
SYSC 5701
Operating System Methods for

Real-Time Applications

Memory Issues

Winter 2014

Feb 26, 2014 2

Memory Management is a
Gnarly Issue

� Pearce suggests: offload the problem to the
application … how do some “real” RTOS’s cope?

� µC/OS II: has (optional) API to manage partitions
– Application supplies memory for partitions
– Each partition contains blocks of same size
– Partitions are managed by kernel (safe)

� FreeRTOS: has required API
– add-on above kernel
– various implementations

µC/OS II
� Partition – a contiguous memory region

– Kernel cuts up into blocks of equal size
– Application can Get/Put blocks

� Can have multiple partitions of different sized blocks
� Configuration (OS_CFG.H)

– Enable management services: OS_MEM_EN = 1
– Max. number of partitions:

OS_MAX_MEM_PART = MaxNumberOfPartitions
� Statically allocated array of memory control

blocks (not partitions!)

Feb 26, 2014 3

Application specifies these at config! (compile time)

µC/OS II
� Create a partition at runtime:
OS_MEM *OSMemCreate(

void *addr, // start address of memory block
INT32U nblks, // number of blocks to create
INT32U blksize, // size of each block
INT8U *perr // return code (for create status)

);
� Returns: OS_MEM* = ptr to memory control block

Feb 26, 2014 4

Application
supplies
these!

µC/OS II
� Get a block from a partition at runtime:
void *OSMemGet(

OS_MEM *pmem, // ptr to memory control block
INT8U *perr // return code (success?)

// size of block is implicit to partition!!
);
� Returns: void* = pointer to block from specified partition

Feb 26, 2014 5

µC/OS II

� Put (return) a block to a partition:
INT8U OSMemPut(

OS_MEM *pmem, // ptr to memory control block
void *pblk // ptr to block to return

);
� Returns: INT8U = return code

Feb 26, 2014 6

FreeRTOS
� Memory allocation API is in the portable layer
� Portable layer: outside of source files that

implement the core RTOS functionality
� Allows an application-specific implementation

appropriate to real time system being developed
� Provides some implementations … but application

can supply its own implementation

Feb 26, 2014 7

FreeRTOS
� FreeRTOSConfig.h customizes the kernel to the

application being built
� Every FreeRTOS application must have a

FreeRTOSConfig.h header file in the application
directory (not RTOS directory!)

� configTOTAL_HEAP_SIZE = xxxx
– Total amount of RAM available to RTOS kernel

– only used if application uses particular
provided sample memory allocation schemes

Feb 26, 2014 8

Application specifies this at config! (compile time)

FreeRTOS
� When kernel requires RAM, calls:

void *pvPortMalloc(size_t xWantedSize)
– Returns ptr to allocated block of requested size
– Returns NULL if no memory allocated

� When kernel releases RAM, calls:
void pvPortFree(void *pv)

� Uses whatever implementation has been linked to
the kernel code

Feb 26, 2014 9

FreeRTOS
� Provided implementation: Heap_1.c
� Does not permit memory to be freed once it has

been allocated (i.e. no pvPortFree calls)
– Deterministic
– OK when all kernel-managed objects are

created initially at startup and exist for entire
running of application

– Pros: Simple, no runtime overhead after startup
– Cons: no dynamic create/delete

Feb 26, 2014 10

FreeRTOS
� Provided implementation: Heap_2.c
� Best fit algorithm, allows blocks to be freed, does not

coalesce adjacent free blocks to create larger blocks
– NOT Deterministic
– OK when kernel-managed objects are created

(deleted) dynamically, but only a small set of sizes
of blocks involved – e.g. fixed sized control blocks
& messages

– Pros: dynamic create/delete
– Cons: runtime overhead, random-sized blocks will

likely increase fragmentation
Feb 26, 2014 11

FreeRTOS
� Provided implementation: Heap_3.c
� Simple thread-safe wrapper on C’s malloc() & free()

– NOT Deterministic
– OK when kernel-managed objects are created

(deleted) dynamically, and random-sized blocks
– Must now include C library for implementation of

malloc() and free() [code size & efficiency?!]
– configTOTAL_HEAP_SIZE not used
– Pros: dynamic create/delete
– Cons: runtime overhead

Feb 26, 2014 12

FreeRTOS
� Provided implementation: Heap_4.c
� First fit algorithm, coalescence algorithm

– NOT Deterministic
– OK when kernel-managed objects are created

(deleted) dynamically, and random-sized blocks
– Probably more efficient than C library (smaller

code?)
– Pros: dynamic create/delete
– Cons: runtime overhead

Feb 26, 2014 13

FreeRTOS
� Application provided implementation: Heap_x.c
� Implemented however the application might like to

manage memory … must implement:
void *pvPortMalloc(size_t xWantedSize)
void pvPortFree(void *pv)

– Used by kernel when needed
– Pros: use system-specific memory regions in

customized ways (?)
– Cons: more code/details for application programmer

Feb 26, 2014 14

