-time applications

® primary concern:
e Goals:

designer’s perspective !

— simplify the implementation of concurrency

— hide some mac
— use “standard”
— simplify the ma

nine details
norocess model

Dping of concurrency in

requirements onto concurrency in

Implementation

Jan 7, 2014

g Carleton

- UNMIVERSITY

What SYSC 5701 Is Not

e NOT concerned with particular real-time
applications

e NOT about Linux or Windows

Jan 7, 2014 fﬂ Carleton

So ... what's so hard

about concurrency? ©

e cvent-driven vs. sequential mindset
e interference — shared resources
e synchronization — mutual exclusion,

coordinate progress

e communication among concurrent
activities

— for application purposes & synchronization

Wil elaborate on these in the rest of these slides

Jan 7, 2014 'ﬁ Carleton

UNMIVERSITY

Seqguential Mindset

e control Is managed sequentially
— only one thread of control

e hardware/state Is polled to decide when
to perform work

® response to events depends on when
event sources are polled

Jan 7, 2014 fﬂ Carleton

Sequential Mindset: Polling

General form of polling-only
Implementation:

loop (forever)

{

poll for next event/work to do
process events/work as needed

Jan 7, 2014 fﬂ Carleton

Polling & Priority

e for polled events, can often give work
relative priorities

e e.g. poll all devices and decide on
processing order

e higher-priority work: performed a.s.a.p.
—e.g. service I/O hardware
e lower-priority work: after higher-priority work

Jan 7, 2014 ‘g Carleton

Timing Example:

® suppose a h/w timer Is being used to
Implement a displayed clock

e h/w timer “1ici<” every millisecond
— can poll for tick
e update display clock every second

Jan 7, 2014 fﬂ Carleton

Polling Approach

poll h/w timer
it (Lck)
{ count++;
If (count==1000)
{ count = 0; }
update display;
}

Jan 7, 2014 fﬂ Carleton

Priority In Timer Example

e manipulating count is higher-priority processing
e failure to sense every tick = lost time !
e must poll "often enough" to sense all ticks

e update clock display is lower-priority processing

e could be delayed “a bit” in favour of higher-priority
processing

Jan 7, 2014 fﬂ Carleton

S UNMIVERSITY

Event-Driven Mindset:
H/W Interrupts

nigh-priority processing performed by h/w
nterrupt Service Routines (ISRs)

e h/w generates interrupt (signal) when event
OoCccurs

—e.g. h/iw timer tick

® signhal causes processor to execute ISR
—no s/w involved In invocation of ISR!

o7, 202 & Carleton 2

ISR Related Control Flow

1. current s/w state Is saved on stack

(registers: including status (e.g. flags) and
program counter)

- the current software Is suspended!
(interrupted! pre-empted!)
2.
3. prior state (1) Is restored and s/w continues

Jan 7, 2014 @ UCNE,I; !e“EJTI} 35

Interrupt & ISR

save s/w, state restore s/w, state
& v - /

‘siw,running| | 1SRruns | [siw, running

h/w interrupt signal |

e Similar to a h/w invoked function call
e NO s/w involved in invocation!!

e interrupted s/w (s/w,) does not “know” it was
momentarily suspended or that the ISR
executed! (I.e. that s/w, was pre-empted)

Jan 7, 2014 -ﬁ} Carleton

Event-Driven Mindset:

Interrupts & Concurrency

® processor is shared between the
associated with ISRs and the
sequential thread of the main program

— shared processor = virtual concurrency

e h/w Interrupts are

— the result of the actions of active hardware
devices

e |[SRs run due to h/w event handling, not due
to sequential s/w sensing of events!

Jan 7, 2014 ‘g Carleton

To use Interrupt-Driven
Approach:
e place high-priority processing in ISRs

e place low-priority processing in main
(sequential) program

e ISRs and main must communicate

e main requests that high-priority work to be
performed by ISRs

e |[SRs inform main of completed work
e communicate using shared variables

Jan 7, 2014 ‘g Carleton

Recall Previous Timer
Example

poll h/w timer
if (tick)

{ count++; «— put in ISR
(no poll!)

where to put ?
share count ?

low priority work
update display main

< putin

}

Jan 7, 2014 ;ﬁ UCNEIII;!BRE)H

Timer Example Revised

Suppose ISR and main . boolean
e InISR: count ++;

count If (count==1000)

= TRUE; }

® in main : \
ool if () =
{ = FALSE:

update display }

n’, 014 & Carleton

Recall (Half of)
Stream—-2—Pipe Example:

Stream A

Pipe

—

Stream B

® suppose streams and pipe are services by h/w
ISRS:
— ISRA —receives a Data packet of Stream A data
— ISRB —receives a Data packet of Stream B data
— ISRP — transmits Pipe packets

Jan 7, 2014 ;ﬁ uCEII‘letOIl

NIVERSITY

Stream—-2—Pipe Communication

e ISRs share a queue () to exchange packets

e ISRA and ISRB produce packets as they are
received

e when packet of data Is received it Is put In
e ISRP consumes packets by transmitting them

e when ISRP is idle, it gets a packet from

e Instance of classical producer/consumer problem

-

Jan 7, 2014 'ﬁ Carleton

Stream—-2—-Pipe:
Pictorial Representation
o, D

data
.—>
e el
acket
T~ pack
Packet Q

—

_>-—> /./"pac ket
\

T packet

n’, 014 & Carleton

Issues to Expose:

® among concurrent activities

® €.g. transmit on pipe cannot proceed
without data from streams

— pipe transmission must for work

e frequent requirement in concurrency!

Jan 7, 2014 fﬂ Carleton

IsSsues to Expose:

e how do ISRA and ISRB obtain empty packet
buffers for receiving packets?

e what does ISRP do with an empty packet
buffer after transmitting a packet?

e static vs. dynamic schemes?
e what happens if no buffers/memory available?

Jan 7, 2014 fﬂ Carleton

IsSsues to Expose:

Potential for INTERFERENCE:
® concurrent activities share

INTERFERENCE occurs when
simultaneous concurrent activities
corrupts a shared resource

— modification is concurrent with “other”
access

Jan 7, 2014 fﬂ Carleton

Critical Sections

e a region of code that has the potential to
cause Iinterference Is called a

e the existence of a critical section does not
guarantee interference — often depends
on specific access sequences and timing

e Interference may not show up In testing !
— hard to debug!

Jan 7, 2014 fﬂ Carleton

Example: consider a static array
Implementation of

e Head and

(data structure)
all pointers (indices)

® remove @ Head

e Tall points to next avalilable array element
e when reach end of array, wrap to start:
iIndex = (index + 1) mod Q size

Jan 7, 2014

&= Carleton

Data Declarations

Q Size = FFx*x // some constant

array [0..Q Size—-1] of
Head : Integer ; //index of packet to remove

all : integer ; /l index of next free array element
Count :Integer ; /I # of packets in Packet_Q

n’, 014 & Carleton

Initial Values & Empty() Method

Initially:
Head = O;
Tall = 0;
Count = O;

boolean Empty () { return (Count==0); }

Jan 7, 2014 fﬂ Carleton

Add Method

Add (P : packet buffer)
{ If Count >= Q_ Size
{ /*exception! Q full'*/ exit;}
[Tall]=P;
Tall = (Tall+1) mod Q Size;
Count = Count+ 1;

} s vt

Jan 7, 2014 @ ucwflllv' !e“EJTI} 51

Remove Method

Remove (. packet_buffer)
{ //assume Count>0
= Packet Q[Head |;
Head = (Head + 1) mod Q Size,;
Count = Count — 1,

o mEmmTEe

n’, 014 & Carleton

Scenario

IN a uniprocessor implementation, suppose:

o and finish receiving packets at
approx. the same time

e independent reception — no interference

e both may attempt to access
concurrently

® accessing shared resource!

Jan 7, 2014 fﬂ Carleton

® suppose

Method Detalls

calls first and Is executing:
[Tall] =P, ;

Tall = (Taill+1) mod Q_Size;
e suppose the compiled implementation of the 2nd

line Is:
tem
tem
tem

D
D

D

= Tail,y; //temp might be a register
= temp +1;
= temp mod Q_ Size,

Tail ,, = temp ;

Jan 7, 2014

¥ Carleton

S UNMIVERSITY

ISRB Interrupts ISRA!

® suppose has executed:
[Tail ,]1=F.;
temp, = Tall_ ;
and 1s about to execute:
temp, = temp, +1;

when an occurs and
begins to run

Jan 7, 2014 fﬂ Carleton

Data Corruption!

e when runs, has placed a packet
IN , but has not yet modified Tall
and Count

o will overwrite the packet just added
by , then adjust Tail, and then
Increment Count

e when resumes it will finish adjusting
Tall_,, and then increment Count

Jan 7, 2014 fﬂ Carleton

Interference!

net result: (after both ISRs complete)
e |ost packet originally added by
— overwritten by . added by

e Talil is still correct (for the packets in Q)
but Count Is (too large by one)

e Are there other Interference problems?

Jan 7, 2014 fﬂ Carleton

Other Potential Interference

— potential interference with Count

® when only one space
left In

— both calls could pass the “full” test
before incrementing Count

—overwrite a valid packet & increment
Count beyond Q_Size

Jan 7, 2014 fﬂ Carleton

Race vs. Interference

o two concurrent activities have begun
the process of accessing a shared resource

e one activity will get there first!

e a race Is due to sharing resources, but a race
(by Itself) does not corrupt the resource

® race conditions are a common occurrence
In event-driven systems

Jan 7, 2014 fﬂ Carleton

Critical Section Protection

e ensure mutually exclusive access to relevant
shared resource(s)

Uniprocessor Solution
© while processing critical sections

e keep critical sections short!
e which interrupts should be disabled?
— all?
— only those with potential to interfere?

Jan 7, 2014 fﬂ Carleton

S UNMIVERSITY

Uniprocessor Solution

Common solution:
disable;
critical section /I protected!
enable;

e.g.

disable:

enable:

Jan 7, 2014 fﬂ Carleton

What about a
Multiprocessor Solution ?

e recall stream-2-pipe example:

— suppose the ISRs are implemented on
Independent processors & share memory

— disabling ints on one processor won't stop
Interrupts on other processors!

A —— RGO
a Ela

Jan 7, 2014 'ﬁ Carleton

Multiprocessor Solution

e use busy waiting and shared variables
to ensure mutual exclusion

—busy waiting ®
—wastes CPU time!

e keep critical sections short ©
— minimize wasted time

Jan 7, 2014 fﬂ Carleton

Busy Waiting (Version 1)

share a boolean variable
TRUE = = resource Is busy
FALSE = = resource Is available

(var . boolean)
{ while () { } //wait until available
= TRUE; /I indicate resource busy

Jan 7, 2014 fﬂ Carleton

S UNMIVERSITY

Busy Walit (version 1)

e PROBLEM! !

e more than one processor could pass busy
walit loop before setting Busy = TRUE

e cach would proceed assuming mutually
exclusive access to resource

while () { }
= TRUE;

n’, 014 & Carleton

Busy Wait (Version 2)

® use h/w enforced atomic operation to read
and modify Busy

e functional syntax:

old value TAS (variable, new value)

e returns original value of variable (old_value),
and sets variable to new_value

e typically locks system bus for duration of
Instruction

Jan 7, 2014 'ﬁ Carleton

UNMIVERSITY

No Problem!
(as long as hardware supports TAS ©)

(var . boolean)

{

while ((' TRUE)) { }
} I

atomic operation

e Software-only solutions (no TAS) also exist
for multiprocessor systems

e.g. Lamport's bakery algorithm

Jan 7, 2014 fﬂ Carleton

S UNMIVERSITY

Summary of Motivation

has inherent difficulties:
— potential for
—need for of activities
—need for among
activities
—race conditions (event-driven reality!)

Jan 7, 2014 fﬂ Carleton

Summary of Motivation

e concurrent activities can arise in the
requirements of an application

—l.e. the system support more
than one input/output relationship
concurrently

e concurrency in an implementation is the
result of

Jan 7, 2014 fﬂ Carleton

Concurrency-Related Issues

® mindset :
sequentiakgalling) vs.
(Interrupts, multiprocessor)
® priority . some are high-priority,
while others have lower-priority

e h/w: determines extent of concurrent
capabilities of components

Jan 7, 2014 ‘g Carleton

Concurrency-Related Issues

e culture : "we do It this way here"
—legacy
—tools at hand

e designer's artistic creation
— experience, problem solving

—"on a previous project, a similar
problem was solved by . . . "

Jan 7, 2014 ‘g Carleton

What SYSC 5701 Is

e concerned with using a to help
reduce the development challenges for real-time
applications

® primary concern: designer’s perspective!
e simplifying the implementation of concurrency

e hide some machine detalls
e use “standard” process model

e simplifying the mapping of concurrency Iin
requirements onto concurrency in implementation

Jan 7, 2014 fﬂ Carleton

S UNMIVERSITY

Lamport on Concurrency
(2009)

“Education is not the accumulation of facts. It
matters little what a student knows after
taking a course. What matters is what the
student is able to do after taking the course.

I've seldom met engineers who were
hampered by not knowing facts about
concurrency. I've met quite a few who lacked
the basic skills they needed to think clearly
about what they were doing.”

Jan 7, 2014 fﬂ Carleton

So ... Why are you Here?

o |F

Education I1s not the accumulation of facts. It

matters little what a student knows after

taking a course. What matters is what the

student is able to do after taking the course.
e THEN:

What will you be able to do after completing a
graduate degree?

What do you think a professor would answer?

Jan 7, 2014 ‘g Carleton

