
SYSC 5701
Operating System Methods 
for Real -Time Applicationsfor Real -Time Applications

Monitors

Winter 2014



Motivation for Monitors
� Conflicting goals in real-time systems:

application-specific behaviour vs .
generic kernel support for process model 

� Kernel may introduce unnecessary overhead
� Access to shared resources often involves 
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� Access to shared resources often involves 
passing synchronization gates to ensure 
access is possible (semaphore overhead )

� Every Wait call includes: call to o/s service 
and return � even if the Wait does not result 
in becoming blocked!



Recall Stream-2-Pipe Example
� free_space &  packets_in_Q sema4s
� only really necessary to “wait” under certain 

conditions (no space OR no packets)
� if conditions could be “known” then could decide to 

wait only when necessary
only call sema4 services when necessary? ☺
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� only call sema4 services when necessary? ☺
� Could some application-specific process 

management improve efficiency ?!  
(reduce overhead)

MONITOR !



Monitors
� application-specific protected services
� protected layer between kernel and rest of 

application
– encapsulates critical section 

� access only via entry procedures
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� access only via entry procedures
� passive collection of procedures and data
� “mutex constraint”: must design such that 

mutually exclusive execution inside monitor

Consistent state!



Monitors
� allow reduction in use of kernel services

– lower overhead ☺

– require careful design �

– mutex at all times! – crafty! 

� to satisfy mutex constraint: 
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� to satisfy mutex constraint: 
� additional kernel service

– if sema4s used, will need sema4 op:
wait_and_signal ( wait_sema4 , sig_sema4 )



Generalized State Changes 
for Process in Monitor

waiting for
mutex

active
signal
blocked 

signal
mutex

Assume sema4: 
mutex

Protects monitor
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blocked on
appln sema4

blocked 
process

signal
mutexself transitions – action of 

active process 

forced transitions – caused 
by other processes 

effect the state of 
other processes!



Recall Semaphore-Based 
Synchronization Example

� Protected_Add to Q
� Protected_Remove from Q
� consider monitor implementation structures:

– mutex : sema4 = 1; // as before

included sema4s to check 
full/empty in every call
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– mutex : sema4 = 1; // as before
– will include 2 more sema4’s (as before), but will 

only wait/signal when necessary
� frequent case: wait/signal mutex only

– non-blocking � no other sema4s involved!



Q Full Objects
want_space : sema4 = 0;
// similar to before, BUT
// wait here only when no space in Q

waiting_4_space : integer = 0;  
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waiting_4_space : integer = 0;  
//  NEW � local count of depth of want_space’s
//     blocked_Q i.e.  value =  # processes currently
// waiting at want_space



Q Empty Objects

want_work : sema4 = 0;
// wait here only when no work
waiting_4_work : integer = 0;
//  value =  # currently waiting at want_work
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//  value =  # currently waiting at want_work

work_in_Q : integer = 0; 
// value = # of packets currently in Q



Monitored_Add (P: packet_buffer )
{ mutex . Wait;       // mutually exclusive access!

if    work_in_Q = =  Q_Size // no space – must wait!
{ waiting_4_space  =  waiting_4_space + 1;

wait_and_signal ( want_space ,  mutex );
// new process enters monitor

Slide 
6? 
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// new process enters monitor
// if add – ends up waiting here too, OR
// if remove – will free up a space, and then 
// signal want_space!

}  // process gets here eventually (owns mutex!)
// (continued on next slide …)



Packet_Q . Add( P ); // add to Q
work_in_Q =  work_in_Q +  1;
// either signal a waiting process, 
// or let in a new process
if  waiting_4_work  >  0
{ waiting_4_work  =  waiting_4_work  – 1;

Monitored_Add ( P : packet_buffer )
con’t
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{ waiting_4_work  =  waiting_4_work  – 1;
want_work . Signal ; // signal waiting process
// leave without signaling mutex !!

} else  {   mutex .Signal }  // let in a new process
}   // DONE!

KEY



Monitored_Remove (var P: 
packet_buffer )

{ mutex . Wait;
if  work_in_Q = =  0    //  must wait!
{ waiting_4_work  =  waiting_4_work + 1;

wait_and_signal ( want_work ,  mutex );
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wait_and_signal ( want_work ,  mutex );
}
Packet_Q . Remove( P ); // remove from Q
work_in_Q =  work_in_Q – 1;

// (continued on next slide … )



Monitored_Remove ( var P : packet_buffer )
con’t

if  waiting_4_space  >  0   // process waiting?
{ waiting_4_space  =  waiting_4_space  – 1;

want_space . Signal ; 
// release process waiting for space – mutex!?KEY
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// release process waiting for space – mutex!?
} else  

{ mutex . Signal }
}



Non-Blocking Scenario

� packets in Packet_Q, but Packet_Q not full
� can Add or Remove

– no need to block while in monitor

� suppose Remove in process 1
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� suppose Remove in process
� new Add request is blocked at mutex
� complete scenario involves mutex only

1

2



Remove is Active Process

waiting for
mutex

active

1

Remove
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Add

blocked on
appln sema4

waiting for
mutex

blocked on
appln sema4

active

2



mutex.Signal ;

// done – leave 

Remove Done – Release Add

waiting for
mutex

active

Remove
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Add

blocked on
appln sema4waiting for

mutex

blocked on
appln sema4

active



Blocking Scenario

� Packet_Q empty
� Remove begins � active
� Add begins – initially blocked 
� Remove – nothing to get 

1

2
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� Remove – nothing to get 
� blocks and releases Add

� Add – enqueues packet and releases 
Remove

3 4

65



Only One Active Process

waiting 
for

mutex

active

1

Remove
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Add

blocked on
appln sema4

waiting for
mutex

blocked on
appln sema4

active

2



Still Only One Active Process

waiting 
for

mutex

active

3

Remove

wait_and_signal ( want_work ,  mutex );
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Add

blocked on
appln sema4

waiting for
mutex

blocked on
appln sema4

active

4



Remove “Owns” Mutex

waiting for
mutex

active

6

Remove
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Add

blocked on
appln sema4

waiting for
mutex

blocked on
appln sema4

active

6

5 want_work . Signal ;

// done – leave 



Limitations in this Style of 
Monitor

� active process can only release (at most) 
one process blocked on an appln sema4

� active process must leave monitor after 
releasing a blocked process 
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releasing a blocked process 
� too simplistic ?



Manager-Style Monitor

signal 
mutex

• release many blocked processes and stay active ☺

• process must leave as soon as unblocked  �
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waiting for
mutex

active

blocked on
appln sema4

signal blocked 
processsignal 

mutex



Mediator-Style Monitor

� when active process unblocks a process 
from an appln sema4 gives up the right to 
execute (but stays in monitor!)
– Block on “pending_sema4”

i.e., process executes:
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� i.e., process executes:
wait_and_signal ( pending_sema4 , 

appl n_sema4)
� pending processes are given preference 

over those waiting for mutex



Mediator

signal blocked 
process

pending

similar to
ready to run
and running
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signal pending 
or mutex

waiting for
mutex

active

blocked on
appln sema4

signal pending 
or mutex



Gladiator-Style Monitor

� manages processes similar to kernel !?!?!

signal eligible or mutex

move one from 
blocked to eligible

what’s this?
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waiting for
mutex

active

blocked on
appln sema4

eligible

signal eligible or mutex

signal eligible or mutex

how?



Gladiator

� How is this different from Mediator?

� hmm … might be sort of complicated for 
an average programmer to implement, 

Feb 6, 2014 26

an average programmer to implement, 
but …. might be a good model for a 
thread manager??    ☺

Different from kernel?
No concern for Interrupts!



Issue in Gladiator

how to “move ” a process from blocked on an
appln sema4 to blocked on eligible sema4?
� sema4-to-sema4 transfer operation?  nope! �
� unblock process to run briefly and move itself?
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� unblock process to run briefly and move itself?
– 2 active processes in monitor?  �

� do a context switch then run only long enough 
to block again (another context switch!) 

� seems like a waste of overhead!  �



Resolving Gladiator Issue
monitor could do some process management
� each process in monitor has associated record
� contains at least:

– id of “ own ” sema4 (unique for each process)
– Plus: process id?   priority?   appln info?
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– Plus: process id?   priority?   appln info?

� process record could be created as a local variable 
(in process’ stack) when process enters monitor
– process always has access to it



Queues of Process Record Ptr’s
� monitor maintains queues of process record ptr’s
� when active process wants to block itself and 

release another process:
1. puts own record ptr in an appropriate queue
2. decides what process to release – gets process record 
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2. decides what process to release – gets process record 
ptr from queue – now can access the “own” sema4 of 
the process to be released

wait_and_signal ( “own” sema4 ,  //  block itself
sema4 from step 2 ) // release chosen process



Move Record Ptr vs. Run

� processes block on their “own” sema4s
� monitor code decides when to release them
� can move process records among “blocking” 

queues without having process run !!!

Feb 6, 2014 30

queues without having process run !!!
� selection of process to release can include 

info stored in process records



Gladiator Monitor 
Skeleton Code

create   OwnRecord – includes:    OwnSema4
// enter protected section:
mutex . Wait
// active:
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// active:
do some processing
decide to block in BlockedQ

put pointer to  OwnRecord in BlockedQ



Skeleton Code
con’tdecide which process to run

if    ! ( EligibleQ . empty )
{  dequeue NextP from EligibleQ

wait_and_signal (  OwnSema4 ,
NextP → OwnSema4 )
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NextP → OwnSema4 )
}  else   // EligibleQ is empty
{  wait_and_signal ( OwnSema4 , mutex ) }

etc …  do this after becoming unblocked    ☺
What to do when leaving monitor?



Another Solution (Gladiator)

Suppose the kernel supports the notion of a
“Sleeping” process:
� while sleeping, process is not eligible to run
� sleeping process is not in a blocking queue
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� sleeping process is not in a blocking queue
� simpler than sema4 mechanism
� easy to implement:

– sleeping =  new process state in kernel
– when process is “awakened”, it is ready to run



Sleep Services

sleep_and_signal ( sema4 )
puts calling process to sleep and

signals the specified sema4
sleep_and_awaken ( process_id )
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sleep_and_awaken ( process_id )
puts calling process to sleep and

awakens the specified process
myID( )

returns process ID of caller



Revised Gladiator 
Using Sleeping

create   OwnRecord – includes process’ ID
// enter protected section:
mutex . Wait
// active:
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// active:
do some processing
decide to block in BlockedQ

put  pointer to  OwnRecord in BlockedQ



Revised Skeleton Code
con’t

decide which process to run
if    ! ( EligibleQ . empty )

{  dequeue NextP from EligibleQ
sleep_and_awaken ( NextP → ProcessID )

}  else   // EligibleQ is empty
{  sleep_and_signal ( mutex ) }
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{  sleep_and_signal ( mutex ) }
etc …  do this after becoming unblocked    ☺

less kernel overhead – “sleeping ” is more 
efficient than semaphore “blocking ”



Example: Manager-Style 
Timed Resource Monitor

� allow processes to request a resource
� resource is allocated based on process priority
� processes specify a maximum waiting time
� if resource is obtained within specified time, then 
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� if resource is obtained within specified time, then 
release process with “success” return-code 

� if resource not available in time, then release 
process with “timeout” return-code 



Recall: Manager-Style Monitor

waiting for
mutex

active

signal 
mutex

signal blocked 
processsignal 
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blocked on
appln sema4

processsignal 
mutex

• release many blocked processes and stay active ☺

• process must leave as soon as unblocked  �



Kernel Support

Need kernel services :
� myPriority ( )

returns priority of calling process
� awaken ( process_id )
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� awaken ( process_id )
awakens the specified process



Monitor Entry Procedures:

REQ( maxTime : integer;  var rtnCode : enum )
request resource: specify max. wait time in “ticks”

REL release resource
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REL release resource

TICK called once every “tick” by a timer process 
(application driver … accesses mutex sema4 & 
may awaken processes)



Resource Monitor

REQ REL TICK

App Proc App Proc. . . Timer
Proc
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myPriority awaken

kernel services

etc…wait signal



Internal Issues

� must manage waiting processes
– sema4’s won’t do!
– priority vs. FIFO wait
– timeout release in arbitrary order
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Solution : maintain Waiting list
– list of processes in descending-priority 
– highest priority first 



Each Process has ProcRec
record

� priority : integer;    // processes priority
� id : run-time_id;     // processes id
� ticksleft : integer;   // time left to wait
� var result : enum;   // ptr to return code variable
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� var result : enum;   // ptr to return code variable
� next : ProcRecPtr;  // used for list management



Monitor’s Persistent Variables
Available : boolean ;   

// true iff resource is available
// initial value?    true?   false until first REL?

Waiting : ProcRecPtr = NULL;  
// ptr to Waiting list
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// ptr to Waiting list

Mutex : sema4 = 1;    // mutual exclusion 



Monitor Code: REQ
REQ( maxTime : integer;  var rtnCode : enum )
{ MyProcRec : ProcRec;  // local var

Mutex . Wait; // gain mutex
if  Available // easy – allocate immediately!
{ Available = false;
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rtnCode = success;
Mutex . Signal;

}  // DONE! (easy case)



Wait Case 
else  // not Available: must wait for resource

{ // initialize ProcRec for waiting
ProcRec . priority = myPriority( ) ;
ProcRec . id = myID( );
ProcRec . ticksleft = maxTime ;
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ProcRec . ticksleft = maxTime ;
ProcRec . result = rtnCode ;  // copies ref
ProcRec . next = NULL ;



Wait Case 
con’t

// priority insert ProcRec into Waiting list
// code omitted ☺

// wait for resource, open mutex gate
sleep_and_signal ( Mutex );
// eventually – will be awakened:
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// eventually – will be awakened:
// all done! – either obtained resource, or
// timed out – rtnCode contains result
//    Manager-style:  leave monitor!

}    // end of else  (wait case)
} // end of REQ



Monitor Code: REL
REL // no param’s

{ P : ProcRecPtr;  // local var
Mutex . Wait;    // gain mutex
if  Waiting == NULL  // none waiting – easy!
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if  Waiting == NULL  // none waiting – easy!
{  Available = true; }



Awaken Case (in REL)
else  // awaken from front of Waiting list

{ P = dequeued ptr from Waiting list ;
P → result = success;     // allocate resource!
awaken ( P → id );
//  Available remains false!
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//  Available remains false!
}

Mutex . Signal;
} // end of REL



Monitor Code: TICK
TICK
{ Cur : ProcRecPtr; // local var

Mutex . Wait; // gain mutex
// traverse Waiting list – manage timouts
for (Cur = Waiting;  Cur = Cur → next;  Cur != NULL )
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for (Cur = Waiting;  Cur = Cur → next;  Cur != NULL )
{ Cur → ticksleft =  Cur → ticksleft – 1;



Time-Out Case
if  Cur → ticksleft = = 0
{ // remove timed-out process from Waiting list

// code omited ☺

Cur → result = timeout ;
awaken ( Cur → id );   // but stay Active
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awaken ( Cur → id );   // but stay Active
}

}  // end for loop
Mutex . Signal;

}


