
SYSC 5701
Operating System Methods
for Real -Time Applicationsfor Real -Time Applications

Monitors

Winter 2014

Motivation for Monitors
� Conflicting goals in real-time systems:

application-specific behaviour vs .
generic kernel support for process model

� Kernel may introduce unnecessary overhead
� Access to shared resources often involves

Feb 6, 2014 2

� Access to shared resources often involves
passing synchronization gates to ensure
access is possible (semaphore overhead)

� Every Wait call includes: call to o/s service
and return � even if the Wait does not result
in becoming blocked!

Recall Stream-2-Pipe Example
� free_space & packets_in_Q sema4s
� only really necessary to “wait” under certain

conditions (no space OR no packets)
� if conditions could be “known” then could decide to

wait only when necessary
only call sema4 services when necessary? ☺

Feb 6, 2014 3

� only call sema4 services when necessary? ☺
� Could some application-specific process

management improve efficiency ?!
(reduce overhead)

MONITOR !

Monitors
� application-specific protected services
� protected layer between kernel and rest of

application
– encapsulates critical section

� access only via entry procedures

Feb 6, 2014 4

� access only via entry procedures
� passive collection of procedures and data
� “mutex constraint”: must design such that

mutually exclusive execution inside monitor

Consistent state!

Monitors
� allow reduction in use of kernel services

– lower overhead ☺

– require careful design �

– mutex at all times! – crafty!

� to satisfy mutex constraint:

Feb 6, 2014 5

� to satisfy mutex constraint:
� additional kernel service

– if sema4s used, will need sema4 op:
wait_and_signal (wait_sema4 , sig_sema4)

Generalized State Changes
for Process in Monitor

waiting for
mutex

active
signal
blocked

signal
mutex

Assume sema4:
mutex

Protects monitor

Feb 6, 2014 6

blocked on
appln sema4

blocked
process

signal
mutexself transitions – action of

active process

forced transitions – caused
by other processes

effect the state of
other processes!

Recall Semaphore-Based
Synchronization Example

� Protected_Add to Q
� Protected_Remove from Q
� consider monitor implementation structures:

– mutex : sema4 = 1; // as before

included sema4s to check
full/empty in every call

Feb 6, 2014 7

– mutex : sema4 = 1; // as before
– will include 2 more sema4’s (as before), but will

only wait/signal when necessary
� frequent case: wait/signal mutex only

– non-blocking � no other sema4s involved!

Q Full Objects
want_space : sema4 = 0;
// similar to before, BUT
// wait here only when no space in Q

waiting_4_space : integer = 0;

Feb 6, 2014 8

waiting_4_space : integer = 0;
// NEW � local count of depth of want_space’s
// blocked_Q i.e. value = # processes currently
// waiting at want_space

Q Empty Objects

want_work : sema4 = 0;
// wait here only when no work
waiting_4_work : integer = 0;
// value = # currently waiting at want_work

Feb 6, 2014 9

// value = # currently waiting at want_work

work_in_Q : integer = 0;
// value = # of packets currently in Q

Monitored_Add (P: packet_buffer)
{ mutex . Wait; // mutually exclusive access!

if work_in_Q = = Q_Size // no space – must wait!
{ waiting_4_space = waiting_4_space + 1;

wait_and_signal (want_space , mutex);
// new process enters monitor

Slide
6?

Feb 6, 2014 10

// new process enters monitor
// if add – ends up waiting here too, OR
// if remove – will free up a space, and then
// signal want_space!

} // process gets here eventually (owns mutex!)
// (continued on next slide …)

Packet_Q . Add(P); // add to Q
work_in_Q = work_in_Q + 1;
// either signal a waiting process,
// or let in a new process
if waiting_4_work > 0
{ waiting_4_work = waiting_4_work – 1;

Monitored_Add (P : packet_buffer)
con’t

Feb 6, 2014 11

{ waiting_4_work = waiting_4_work – 1;
want_work . Signal ; // signal waiting process
// leave without signaling mutex !!

} else { mutex .Signal } // let in a new process
} // DONE!

KEY

Monitored_Remove (var P:
packet_buffer)

{ mutex . Wait;
if work_in_Q = = 0 // must wait!
{ waiting_4_work = waiting_4_work + 1;

wait_and_signal (want_work , mutex);

Feb 6, 2014 12

wait_and_signal (want_work , mutex);
}
Packet_Q . Remove(P); // remove from Q
work_in_Q = work_in_Q – 1;

// (continued on next slide …)

Monitored_Remove (var P : packet_buffer)
con’t

if waiting_4_space > 0 // process waiting?
{ waiting_4_space = waiting_4_space – 1;

want_space . Signal ;
// release process waiting for space – mutex!?KEY

Feb 6, 2014 13

// release process waiting for space – mutex!?
} else

{ mutex . Signal }
}

Non-Blocking Scenario

� packets in Packet_Q, but Packet_Q not full
� can Add or Remove

– no need to block while in monitor

� suppose Remove in process 1

Feb 6, 2014 14

� suppose Remove in process
� new Add request is blocked at mutex
� complete scenario involves mutex only

1

2

Remove is Active Process

waiting for
mutex

active

1

Remove

Feb 6, 2014 15

Add

blocked on
appln sema4

waiting for
mutex

blocked on
appln sema4

active

2

mutex.Signal ;

// done – leave

Remove Done – Release Add

waiting for
mutex

active

Remove

Feb 6, 2014 16

Add

blocked on
appln sema4waiting for

mutex

blocked on
appln sema4

active

Blocking Scenario

� Packet_Q empty
� Remove begins � active
� Add begins – initially blocked
� Remove – nothing to get

1

2

Feb 6, 2014 17

� Remove – nothing to get
� blocks and releases Add

� Add – enqueues packet and releases
Remove

3 4

65

Only One Active Process

waiting
for

mutex

active

1

Remove

Feb 6, 2014 18

Add

blocked on
appln sema4

waiting for
mutex

blocked on
appln sema4

active

2

Still Only One Active Process

waiting
for

mutex

active

3

Remove

wait_and_signal (want_work , mutex);

Feb 6, 2014 19

Add

blocked on
appln sema4

waiting for
mutex

blocked on
appln sema4

active

4

Remove “Owns” Mutex

waiting for
mutex

active

6

Remove

Feb 6, 2014 20

Add

blocked on
appln sema4

waiting for
mutex

blocked on
appln sema4

active

6

5 want_work . Signal ;

// done – leave

Limitations in this Style of
Monitor

� active process can only release (at most)
one process blocked on an appln sema4

� active process must leave monitor after
releasing a blocked process

Feb 6, 2014 21

releasing a blocked process
� too simplistic ?

Manager-Style Monitor

signal
mutex

• release many blocked processes and stay active ☺

• process must leave as soon as unblocked �

Feb 6, 2014 22

waiting for
mutex

active

blocked on
appln sema4

signal blocked
processsignal

mutex

Mediator-Style Monitor

� when active process unblocks a process
from an appln sema4 gives up the right to
execute (but stays in monitor!)
– Block on “pending_sema4”

i.e., process executes:

Feb 6, 2014 23

� i.e., process executes:
wait_and_signal (pending_sema4 ,

appl n_sema4)
� pending processes are given preference

over those waiting for mutex

Mediator

signal blocked
process

pending

similar to
ready to run
and running

Feb 6, 2014 24

signal pending
or mutex

waiting for
mutex

active

blocked on
appln sema4

signal pending
or mutex

Gladiator-Style Monitor

� manages processes similar to kernel !?!?!

signal eligible or mutex

move one from
blocked to eligible

what’s this?

Feb 6, 2014 25

waiting for
mutex

active

blocked on
appln sema4

eligible

signal eligible or mutex

signal eligible or mutex

how?

Gladiator

� How is this different from Mediator?

� hmm … might be sort of complicated for
an average programmer to implement,

Feb 6, 2014 26

an average programmer to implement,
but …. might be a good model for a
thread manager?? ☺

Different from kernel?
No concern for Interrupts!

Issue in Gladiator

how to “move ” a process from blocked on an
appln sema4 to blocked on eligible sema4?
� sema4-to-sema4 transfer operation? nope! �
� unblock process to run briefly and move itself?

Feb 6, 2014 27

� unblock process to run briefly and move itself?
– 2 active processes in monitor? �

� do a context switch then run only long enough
to block again (another context switch!)

� seems like a waste of overhead! �

Resolving Gladiator Issue
monitor could do some process management
� each process in monitor has associated record
� contains at least:

– id of “ own ” sema4 (unique for each process)
– Plus: process id? priority? appln info?

Feb 6, 2014 28

– Plus: process id? priority? appln info?

� process record could be created as a local variable
(in process’ stack) when process enters monitor
– process always has access to it

Queues of Process Record Ptr’s
� monitor maintains queues of process record ptr’s
� when active process wants to block itself and

release another process:
1. puts own record ptr in an appropriate queue
2. decides what process to release – gets process record

Feb 6, 2014 29

2. decides what process to release – gets process record
ptr from queue – now can access the “own” sema4 of
the process to be released

wait_and_signal (“own” sema4 , // block itself
sema4 from step 2) // release chosen process

Move Record Ptr vs. Run

� processes block on their “own” sema4s
� monitor code decides when to release them
� can move process records among “blocking”

queues without having process run !!!

Feb 6, 2014 30

queues without having process run !!!
� selection of process to release can include

info stored in process records

Gladiator Monitor
Skeleton Code

create OwnRecord – includes: OwnSema4
// enter protected section:
mutex . Wait
// active:

Feb 6, 2014 31

// active:
do some processing
decide to block in BlockedQ

put pointer to OwnRecord in BlockedQ

Skeleton Code
con’tdecide which process to run

if ! (EligibleQ . empty)
{ dequeue NextP from EligibleQ

wait_and_signal (OwnSema4 ,
NextP → OwnSema4)

Feb 6, 2014 32

NextP → OwnSema4)
} else // EligibleQ is empty
{ wait_and_signal (OwnSema4 , mutex) }

etc … do this after becoming unblocked ☺
What to do when leaving monitor?

Another Solution (Gladiator)

Suppose the kernel supports the notion of a
“Sleeping” process:
� while sleeping, process is not eligible to run
� sleeping process is not in a blocking queue

Feb 6, 2014 33

� sleeping process is not in a blocking queue
� simpler than sema4 mechanism
� easy to implement:

– sleeping = new process state in kernel
– when process is “awakened”, it is ready to run

Sleep Services

sleep_and_signal (sema4)
puts calling process to sleep and

signals the specified sema4
sleep_and_awaken (process_id)

Feb 6, 2014 34

sleep_and_awaken (process_id)
puts calling process to sleep and

awakens the specified process
myID()

returns process ID of caller

Revised Gladiator
Using Sleeping

create OwnRecord – includes process’ ID
// enter protected section:
mutex . Wait
// active:

Feb 6, 2014 35

// active:
do some processing
decide to block in BlockedQ

put pointer to OwnRecord in BlockedQ

Revised Skeleton Code
con’t

decide which process to run
if ! (EligibleQ . empty)

{ dequeue NextP from EligibleQ
sleep_and_awaken (NextP → ProcessID)

} else // EligibleQ is empty
{ sleep_and_signal (mutex) }

Feb 6, 2014 36

{ sleep_and_signal (mutex) }
etc … do this after becoming unblocked ☺

less kernel overhead – “sleeping ” is more
efficient than semaphore “blocking ”

Example: Manager-Style
Timed Resource Monitor

� allow processes to request a resource
� resource is allocated based on process priority
� processes specify a maximum waiting time
� if resource is obtained within specified time, then

Feb 6, 2014 37

� if resource is obtained within specified time, then
release process with “success” return-code

� if resource not available in time, then release
process with “timeout” return-code

Recall: Manager-Style Monitor

waiting for
mutex

active

signal
mutex

signal blocked
processsignal

Feb 6, 2014 38

blocked on
appln sema4

processsignal
mutex

• release many blocked processes and stay active ☺

• process must leave as soon as unblocked �

Kernel Support

Need kernel services :
� myPriority ()

returns priority of calling process
� awaken (process_id)

Feb 6, 2014 39

� awaken (process_id)
awakens the specified process

Monitor Entry Procedures:

REQ(maxTime : integer; var rtnCode : enum)
request resource: specify max. wait time in “ticks”

REL release resource

Feb 6, 2014 40

REL release resource

TICK called once every “tick” by a timer process
(application driver … accesses mutex sema4 &
may awaken processes)

Resource Monitor

REQ REL TICK

App Proc App Proc. . . Timer
Proc

Feb 6, 2014 41

myPriority awaken

kernel services

etc…wait signal

Internal Issues

� must manage waiting processes
– sema4’s won’t do!
– priority vs. FIFO wait
– timeout release in arbitrary order

Feb 6, 2014 42

Solution : maintain Waiting list
– list of processes in descending-priority
– highest priority first

Each Process has ProcRec
record

� priority : integer; // processes priority
� id : run-time_id; // processes id
� ticksleft : integer; // time left to wait
� var result : enum; // ptr to return code variable

Feb 6, 2014 43

� var result : enum; // ptr to return code variable
� next : ProcRecPtr; // used for list management

Monitor’s Persistent Variables
Available : boolean ;

// true iff resource is available
// initial value? true? false until first REL?

Waiting : ProcRecPtr = NULL;
// ptr to Waiting list

Feb 6, 2014 44

// ptr to Waiting list

Mutex : sema4 = 1; // mutual exclusion

Monitor Code: REQ
REQ(maxTime : integer; var rtnCode : enum)
{ MyProcRec : ProcRec; // local var

Mutex . Wait; // gain mutex
if Available // easy – allocate immediately!
{ Available = false;

Feb 6, 2014 45

rtnCode = success;
Mutex . Signal;

} // DONE! (easy case)

Wait Case
else // not Available: must wait for resource

{ // initialize ProcRec for waiting
ProcRec . priority = myPriority() ;
ProcRec . id = myID();
ProcRec . ticksleft = maxTime ;

Feb 6, 2014 46

ProcRec . ticksleft = maxTime ;
ProcRec . result = rtnCode ; // copies ref
ProcRec . next = NULL ;

Wait Case
con’t

// priority insert ProcRec into Waiting list
// code omitted ☺

// wait for resource, open mutex gate
sleep_and_signal (Mutex);
// eventually – will be awakened:

Feb 6, 2014 47

// eventually – will be awakened:
// all done! – either obtained resource, or
// timed out – rtnCode contains result
// Manager-style: leave monitor!

} // end of else (wait case)
} // end of REQ

Monitor Code: REL
REL // no param’s

{ P : ProcRecPtr; // local var
Mutex . Wait; // gain mutex
if Waiting == NULL // none waiting – easy!

Feb 6, 2014 48

if Waiting == NULL // none waiting – easy!
{ Available = true; }

Awaken Case (in REL)
else // awaken from front of Waiting list

{ P = dequeued ptr from Waiting list ;
P → result = success; // allocate resource!
awaken (P → id);
// Available remains false!

Feb 6, 2014 49

// Available remains false!
}

Mutex . Signal;
} // end of REL

Monitor Code: TICK
TICK
{ Cur : ProcRecPtr; // local var

Mutex . Wait; // gain mutex
// traverse Waiting list – manage timouts
for (Cur = Waiting; Cur = Cur → next; Cur != NULL)

Feb 6, 2014 50

for (Cur = Waiting; Cur = Cur → next; Cur != NULL)
{ Cur → ticksleft = Cur → ticksleft – 1;

Time-Out Case
if Cur → ticksleft = = 0
{ // remove timed-out process from Waiting list

// code omited ☺

Cur → result = timeout ;
awaken (Cur → id); // but stay Active

Feb 6, 2014 51

awaken (Cur → id); // but stay Active
}

} // end for loop
Mutex . Signal;

}

