Operating System Methods
for Real -Time Applications

Monitors

Winter 2014

Motivation for Monitors

e Conflicting goals in real-time systems:
application-specific behaviour vs.
generic kernel support for process model

e Kernel may introduce unnecessary overhead
e Access to shared resources often involves

passing synchronization gates to ensure
access Is possible (semaphore overhead)

e Every Walit call includes: call to o/s service
and return =2 even If the Wait does not result
In becoming blocked!

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Recall Stream-2-Pipe Example

o & sema4s

e only really necessary to “wait” under certain
conditions (no space OR no packets)

e If conditions could be “known” then could decide to
walit only when necessary

e only call sema4 services when necessary? ©

e Could some application-specific process
management improve efficiency ?!

(reduce overhead)

s> \1ONI|TOR !

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Monitors
e application-specific protected services

e protected layer between kernel and rest of
application
— encapsulates critical section

e access only via entry procedures

mutually exclusive

Consistent state!

Feb 6, 2014 @ Carleton

e UNIVERSITY

Monitors

e allow reduction in use of kernel services
— lower overhead ©
— require careful design ®
— mutex at all times! — crafty!

e {0 satisfy mutex constraint:

9

— If sema4s used, will need sema4 op:
walit_and_signal (,

Feb 6, 2014 g% Carleton

— UNIVERSITY

Generalized State Changes
for Process In Monitor

Assume semad4: . signal

mutex
mutex
Protects monitor
waiting for

mutex

) signal
~~ blocked

\signal

— self transitions — action of mutex

active process

Process

forced transitions — caused blolc;ked on4
by other processes appl sema

v

. effect the state of
other processes!

Feb 6, 2014 g% Carleton

e’ UNIVERSITY

Recall Semaphore-Based
Synchronization Example

® PrOteCted_ tO Q included sema4s to check
® PrOteCted_ frOm Q full/lempty in every call

e consider monitor implementation structures:
— :semad = 1,; /[as before

— will Include 2 more sema4’s (as before), will
only wait/signal

e frequent case: wait/signal mutex only
— non-blocking - no other sema4s involved!

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Q Full Objects

:sema4d = 0;
/I similar to before,
/[walt here only when no space in Q

. Integer = 0;
/] -> local count of depth of want_space’s
/] l.e. value = # processes currently
/[walting at want_space

Feb 6, 2014 g% Carleton

— UNIVERSITY

Q Empty Objects

: sema4 = 0;
/[wait here only when no work
. Integer = 0;
/| value = # currently waiting at want_work

. Integer = 0;
// value = # of packets currently in Q

Feb 6, 2014 g% Carleton

Monitored Add (P: packet buffer)

{ . Walt; /]
If work iIn Q == Q_Size // nospace — must wait!
{ waiting_4 space = waliting_4 space + 1;
mmm) Walt and signal (,
/[new process enters monitor

/] If add — ends up waiting here too, OR

/] If remove — will free up a space, and then
/] signal want_space!
} /] process gets here eventually (

/[(continued on next slide ...)
Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Monitored Add (P : packet_buffer)
con’t

/[add to Q
work in_ Q = work In_ Q + 1;
/[either signal a waiting process,
/[or let In a new process
If waiting 4 work > 0O
{ waiting_ 4 work = waiting_4 work — 1;
. Signal ; //

Kev |l leave without signaling mutex !! |

Signal } //

} // DONE!

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Monitored Remove (var P:
packet buffer)

{ . Walt;
If work in Q == /]
{ waiting_4 work = waiting_4 work + 1;
wait_and_signal (,);

}

, /[l remove from Q
work in_ Q = work In_ Q — 1;
/[(continued on next slide ...)

Feb 6, 2014 g% Carleton

Monitored Remove (var P : packet_buffer)
con’t

If waiting_4 space > 0 // process waiting?
{ waiting_4 space = walting_4 space — 1,
. Signal ;
>KEY> // release process waiting for space —

} else
{ . Signal }

Feb 6, 2014 g% Carleton

— UNIVERSITY

Non-Blocking Scenario

e packets in Packet Q, but Packet Q not full

e can Add or Remove
— no need to block while In monitor

e suppose Remove in process(d)
e new Add request is blocked at (2)
e complete scenario involves only

Feb 6, 2014 g% Carleton

Remove Is Active Process

\

blocked on
appl? semad

Remove

aiting fo
ute

Add

blocked on

n
Feb 6. 2014 appl? semad

Remove Done — Release Add

_mutex.Signal ;

/| done — leave

aiting fo —_—
mutex e

aiting for T
utex
Add ‘
blocked on
Feb 6, 2014 applt semaz

Blocking Scenario

e Packet Q empty
e Remove begins > active (1)
e Add begins — initially blocked 2)
e Remove — nothing to get
- blocks and releases Add (3) (4)
e Add — enqueues packet and releases

Remove (5)(6)

Feb 6. 2014 g% Carleton

Only One Active Process

U @ -

Remove

blocked on
/ applt sema4
aiting for |- .
utex
Add

blocked on
Feb 6, 2014 appl” semad

Still Only One Active Process

Remove

wait_and_signal (

= blocked on
el appl? sema4
aiting for Y.
utex

blocked on
Feb 6, 2014 appl” semag

Add

Remove “Owns” Mutex

-~

l/v
/s

/s

/s

e

Remove
ute

p’ blocked on
e appl? semal

@ want_work . Signal
// done — leave

mute
Add ‘
appl? sema4
Feb 6, 2014

Limitations In this Style of
Monitor

e active process can only release (at most)
one process blocked on an appl? sema4

® active process must leave monitor after
releasing a blocked process

e too simplistic ?

Feb 6, 2014 g% Carleton

— UNIVERSITY

Manager-Style Monitor

e release many blocked processes and stay active ©

e process must leave as soon as unblocked ® 00’7&

waiting for
mutex

signal
mutex

\ .
\signal
mutex

blocked on \
appl? sema4

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

process

I signal blocked

Mediator-Style Monitor

e Wwhen active process unblocks a process
from an appl? sema4 gives up the right to
execute (but stays in monitor!)

— Block on
® |.e., process executes:
walit_and_signal (,
)

e pending processes are given preference
over those waiting for mutex

Feb 6. 2014 g% Carleton

— UNIVERSITY

Mediator

similar to
ready to run
pending and running

-
-
-
-
-

signal blocked -~
process -~

-

¥ waiting for

signal pending
or mutex

signal pending
or mutex

blocked on
appl? semad

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

GIadiator-Ster Monitor

what'’s this?-_

~

"> move one from

¥ waiting for Slgnal eligible or mutex
mutex

signal eligible or mutex

eligible blocked on
Y appln sema4

™ how?
Feb 6, 2014 g% Carleton

e’ UNIVERSITY

Gladiator

e How Is this different from Mediator?

e hmm ... might be sort of complicated for
an average programmer to implement,
but might be a good model for a
thread manager?? ©

Different from kernel?
No concern for Interrupts!

Feb 6, 2014 g% Carleton

— UNIVERSITY

Issue In Gladiator

how to “move ” a process from blocked on an

applt sema4 to blocked on eligible sema4?

e sema4-to-sema4 transfer operation? nope! ®

e unblock process to run briefly and move itself?
— processes in monitor? &

o do a context switch then run only long enough
to block again (another context switch!)

e sSeems like a waste of overhead! ®

Feb 6, 2014 g% Carleton

— UNIVERSITY

Resolving Gladiator Issue

monitor could do some process management
e each process in monitor has associated record

e contains at least:
— I1d of * "semad (unique for each process)
— Plus: process id? priority? appl? info?

® process record could be created as a local variable
(In process’ stack) when process enters monitor

— process always has access to it

Feb 6, 2014 g% Carleton

— UNIVERSITY

Queues of Process Record Ptr's

e monitor maintains queues of process record ptr’'s
e Wwhen active process wants to block itself and
release another process:

1. puts record ptr in an appropriate queue

2. decides what process to release — gets process record
ptr from queue — now can access the “ ” semad of
the process to be released

walit_and_signal (, Il block itself
) /] release chosen process

Feb 6, 2014 g% Carleton

— UNIVERSITY

Move Record Ptr vs. Run

e processes block on their “ " sema4s
e monitor code decides when to release them

® can move process records among “blocking”
gueues without having process run !!!

e selection of process to release can include
Info stored In process records

Feb 6, 2014 g% Carleton

— UNIVERSITY

Gladiator Monitor
Skeleton Code

create OwnRecord - includes:
/[enter protected section:
. Walit
/[active:
do some processing
decide to block in BlockedQ
put pointer to OwnRecord In BlockedQ

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Skeleton Code

decide which process to run
if ! (EligibleQ . empty)
{ dequeue NextP from EligibleQ
walit_and_signal (
NextP -
} else /I EligibleQ is empty
{ wait_and_signal (

etc ... do this after becoming unblocked

What to do when leaving monitor?
Feb 6, 2014 g% Carleton

— UNIVERSITY

con’t

©

Another Solution (Gladiator)

Suppose the kernel supports the notion of a
“Sleeping” process:
e while sleeping, process is not eligible to run
® sleeping process is not in a blocking queue
e simpler than sema4 mechanism
e casy to Iimplement:
— = new process state in kernel
— when process Is “awakened”, It Is ready to run

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Sleep Services

sleep _and_signal ()

puts calling process to sleep and
signals the specified

sleep_and awaken (process id)

puts calling process to sleep and
awakens the specified process

mylD()

returns process ID of caller

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Revised Gladiator
Using Sleeping
create OwnRecord — includes process’ ID
/[enter protected section:
. Walit
/[active:
do some processing

decide to block in BlockedQ
put pointer to OwnRecord In BlockedQ

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Revised Skeleton Code
con’t
decide which process to run
if ! (EligibleQ . empty)
{ dequeue NextP from EligibleQ
sleep_and awaken (NextP - ProcessID)
} else [/ EligibleQ is empty
{ sleep_and_signal () }
etc ... do this after becoming unblocked ©

less kernel overhead — “sleeping ” is more
efficient than semaphore “blocking ”

Feb 6, 2014 @ Carleton

e UNIVERSITY

Example: Manager-Style
Timed Resource Monitor

e allow processes to request a resource
e resource Is allocated based on process priority
® processes specify a maximum waiting time

e If resource Is obtained within specified time, then
release process with “success” return-code

e If resource not available in time, then release
process with “timeout” return-code

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Recall: Manager-Style Monitor

signal
waiting for “
mutex

mutex
signal

mutex

process

| signal blocked

blocked on \
appl" semad

e release many blocked processes and stay active ©

 process must leave as soon as unblocked ®

Feb 6. 2014 g% Carleton

— UNIVERSITY

Kernel Support

Need kernel services .
e myPriority ()

returns priority of calling process
e awaken (process id)

awakens the specified process

Feb 6. 2014 g% Carleton

Monitor Entry Procedures:

REQ(maxTime : integer; var rtnCode : enum)
request resource: specify max. wait time in “ticks”

REL release resource

TICK called once every “tick” by a timer process
(application driver ... accesses mutex semad &
may awaken processes)

Feb 6. 2014 g% Carleton

— UNIVERSITY

Resource Monitor

myPriority

kernel services

Feb 6, 2014 ﬂ Carleton

- UNIVERSITY

Internal Issues

® mMust manage waiting processes
— sema4’s won't do!
— priority vs. FIFO walt
— timeout release In arbitrary order

Solution : maintain list
— list of processes In descending-priority
— highest priority first

Feb 6, 2014 g% Carleton

— UNIVERSITY

Each Process has ProcRec
record

e priority :integer; [/ processes priority

e id :run-time_id; // processes id

e (icksleft :iInteger; //time left to wait

e var result : enum; // ptr to return code variable
e next : ProcRecPtr; // used for list management

Feb 6, 2014 ﬂ Carleton

UNIVERSITY

Monitor’'s Persistent Variables

. boolean ;
/[true Iff resource Is available
/[Initial value? true? false until first REL?
. ProcRecPtr = NULL,;
// ptr to Waiting list

semad = 1;: // mutual exclusion

Feb 6, 2014 g% Carleton

— UNIVERSITY

Monitor Code: REQ

REQ(. Integer; var . enum)
{ . ProcRec; // local var
. Wait; // gain mutex
/| easy — allocate immediately!
= false;
= SUCCESS;
. Signal,
} /| DONE! (easy case)

Feb 6, 2014 g% Carleton

— UNIVERSITY

Walit Case

else // not Available: must wait for resource
{ [/linitialize ProcRec for waiting

Proc
Proc
Proc
Proc
Proc

Feb 6, 2014

RecC .
RecC .
RecC .
RecC .
RecC .

priority = myPriority() ;

id =mylID();

ticksleft = :

CRIE . I/ copies ref
next = NULL;

s Carleton

UNIVERSITY

Wait Case
con't
/[priority insert ProcRec into Waiting list

/[walt for resource, open mutex gate
sleep _and_signal ();
/[eventually — will be awakened:
/[all done! — either obtained resource, or
// timed out — rtnCode contains result
/[Manager-style: leave monitor!
} /I end of else (walt case)
} /I end of REQ

Feb 6, 2014 g% Carleton

— UNIVERSITY

Monitor Code: REL

REL // no param’s

{ P :ProcRecPtr; //local var
. Wait; // gain mutex
== NULL // none waiting — easy!
= true; }

Feb 6, 2014 g% Carleton

— UNIVERSITY

Awaken Case (In REL)

else /[awaken from front of Waiting list
{ P =dequeued ptr from Waiting list ;
P - result = success; // allocate resource!
awaken (P - id);
/] remains false!
}
. Signal;
} I/l end of REL

Feb 6. 2014 g% Carleton

— UNIVERSITY

Monitor Code: TICK

. ProcRecPtr; // local var
. Wait; // gain mutex
/[traverse Waiting list — manage timouts
for (= ; = Cur - next, 1= NULL)
{ - ticksleft = - ticksleft — 1;

Feb 6, 2014 g% Carleton

— UNIVERSITY

Time-Out Case

If - ticksleft = =
{ // remove timed-out process from Waiting list

- result =timeout ;
awaken (Cur - id); /I but stay Active
}
} /I end for loop
. Signal;

Feb 6, 2014 g% Carleton

— UNIVERSITY

