
1. From Department HomePage:
http:://www.sce.carleton.ca

2. Pick Course Materials (on left)

Course Web Page New Students?

3. Pick SYSC 5701
http://www.sce.carleton.ca/dept/sce.php/courses/sysc-5701

protected content: user: sysc-5701
password: rtos

Jan 7, 2014 1

SYSC 5701
Operating System Methods
for Real-Time Applications

Motivation

Winter 2014

Broad Background

� systems concepts, computer systems
� time
� software engineering: development, design
� concurrency

Jan 7, 2014

� concurrency
� interrupts

3

System

� a set of components that interact to
accomplish an objective

� can be applied to just about anything! ☺☺☺☺

Jan 7, 2014

� can be applied to just about anything! ☺☺☺☺

4

Uniprocessor Computer
System

Computer System

Processor Memory I / O

External

Programmable!

Jan 7, 2014

� Objective : involves maintaining input/output
relationships at the I/O / External interface

Bus

External
Devices

&
Systems

5

Variations: Multiprocessor

� more than one processor � shared bus
� processors share global resources
� a processor may also have private local

resources connected via a secondary

Jan 7, 2014

resources connected via a secondary
(private) bus structure

(not shown below)

multicore !!

6

Multiprocessor (con’t)

Processor
1

Memory I / OProcessor
N

External
Devices

&
Systems

•••

Jan 7, 2014

processors
share memory
and I/O via bus

Bus

multicore !?!

7

Variations: Network
� computer subsystems interconnected via

I/O components
� subsystems do not share resources via

shared bus
� sharing a resource is more complicated!

Jan 7, 2014

� sharing a resource is more complicated!
� requires co-operation of subsystems

� subsystems co-operate to accomplish
network-wide objective

8

Network (con’t)

Computer SubSystem 1

P M I/O

Computer SubSystem 2

I/O M P

subsystems must
communicate to co-operate

shared
resources?
program?

Jan 7, 2014

Computer SubSystem 3

P M I/O
System (Network)

Objective

9

Real-Time Systems

Objective :

Computing
System

External
Devices

and
Systems

Jan 7, 2014

Objective :
� maintain time-constrained input/output

relationships between computing system and
external devices/systems

� How should these be described ?

10

(Typical) Hard vs. Soft
Real-Time

� Hard Real-Time
– failure to meet time constraints is catastrophic
– recovery may be difficult, or futile
– e.g. reactor melt-down, plane crash, loss of life

�
Safety

Jan 7, 2014

� Soft Real-Time
– occasional failure to meet time constraints is

inconvenient but not catastrophic
– try again, or be patient
– e.g. no dial tone, lost voice packet

Critical

11

Describing Systems
� Requirements : specify the objectives

in terms of behaviour at the interface to
the external devices/systems

Computing
System

External
Devices

and

Jan 7, 2014

� Implementation : describes how the
computing system is utilized to meet the
requirements

� Why is it useful to describe both? What
is a system “design”?

12

System and
Systems

Requirements vs.
Implementation

� “ Ideally ” : the requirements are
independent of the implementation

� Abstraction engineering

Computer System

Jan 7, 2014

Computer System

Bus

Processor Memory I / O
External
Devices

&
Systems

13

Concurrent Activities

� are in progress at the same time
� dependent activities : interact to

complete a higher objective
� independent activities : do not interact

Jan 7, 2014

� independent activities : do not interact

May have concurrency in the
requirements behaviour and in the
implementation

14

Stream-2-Pipe Example

A

B

C

D

Pipe1

Pipe2

Jan 7, 2014

concurrent activities at interface:
� input (slow) data streams: A, B, C, D
� output (fast) data pipes: Pipe1, Pipe2

15

Example (con’t)

A

B

C

D

Pipe1

Pipe2

Jan 7, 2014

� streams A and B are
compressed/multiplexed into stream Pipe1

� streams C and D are
compressed/multiplexed into stream Pipe2

16

Example (con’t)
Concurrency at requirements level:
� A , B & Pipe1 are dependent activities
� C , D & Pipe2 are dependent activities
� { A , B , Pipe1 } activities are

Jan 7, 2014

� { A , B , Pipe1 } activities are
independent of { C , D , Pipe2 } activities

Concurrency in implementation ?
How might the system be implemented?

17

Concurrency in Physical
Implementations

� real concurrency: active h/w
components that operate in parallel to
support concurrent activities
– e.g. processors, active I/O components

Jan 7, 2014

– e.g. processors, active I/O components

� apparent concurrency: active devices
are shared to give the impression (over
time) that external activities are being
carried out concurrently

18

Important Distinction!
� concurrency in requirements is part of the objective

– cannot be altered by design decisions
� concurrency in implementation is a design decision

– not imposed by requirements

Jan 7, 2014

As a result: Concurrent activities in requirements
are often at a different granularity than concurrent
activities in implementation.

19

Design for Concurrency
� mapping concurrency in requirements onto

implementation resources is a design decision
– goal : allocation of system (implementation)

resources to achieve concurrency in requirements

many tough design issues here!

Jan 7, 2014

� many tough design issues here!
(more later!)

20

Development Problem:
requirements/implementation gap

Requirements

req / impl the larger the gap,
the greater the

designers must
worry about how
requirements are

no implementation details

Jan 7, 2014

Physical
Implementation

req / impl
gap the greater the

development
challenge

requirements are
realized by the
implementation

so many implementation
details that requirements
may be obscured

21

To reduce/manage the
requirements/implementation gap :

� introduce an intermediate level between
requirements and implementation
– resides “above” implementation

� virtual machine: deals with concurrency explicitly!

Jan 7, 2014

virtual machine: deals with concurrency explicitly!
� introduce an abstract process model
� design implementation in terms of the process model
� operating system provides process model support

22

Modified Development Problem:
reduced

requirements/implementation gap

Requirements

smaller
req / impl

application
designers

Jan 7, 2014

Implementation

req / impl
gap !!

Process Model Impl.

o/s implements
this!

designers
worry about

this

e.g.:
WindRiver
QNX
FreeRTOS
many more

23

Before & After

Requirements Requirements

reduced

Jan 7, 2014

Physical
Impl.

Impl.

Process Model
Impl.

reduced
design
concern!

24

What SYSC 5701 Is ….
� concerned with using a process model to

help reduce the development challenges for
real-time applications

� primary concern: designer’s perspective !
� Goals:

Jan 7, 2014

– simplify the implementation of concurrency
– hide some machine details
– use “standard” process model
– simplify the mapping of concurrency in

requirements onto concurrency in
implementation

25

What SYSC 5701 Is Not ….

� NOT concerned with particular real-time
applications

� NOT about Linux or Windows

Jan 7, 2014 26

So . . . what’s so hard
about concurrency? ☺☺☺☺

� event-driven vs. sequential mindset
� interference – shared resources
� synchronization – mutual exclusion,

coordinate progress

Jan 7, 2014

coordinate progress
� communication among concurrent

activities
– for application purposes & synchronization

Will elaborate on these in the rest of these slides

27

Sequential Mindset

� control is managed sequentially
– only one thread of control

� hardware/state is polled to decide when
to perform work

Jan 7, 2014

to perform work
� response to events depends on when

event sources are polled

28

Sequential Mindset: Polling

General form of polling-only
implementation:

loop (forever)

Jan 7, 2014

loop (forever)
{

poll for next event/work to do
process events/work as needed

}

29

Polling & Priority

� for polled events, can often give work
relative priorities

� e.g. poll all devices and decide on

Jan 7, 2014

processing order
� higher-priority work: performed a.s.a.p.

– e.g. service I/O hardware
� lower-priority work: after higher-priority work

30

Timing Example:

� suppose a h/w timer is being used to
implement a displayed clock

� h/w timer “tick” every millisecond
– can poll for tick

Jan 7, 2014

– can poll for tick
� update display clock every second

31

Polling Approach

poll h/w timer
if (tick)
{ count++;

if (count = = 1000)

Jan 7, 2014

if (count = = 1000)
{ count = 0; }

update display;
}

32

Priority in Timer Example

� manipulating count is higher-priority processing
� failure to sense every tick = lost time !
� must poll "often enough" to sense all ticks

Jan 7, 2014

� update clock display is lower-priority processing
� could be delayed “a bit” in favour of higher-priority

processing

33

Event-Driven Mindset:
H/W Interrupts

� high-priority processing performed by h/w
Interrupt Service Routines (ISRs)

� h/w generates interrupt (signal) when event
occurs

Jan 7, 2014

occurs
– e.g. h/w timer tick

� signal causes processor to execute ISR
– no s/w involved in invocation of ISR!

If you don’t recall about interrupts – be sure to read about them in any
microprocessor system text! See doc link on wepage.

34

ISR Related Control Flow

1. current s/w state is saved on stack
(registers: including status (e.g. flags) and
program counter)
���� the current software is suspended!

Jan 7, 2014

���� the current software is suspended!
(interrupted! pre-empted!)

2. ISR runs
3. prior state (1) is restored and s/w continues

35

If you don’t recall about interrupts – be sure to read about them in any
microprocessor system text! See doc link on wepage.

Interrupt & ISR

� Similar to a h/w invoked function call

s/wx running ISR runs s/wx running

h/w interrupt signal

save s/wx state restore s/wx state

time

Jan 7, 2014

� Similar to a h/w invoked function call
� NO s/w involved in invocation!!
� interrupted s/w (s/wx) does not “know” it was

momentarily suspended or that the ISR
executed! (i.e. that s/wx was pre-empted)

36

Event-Driven Mindset:
Interrupts & Concurrency

� processor is shared between the threads
of control associated with ISRs and the
sequential thread of the main program
– shared processor = virtual concurrency

Jan 7, 2014

– shared processor = virtual concurrency

� h/w interrupts are asynchronous
– the result of the actions of active hardware

devices

� ISRs run due to h/w event handling, not due
to sequential s/w sensing of events!

37

To use Interrupt-Driven
Approach:

� place high-priority processing in ISRs
� place low-priority processing in main

(sequential) program
� ISRs and main must communicate

Jan 7, 2014

� ISRs and main must communicate
� main requests that high-priority work to be

performed by ISRs
� ISRs inform main of completed work
� communicate using shared variables

38

Recall Previous Timer
Example

high priority work

put in ISR
(no poll!)

poll h/w timer
if (tick)
{ count++;

Jan 7, 2014

low priority work put in
main

where to put ?
share count ?

39

if (count = = 1000)
{ count = 0; }

update display
}

Timer Example Revised
Suppose ISR and main share: boolean SECOND
� in ISR : count ++;

if (count = = 1000)
{ count = 0;

SECOND = TRUE; }

count is not
shared

Jan 7, 2014

SECOND = TRUE; }
� in main :
poll: if (SECOND)

{ SECOND = FALSE;
update display }

shared variable
initial value =

FALSE

40

Recall (Half of)
Stream–2–Pipe Example:

Pipe
Stream A

Stream B

Jan 7, 2014

� suppose streams and pipe are services by h/w
ISRs:
– ISRA – receives a Data packet of Stream A data
– ISRB – receives a Data packet of Stream B data
– ISRP – transmits Pipe packets

41

Stream–2–Pipe Communication
� ISRs share a queue (Packet_Q) to exchange packets
� ISRA and ISRB produce packets as they are

received
� when packet of data is received it is put in Packet_Q
� ISRP consumes packets by transmitting them

Jan 7, 2014

� ISRP consumes packets by transmitting them
� when ISRP is idle, it gets a packet from Packet_Q
� instance of classical producer/consumer problem

used widely to illustrate
operating system issues

42

packet

Stream–2–Pipe:
Pictorial Representation

ISRP
Packet_Q

ISRA

packet packet

h/w A

pipe
h/w

data

data

data

packet
packet

data

Jan 7, 2014

ISRB

packet

h/w B

data

packet

43

Delays?

Issues to Expose:
SYNCHRONIZATION

� among concurrent activities
� e.g. transmit on pipe cannot proceed

without data from streams
– pipe transmission must wait for work

Jan 7, 2014

– pipe transmission must wait for work

� frequent requirement in concurrency!

44

Issues to Expose:
Buffer Management

� how do ISRA and ISRB obtain empty packet
buffers for receiving packets?

� what does ISRP do with an empty packet
buffer after transmitting a packet?

Jan 7, 2014

buffer after transmitting a packet?
� static vs. dynamic schemes?
� what happens if no buffers/memory available?

45

Issues to Expose:
INTERFERENCE

Potential for INTERFERENCE:
� concurrent activities share Packet_Q

INTERFERENCE occurs when

Jan 7, 2014

INTERFERENCE occurs when
simultaneous concurrent activities
corrupts a shared resource
– modification is concurrent with “other”

access

46

Critical Sections
� a region of code that has the potential to

cause interference is called a
critical section

� the existence of a critical section does not
guarantee interference – often depends

Jan 7, 2014

guarantee interference – often depends
on specific access sequences and timing

� interference may not show up in testing !
– hard to debug!

47

Example: consider a static array
implementation of Packet_Q

circular Q: (data structure)
� Head and Tail pointers (indices)
� remove @ Head

Tail points to next available array element

Jan 7, 2014

� Tail points to next available array element
� when reach end of array, wrap to start:

index = (index + 1) mod Q_size

48

Data Declarations
Q_Size = ***** ; // some constant

Packet_Q :
array [0 .. Q_Size – 1] of packet_buffer ;

Head : integer ; // index of packet to remove

Jan 7, 2014

Head : integer ; // index of packet to remove

Tail : integer ; // index of next free array element

Count : integer ; // # of packets in Packet_Q

SHARED data!

49

Initial Values & Empty() Method

Initially:
Head = 0;
Tail = 0;
Count = 0;

Jan 7, 2014

Count = 0;

boolean Empty () { return (Count = = 0) ; }

50

Add Method

Add (P : packet_buffer)
{ if Count >= Q_Size

{ /*exception! Q full! */ exit ; }
Packet_Q [Tail] = P ;

Jan 7, 2014

Packet_Q [Tail] = P ;
Tail = (Tail + 1) mod Q_Size ;
Count = Count + 1 ;

} NOTE: puts P in Q before
adjusting Tail or Count !

51

Remove Method

Remove (var P : packet_buffer)
{ // assume Count > 0

P = Packet_Q [Head];
Head = (Head + 1) mod Q_Size;

Jan 7, 2014

Head = (Head + 1) mod Q_Size;
Count = Count – 1;

} NOTE: removes P from Q before
adjusting Head or Count

52

Scenario
in a uniprocessor implementation, suppose:
� ISRA and ISRB finish receiving packets at

approx. the same time
� independent reception – no interference

Jan 7, 2014

� both may attempt to access Packet_Q.Add
concurrently

� accessing shared resource!

53

Add Method Details

� suppose ISRA calls Add first and is executing:
Packet_Q [Tail] = PA ;
Tail = (Tail + 1) mod Q_Size ;

� suppose the compiled implementation of the 2nd

line is:

Jan 7, 2014

line is:
temp = Tailold ; // temp might be a register

temp = temp + 1 ;
temp = temp mod Q_Size ;
Tailnew = temp ;

54

ISRB Interrupts ISRA!

� suppose ISRA has executed:
Packet_Q [Tailold] = PA ;
tempA = Tailold ;

and is about to execute:

Jan 7, 2014

and is about to execute:
tempA = tempA + 1 ;

when an interrupt occurs and ISRB
begins to run

55

Data Corruption!

� when ISRB runs, ISRA has placed a packet
in Packet_Q , but has not yet modified Tail
and Count

� ISRB will overwrite the packet just added
by ISRA, then adjust Tail, and then

Jan 7, 2014

by ISRA, then adjust Tail, and then
increment Count

� when ISRA resumes it will finish adjusting
Tailold , and then increment Count

56

Interference!

net result: (after both ISRs complete)
� lost packet PA originally added by ISRA

– overwritten by PB added by ISRB
� Tail is still correct (for the packets in Q)

Jan 7, 2014

� Tail is still correct (for the packets in Q)
but Count is corrupted (too large by one)

� Are there other interference problems?

57

Other Potential Interference

� Add / Remove concurrently
– potential interference with Count

� concurrent Add when only one space
left in Packet_Q

Jan 7, 2014

left in Packet_Q
– both calls could pass the “full” test

before incrementing Count
– overwrite a valid packet & increment

Count beyond Q_Size

58

Race vs. Interference

� race : two concurrent activities have begun
the process of accessing a shared resource

� one activity will get there first!
� a race is due to sharing resources, but a race

Jan 7, 2014

� a race is due to sharing resources, but a race
(by itself) does not corrupt the resource

� race conditions are a common occurrence
in event-driven systems

59

Critical Section Protection
� ensure mutually exclusive access to relevant

shared resource(s)

Uniprocessor Solution :
� disable interrupts while processing critical sections

Jan 7, 2014

� disable interrupts while processing critical sections
� keep critical sections short!
� which interrupts should be disabled?

– all?
– only those with potential to interfere?

60

Uniprocessor Solution

Common solution:
disable;

critical section // protected!

enable;

Jan 7, 2014

enable;

e.g.
disable;

Packet_Q.Add (myP)
enable;

61

What about a
Multiprocessor Solution ?

� recall stream-2-pipe example:
– suppose the ISRs are implemented on

independent processors & share memory
disabling ints on one processor won't stop

Jan 7, 2014

– disabling ints on one processor won't stop
interrupts on other processors!

Processor A

Processor B
Packet_Q

A

B

ISRA

ISRB

62

Multiprocessor Solution

� use busy waiting and shared variables
to ensure mutual exclusion
– busy waiting �
– wastes CPU time!

Jan 7, 2014

– wastes CPU time!
� keep critical sections short ☺

– minimize wasted time

63

Busy Waiting (Version 1)

share a boolean variable Busy
TRUE = = resource is busy
FALSE = = resource is available

Jan 7, 2014

Lock (var Busy : boolean)
{ while (Busy) { } // wait until available

Busy = TRUE; // indicate resource busy

}

64

Busy Wait (version 1)

� PROBLEM! non-atomic Lock !
� more than one processor could pass busy

wait loop before setting Busy = TRUE
� each would proceed assuming mutually

Jan 7, 2014

� each would proceed assuming mutually
exclusive access to resource

while (Busy) { }
Busy = TRUE;

both processors
could reach here
before either sets
Busy = TRUE

65

� use h/w enforced atomic operation to read
and modify Busy

� Test-And-Set TAS
� functional syntax:

old_value TAS (variable, new_value)

Busy Wait (Version 2)

old_value TAS (variable, new_value)
� returns original value of variable (old_value),

and sets variable to new_value
� typically locks system bus for duration of

instruction

Jan 7, 2014 66

No Problem!
(as long as hardware supports TAS ☺☺☺☺)

myLock (var Busy : boolean)
{

while (TAS (Busy, TRUE)) { }
}

atomic operation

Jan 7, 2014

}

� Software-only solutions (no TAS) also exist
for multiprocessor systems
e.g. Lamport's bakery algorithm

atomic operation

67

Summary of Motivation (1)

� concurrency has inherent difficulties:
– potential for interference
– need for synchronization of activities

Jan 7, 2014

– need for synchronization of activities
– need for communication among

activities
– race conditions (event-driven reality!)

68

Summary of Motivation (2)

� concurrent activities can arise in the
requirements of an application
– i.e. the system must support more

than one input/output relationship

Jan 7, 2014

than one input/output relationship
concurrently

� concurrency in an implementation is the
result of design decisions

69

Concurrency-Related Issues (1)

� mindset :
sequential (polling) vs.
event-driven (interrupts, multiprocessor)

� priority : some activities are high-priority,

Jan 7, 2014

� priority : some activities are high-priority,
while others have lower-priority

� h/w : determines extent of concurrent
capabilities of components

70

Concurrency-Related Issues (2)

� culture : "we do it this way here"
– legacy
– tools at hand

� designer's artistic creation

Jan 7, 2014

� designer's artistic creation
– experience, problem solving
– "on a previous project, a similar

problem was solved by . . . "

71

What SYSC 5701 Is ….
� concerned with using a process model to help

reduce the development challenges for real-time
applications

� primary concern: designer’s perspective!
� simplifying the implementation of concurrency
� hide some machine details

Jan 7, 2014

� hide some machine details
� use “standard” process model
� simplifying the mapping of concurrency in

requirements onto concurrency in implementation

72

Lamport on Concurrency
(2009)

“Education is not the accumulation of facts. It
matters little what a student knows after
taking a course. What matters is what the
student is able to do after taking the course. student is able to do after taking the course.
I've seldom met engineers who were
hampered by not knowing facts about
concurrency. I've met quite a few who lacked
the basic skills they needed to think clearly
about what they were doing.”

Jan 7, 2014 73

So ... Why are you Here?
� IF

Education is not the accumulation of facts. It
matters little what a student knows after
taking a course. What matters is what the
student is able to do after taking the course.

� THEN:� THEN:
What will you be able to do after completing a
graduate degree?
What do you think a professor would answer?

Jan 7, 2014 74

