
SYSC 5701
Operating System Methods for

Real-Time ApplicationsReal-Time Applications

Message Passing

Winter 2014

Message Passing
� kernel provides services for process

interaction
� communicate using messages:

� send (message)

Feb 25, 2014 2

� receive (message)

� establishes a logical link (channel) among
processes involved
– Several variations on this!

Link -Related Issues
� direct � process-to-process, blocking?
� indirect � buffered in mailbox, blocking?
� link capacity? buffering / queueing?
� message size? fixed? variable?

Feb 25, 2014 3

� pass message copy or reference?

To Block or Not To Block … ?
� blocking couples synchronization with

messaging
– increases determinism
– determinism – simplicity, understanding ☺

� if not needed (i.e. not central to application

Feb 25, 2014 4

� if not needed (i.e. not central to application
objective) then may be contrary to
asynchronous, event-driven goals
(concurrency?) �

� may need to introduce extra “transport”
processes to avoid blocking! – overhead!
(later)

Un-Synchronized Services
send (…) send a message, no blocking

if receiver not ready – message lost

receive (…) receive a message, no blocking

Feb 25, 2014 5

receive (…) receive a message, no blocking
if no message ready, none received

useful ?

Synchronized Services

send_and_wait (…)
send message and wait (i.e. block) until received

wait_receive (…)
wait (i.e. block) until a message arrives

Feb 25, 2014 6

wait (i.e. block) until a message arrives
� requires no buffering of messages – sender and

receiver synchronize @ message exchange
� shared memory impln: can pass message reference
� distributed system: must pass copy of message

Synchronized

send_and_wait

P1

send_and_wait

synchronized
at these points!

P1 blocked

Feb 25, 2014 7

P2

wait_receive
P2 blocked

wait_receive

How will Correct Processes be
Involved?

1. identify both sender and receiver
2. identify only one of sender or receiver

1. identify both sender and receiver

Feb 25, 2014 8

1. identify both sender and receiver
send_and_wait(rcvP , msg)
wait_receive (sndP , msg)

2. Identify Only Receiver
send_and_wait(rcvP , msg)
wait_receive (msg)

� may have multiple senders waiting to
synchronize with same receiver

� need queueing of senders for each receiver

Feb 25, 2014 9

� need queueing of senders for each receiver
– FIFO? wait on sema4?
– priority? queue structure?

� typical: PCB contains fields to support IPC

Variant: Non-Blocking Send,
Blocking Receive

� typically identify only the receiver
� senders "give work to" receiver
� sent messages are queued, sender is never

blocked

Feb 25, 2014 10

blocked
� receiver blocked only when no messages in queue
� more concurrency ☺ harder to synchronize! �

� use semaphores for synchronization!
� message issues (buffering?) – later!

Variant: Rendezvous
� blocking send , blocking receive , reply to sender
� sender/receiver synchronize
� first message: from sender to receiver
� receiver does some processing

� decides when to release sender

Feb 25, 2014 11

� decides when to release sender
� second message: returned to sender
� 2 way communications!
� controlled/delayed release of sender

Rendezvous
send_and_wait

P1

P1 blocked

Feb 25, 2014 12

P2

wait_receive reply

P2 does processing before
REPLY and release of P1

Mailboxes: Indirect
Communication

� mailbox = kernel supplied object to support
message passing

� send to mailbox:
– non-blocking

Feb 25, 2014 13

– non-blocking
– if receiver waiting, then receiver is given message

and released
– if no receiver waiting, message is queued

Mailboxes

� receive from mailbox:
– block if no message ready
– if message ready, obtain message from front of

queue and leave

Feb 25, 2014 14

� may have multiple queued receivers
� messages passed to mailbox, not to explicit

process(es) !

Mailbox Primitives

� typical service primitives:
send (mailbox, message)
receive (mailbox, message)

� often: dynamic create/delete of mailboxes

Feb 25, 2014 15

� often: dynamic create/delete of mailboxes

1

Mailbox Solution to
Stream -2-Pipe Example

S R
free

2

2

cyclic processes

Feb 25, 2014 16

S R
work

1
2

data flow

pipe sidestream side

Messaging Implementation
Issues

1. Addressing
2. Message Format

Feb 25, 2014 17

3. Memory Issues

1. Addressing

� naming processes creates tighter coupling!
� how many named per communication?

– sender & receiver?
– just one?

Feb 25, 2014 18

– just one?

� send to many � broadcast! (vs. multicast?)
– useful mechanism in distributed systems

Rendezvous Addressing
� sender names receiver
� receiver accepts from any sender

– receives sender’s id, too (message format!)

� what about reply in a rendezvous?

Feb 25, 2014 19

– if only one outstanding sender, no real choice

� nested rendezvous?
– implicitly: reply to most recent sender first
– explicitly: receiver decides order of replies

S1

Nested Rendezvous

S2

send

send

nested
receive

Feb 25, 2014 20

R

receive receive reply reply

• might be preferred to allow S1 to be released first?

• would require explicit naming in reply

receive

How Can Processes be
Identified?

� “physical” id – identifier assigned dynamically
when process is created
– e.g. pointer to PCB – simple, fast lookup

� alternatives?
� requires “knowing” kernel services

Feb 25, 2014 21

� requires “knowing” kernel services
– e.g. “myID” in previous examples

� distributed systems?
– could have two processes with same ID?
– include “node” identifier in ID
– larger names

Logical Names
� unique “globally known” names – assigned

at design stage
– limitation : no dynamically created processes ?

� kernel maintains lookup tables
– map logical name to run-time id

Feb 25, 2014 22

– map logical name to run-time id
– run-time id’s are hidden from applications

� add name to table when process created
� remove name when process deleted

Recall: Messaging
Implementation Issues

1. Addressing
2. Message Format

Feb 25, 2014 23

3. Memory Issues

2. Message Format

� How is message stored in buffer ?
� “syntax” issue

� Is message one field of info? or
multiple fields of info?

Feb 25, 2014 24

multiple fields of info?
� Variable length? Need length field too?
� Multiple: may need message type id field

– more overhead!

Why Might Message have
Multiple Fields/Formats?

e.g. Ada: senders “call” a rendezvous “port” on
receiver
� similar to calling a function defined by receiver

– port call may have parameters

Feb 25, 2014 25

– port call may have parameters
� similar to param’s to function calls

� receiver may wait for messages at multiple
ports

� each port may have different # parameters!
(con’t)

Multiple Rendezvous

rendezvous port(s) with
different signatures

pass to receiver through a
single message queue

Feb 25, 2014 26

Multiple Format Issues
con’t

� messages for receiver are queued in a
single queue

� messages may have multiple fields and
different formats!

Feb 25, 2014 27

� message must include:
– port identifier (message format id)
– field for each parameter

Fixed Buffer Size
� kernel always deals with single sized buffers

– fast, efficient services ☺

� may pack several different formats into one
maximum sized buffer – variant records

Feb 25, 2014 28

– all messages have single (max.) size ☺
– some may have some unused space �

Variable Buffer Size

� more powerful � no wasted space ☺

� more overhead �
� buffer must include a size field

– If variable sized fields � need size sub-fields

Feb 25, 2014 29

– If variable sized fields � need size sub-fields
too!

Recall: Messaging
Implementation Issues

1. Addressing
2. Message Format
3. Memory Issues

Feb 25, 2014 30

3. Memory Issues

3. Memory Issues
� does kernel require dynamic memory?

– yes : where is it obtained from? (gnarly?)
– no : (i.e. supplied by caller of services)
– static pool � compromise

access protection problems in different

Feb 25, 2014 31

� access protection problems in different
contexts?
– e.g. Does memory manager h/w get in the way of

sender/receiver accessing the same buffer?

Buffer Management
� how many buffers involved?

– one from sender & one from receiver?

� pass message by copying pointer to buffer?
– simple, fast @ message exchange ☺

� access protection h/w problems? �

– processes can’t share memory

Feb 25, 2014 32

– processes can’t share memory
– overhead � buffer management policy �

� No shared memory? copy message from sender’s
to receiver’s memory
– copying overhead �

Static Buffer Scheme
(Shared Memory)

� pool of “free” static buffers
� sender obtains buffer from pool
� sender copies message into buffer
� pass receiver a pointer to buffer

Feb 25, 2014 33

� pass receiver a pointer to buffer
� receiver removes message from buffer
� receiver returns buffer to pool
� Simple; static memory, pool overheads

Dynamic Buffer Scheme
(Shared Memory)

� create/delete as needed
� sender must create a buffer
� sender copies message into buffer
� pointer to buffer is given to receiver

Feb 25, 2014 34

� pointer to buffer is given to receiver
� receiver disposes of buffer when done
� Simple? Dynamic memory?

Shared Memory Persistence
Concerns?

� recall monitor examples
– with shared memory: buffers might be

created as dynamic variables (say in
sender’s stack) and then pass pointer to

Feb 25, 2014 35

sender’s stack) and then pass pointer to
buffer

– programmer must ensure that buffer still
exists when receiver accesses stored
message

No Shared Memory
� Sender arrives in kernel with message
� Receiver arrives in kernel with buffer
� Kernel copies message from sender’s buffer

to receiver’s buffer
� Sender and receiver each manage their

Feb 25, 2014 36

� Sender and receiver each manage their
separate buffers after copy

� How to implement a non-blocking Send?
– Kernel manages sender’s buffer after copy?
– Kernel copies to kernel’s buffer before receive?

Summary: Enhanced Process Model
with IPC Message Passing

� couples synchronization with message passing
– kernel IPC handles details

� no “protection” burden on programmer ☺
– kernel overhead �

Feb 25, 2014 37

� some architectural issues may influence kernel
– not necessarily shared memory
– distributed kernel in distributed system

� May be only communication mechanism that
works for a strict process model

BOTTOM LINE
� process model creates an abstraction for the

development of real-time systems
– concurrency issues can be addressed in design! ☺
– implementation may have overhead �

if it goes “fast enough” – does it matter?

Feb 25, 2014 38

� if it goes “fast enough” – does it matter?
� Tradeoff :

s/w engineering gains vs . overhead

Customizing a Process Model
� if a process model does not support a

particular desired IPC mechanism
– can often implement support using existing IPC

� already seen some monitor-style examples:
– priority blocking when only FIFO available

Feb 25, 2014 39

– priority blocking when only FIFO available
– timed services – a bit vague about the process

that called TICK ☺ (timed services?)
– synchronous message passing

Non-Monitor Constructs?
� using packages that are not based on monitor mutex

assumption
� requires some design thinking – how to simulate IPC

behaviour using existing kernel primitives?
� may be able to customize to application ☺

Feb 25, 2014 40

� may be able to customize to application ☺
� often less-efficient than kernel-supported services �
� if services not available, may be only choice ??

Example: Readers and Writers

� “classical” example in o/s courses
� a resource (e.g. database) is shared
� readers: wish to read values RReq, REnd
� multiple readers can proceed concurrently

Feb 25, 2014 41

� multiple readers can proceed concurrently
– no interference

� writers: wish to write values WReq, WEnd
– potential for interference !
– must have mutual exclusion

Readers / Writers Issues
� priority (readers vs. writers), fairness / starvation
� allow: concurrent reads, mutually exclusive writes
� if writer active: make all newcomers wait
� once writer finishes: priority to waiting readers or

writers?

Feb 25, 2014 42

� if reader(s) active: make new writer(s) wait
� should what new readers be allowed to start

reading if a writer is already waiting?
� priority to writers (?) why ? starve readers?

Implementation 1: Monitor

� monitor coordinates access rights
� underlying assumption: mutex in monitor
� variables:

Writers – # yet to finish writing

Feb 25, 2014 43

Writers – # yet to finish writing
ReadersActive – # actively reading
WritersQ , ReadersQ

hold blocked processes

Readers/Writers Monitor
(actually a wrapper)

R W

RReq REnd WReq WEnd

1

3
1

3

Feb 25, 2014 44

resource

2 2

Writers, ReadersActive,
WritersQ, ReadersQ

WReq
� reader(s) XOR writer could be active

wait (mutex) ;
Writers + +;
if (Writers > 1) || (ReadersActive > 0)

EnQueue (WritersQ , myID) ;

Feb 25, 2014 45

EnQueue (WritersQ , myID) ;
sleep and signal (mutex) ;

// obtained mutually exclusive access to resource
signal (mutex) ;

WEnd
� only this writer has access to resource

wait (mutex) ;
Writers − − ;
if Writers > 0 then

awake (DeQueue(WritersQ))

awakened writer
will signal mutex
as it leaves

Feb 25, 2014 46

else – no writers waiting, release readers?
while ReadersQ not empty

awaken (dequeue(ReaderQ))
ReadersActive + + ;

signal (mutex) ;

released
readers
do not
signal
mutex

RReq

� reader(s) XOR writer could be active
wait (mutex) ;
if Writers > 0

EnQueue (ReadersQ ; myID) ;
sleep and signal (mutex)

when awoken:
leave without

Feb 25, 2014 47

sleep and signal (mutex)
else – requested and obtained read access

ReadersActive + +;
signal (mutex) ;

signalling

REnd

� only reader(s) accessing resource
wait (mutex)
ReadersActive − − ;
if (ReadersActive = = 0) && (Writers > 0)

Feb 25, 2014 48

if (ReadersActive = = 0) && (Writers > 0)
(i.e. this is the last active reader and a writer waiting)

awake (DeQueue(WritersQ))
else – no writers to release

signal (mutex) ;

awakened writer
signals mutex
as it leaves

Issues

� only calls kernel when necessary
– low overhead ☺

� only block when necessary ☺
� mutex in monitor

Feb 25, 2014 49

� mutex in monitor
– gnarly programming �

Implementation 2:
Message Passing

� Skeduuler process coordinates access rights
� Reader and Writer processes rendezvous with

Skeduuler
� send – must explicitly identify receiver
� receive – from any sender

Feb 25, 2014 50

� receive – from any sender
� sender’s id is received as parameter
� reply – must identify reply-to process

– reply (reply-to -process-id, message)
� can block sender until selected for reply

Skeduuler Process

� local variables:
– ReaderQ , WriterQ
– hold blocked processes for later reply

� ReadersActive – as before

Feb 25, 2014 51

� ReadersActive – as before
� Writers – as before

Skeduuler: loops forever

receive (request, sender_id) ;
case request of
WREQ: // � writer arrives

Writers++ ;

Feb 25, 2014 52

Writers++ ;
if (Writers > 1) || (ReadersActive > 0)

EnQueue (WriterQ , sender_id);
else reply (sender_id, write_access);

WEnd case

WEnd : // � writer leaves
Writers − − ;
if Writers > 0 // release another writer

reply (write_access, DeQueue (WriterQ));

Feb 25, 2014 53

reply (write_access, DeQueue (WriterQ));
else // release any waiting readers

while ReadersQ not empty
reply (DeQueue (ReaderQ), read_access);
ReadersActive + + ;

RReq case
RReq: // � reader arrives

if Writers > 1 // block – writer yet to
finish

EnQueue (ReaderQ , sender_id);

Feb 25, 2014 54

else // reader may proceed
reply (sender_id , read_access);
ReadersActive + + ;

REnd case

REnd : // � reader leaves
ReadersActive − − ;
if ((ReadersActive = = 0) && (Writers > 0))

// release a writer

Feb 25, 2014 55

// release a writer
reply (DeQueue (WriterQ), write_access);

Issues
� no explicit mutex manipulation – mutual exclusion

is ensured implicitly by Skeduuler process
– less gnarly burden to programmer! ☺
– easier to understand and modify ☺
– overheads! �

Feb 25, 2014 56

– overheads! �
� for every call to monitor – ALWAYS context

switch to Skeduuler
– the penalty for using implicit process’ mutual

exclusion vs. explicit mutex semaphore! �

More Issues
� message passing vs. function invocation

– making a request involves kernel service �

� extra process in system (Skeduuler)
� system resources �

Feb 25, 2014 57

So . . . why do most organizations use
implementation 2 instead of
implementation 1 ????

