
Kernel Design Issues

A Possible Kernel Implementation is A Possible Kernel Implementation is
Used to Draw Out and Expose Issues

Winter 2014

1

(Example) Kernel Services

� process_create create a new process

� sema4_create create a semaphore
� sema4_wait wait on a semaphore� sema4_wait wait on a semaphore
� sema4_signal signal a sema4

� install_ISR bind an interrupt to an ISR

2

(Example) Kernel Services (con’t)

� sema4_wait_timed
– wait on a semaphore with a maximum specified

time limit

� driver_create� driver_create
– create an (application) driver

� driver_sleep
– place the driver in the asleep state – may only be

called by the driver to be put to sleep (i.e. self-
inflicted sleep only; the driver yields the
processor)

3

(Example) Kernel ISR Services

� driver_awake
– awake an application driver – note: if the driver is

not currently asleep, then the call has no effect

� Also need Timer ISR (internal to kernel) to
support sema4_wait_timed

4

Design Issues to Expose
� Stack � Save state for Context Switch !
� S/W Interrupt to invoke Service
� ISR use of Kernel:

– sema4_wait_timed service
– driver_awake

� Interrupt � results in kernel activity and
possibly a context switch!

� Kernel protection � kernel_busy flag
– Protect from ISR interference

5

Context Switch Design
� What does the stack look like for a process

that is not running? � must be only one
format!!

Rest of saved registers
Subset used by all

services

6

Saved “Continue” Address

Saved PSW

PSW includes
current processor

Flag values

Execute from this
address

Saved Working Registers
services

Service Design
� Service entry via s/w interrupt (SWI)

– SWI pushes PSW and Return Address
– No “function” return values in signatures

� If a return value is needed, pass in a pointer to a
variable where value is to be writtenvariable where value is to be written

– If process gets switched off processor, save
registers on top of return address and PSW
� will resume at instruction after SWI into service!
� i.e. won’t resume in the kernel

� think about stack!

7

Invoking Service
Process Code:

…
SWI(service, params)
Next_instruction

…

service

8

service

PSW

return addressSPreg

On arrival in service:

Stack

If context switch,
will eventually
continue at
Next_instruction

Relate to
previous
slide!

� all services end with common exit procedure
which includes a context switch if needed

– “goto do_exit” (goto? no return address! ☺)

� All services are protected by “kernel_busy” flag

Service Design (con’t)

– ISR’s can’t come into kernel if kernel is busy

– ISR’s leave a message in memory if kernel is busy
– Checking for messages is part of the (common)

exit procedure for all service calls

9

Globals
� Assume kernel_busy Boolean: true indicates that

the kernel is busy executing a service call that
should not be interrupted. Initial value = false.

� Assume RTRQ pointer to the head of the ready to
run queue. Initial value = null.

RTRQ is priority-ordered. – RTRQ is priority-ordered.

� Assume currentP … BUT … note next slide!

� Assume TimedQ pointer to head of queue of
processes blocked on timed_wait’s.

Initial value = null

� More to come when needed!
10

Note about RTRQ
� Leave process’s PCB in RTRQ while running

� While a process is running (no kernel activity)

RTRQ == currentP (point to same PCB)

� During kernel activity, a process might be inserted or
removed from the RTRQ, but currentP is not modified

� After kernel activity if currentP == RTRQ

then: the activity did not result in a need
for a context switch

otherwise: a context switch is needed! (and the
RTRQ has already been adjusted)

11

PCB Contents

� priority
� status // (running, blocked, asleep)
� RTRQptr // for linkage in the RTRQ
� SP // stack pointer value

sema4ptr // for linkage in a sema4Q� sema4ptr // for linkage in a sema4Q
� sema4ID // sema4 that process is blocked on
� time_count // for timeout management
� timedQprt // for linkage in the TimedQ
� timedRtnPtr // for returning sleep exit status

12

process_create (PCB, stackptr, start_address,
priority, processIDptr)

{ save working registers on stack // standard entry code!
tempreg := SPreg // save current SP value in a register
// set up stack for launch
SPreg := stackptr // could use alternate approach and just write to memory ...
push default PSW value (includes interrupts enabled!)
push start_address // What does the stack look like for
push default_register_values // a process that is not running?

Return
value!

push default_register_values // a process that is not running?
*PCB.SP := SPreg // save SP for launch
SPreg := tempreg // restore SP
*PCB.status := ready
*PCB.priority := priority
*PCB.timedRtnPtr := null // default = not a sleeper
*processIDptr := PCB // give ID of process to creator
kernel_busy := true // up until now, nothing needed to be protected
priorityInsertIntoRTRQ (PCB) // code not provided
goto do_exit // non-traditional control flow! stack state?

}
13

Sema4

SCB: sema4Q // pointer to head of the sema4Q
count // sema4 count value

sema4_create (SCB, count, sema4IDptr)
{ save working registers

*SCB.sema4Q := null*SCB.sema4Q := null

*PCB.count := count

*sema4IDptr := SCB // give ID of sema4 to creator

// if there are no further linkages to internal structures ... then done!

// no real internal “work” has been done … just leave

restore working registers

RTI � Return from interrupt: pops return address and PSW!

}
14

sema4_wait (sema4ID)
Note: sema4 count can go below 0!

{ save working registers on stack // standard entry procedure!

kernel_busy := true

if (--(*sema4ID.count) < 0) { // block the process!

*currentP.status := blocked

*currentP.sema4 := sema4ID

PutInSema4Q (sema4ID, currentP) // code not providedPutInSema4Q (sema4ID, currentP) // code not provided

RTRQ := *currentP.RTRQptr // remove process from RTRQ

// note: at this point, currentP != RTRQ

}

goto do_exit

}

15

sema4_wait_timed (sema4ID, time_count, rtnptr)
{ save working registers on stack // standard entry procedure!

kernel_busy := true

if (--(*sema4ID.count) < 0) { // block the process!

*currentP.status := blocked

*currentP.sema4 := sema4ID

*currentP.timedRtnPtr := rtnPtr // save for later!

*currentP.time_count := time_count*currentP.time_count := time_count

PutInSema4Q (sema4ID, currentP) // code not provided

PutInTimedQ (sema4ID, currentP) // code not provided

RTRQ := *currentP.RTRQptr // remove process from RTRQ

} else { *rtnptr := OK }

goto do_exit

}

16

sema4_signal (sema4ID)
{ save working registers on stack // standard entry procedure!

kernel_busy := true

if ((*sema4ID.count)++ < 0) { // unblock a process!

procID := DequeueFromSema4Q(sema4ID) // code not provided

*procID.status := ready

if (*procID.timedRtnPtr != null) { // timed waiter!

*(*procID.timedRtnPtr) := OK // no timeout!*(*procID.timedRtnPtr) := OK // no timeout!

*procID.timedRtnPtr := null // reset to default

RemoveFromTimedQ(procID) // code not provided

}

priorityInsertIntoRTRQ (procID) // code not provided

}

goto do_exit

}

17

driver_sleep

{ save working registers on stack
*currentP.status := asleep
kernel_busy := true
RTRQ := *currentP.RTRQptr // remove from RTRQ
goto do_exitgoto do_exit

}

18

� H/W ISRs:
1. start in the kernel – increment counter of nested

interrupts in progress (leave ints disabled)
2. If App int: Perform SWI to App ISR (ints disabled)

� App ISR executes RTI � returns to kernel, ints

H/W ISR Design

� App ISR executes RTI � returns to kernel, ints
disabled

� If Timer int: do timer processing
3. Perform ISR exit procedure: decrement nested

counter
� Do kernel behaviour if needed

19

Major Issue: Protect Kernel

� ISR can’t invoke kernel activity if kernel is busy
� Solution: ISR leaves “request for work” and then

finishes … must run to completion
– Kernel services check for requests before leaving

(part of do_exit)(part of do_exit)
– If finds requests, do associated processing that

would have been done by ISR if kernel was not busy

� Multiple concurrent interrupts?
– Last one to finish does requested work

20

Managing Driver_Awake Calls

� Request a driver to be awoken by putting driver id
in AwakeTable
– Order in table is irrelevant

� AwakeTable: array of Driver (Process) IDs
– Assume max size = 8 (assuming 8 int sources)– Assume max size = 8 (assuming 8 int sources)

� AwakeTableIndex: index of next free entry in table
– Initially: 0

21

Draw on board?

driver_awake(driver process id)

[called by ISR!]
{ // just log the request here

// ... process later in ISR exit code!!
disable //protect!disable //protect!
AwakeTable[AwakeTableIndex++]

:= driver process id
RTI // restores interrupt state & con’t

}

22

Expand on board?
Include interrupt state/PSW

ISR Details
� ProcessorVectorTable: hardware vectors ISR though

this table

� Do Nothing ISR … int not used in application

� App_ISR_Table: saves application ISR addresses

� Do Something ISR … unique ISR for each interrupt level
used by App (and timer) … installed in

� Do Something ISR … unique ISR for each interrupt level
used by App (and timer) … installed in
ProcessVectorTable … will (eventually) redirect through
App_ISR_Table

� int_count: counter of currently active (nested) interrupts
– Initially = 0

23

Kernel ISR Design

App ISR

Do
Nothing

ISR Driver

3
Driver Awake Table

4

App ISR Table

2 maybe

common
int

do_timer

24

ISR

Do
Something

ISR

Processor Vector Table

Driver
Awake

1

int_count

5

++
int_count = 0

6
– –

do_exit

?

int
code

?

Do-Nothing ISR

// at this point: interrupts are disabled
RTI // pop return address and PSW
// PSW contents will re-enable interrupts
// at the processor// at the processor

In theory, these interrupts should never occur!!

25

install_ISR (intNo, ISRaddress)
[kernel service]

{ disable // be safe!
App_ISR_table[intNo] := ISRaddress
ProcessorVectorTable[intNo]

:= appropriate “do something” ISR (slide 28):= appropriate “do something” ISR (slide 28)
RTI // return from service, restore interrupt state

}
(assume timer is “installed” on interrupt 2

install INT2ISR in processor vector table)

26

Timer (Application) ISR

� Treat it like an application ISR, but code is in kernel ☺
� All it does is:

do_timer = true // request work
re-enable interrupts at the controller re-enable interrupts at the controller
RTI // back to kernel ISR manager

� Requested work will be done in exit code ☺

27

D0-Something ISR
// one of these for each interrupt number in use by app
IntxISR: // for interrupt number X

save 1st working register (call it Reg1)
Reg1 := X // ISR specific! E.g. X = 2 for timer

goto common_ int_entry

// one common entry is shared by all Do-Something ISRs
common_int_entry:common_int_entry:

save rest of working registers
int_count++ // log the start of a new ISR
// now do the body of the ISR:
SWI App_ISR_table[Reg1] // launch app ISR
// return from App ISR will return to this point

� ints were disabled when SWI executed so they will be disabled
here too!! (after ISR executes RTI) ☺ follow with exit code

28

Stack State & Interrupt State?

� Go back to slides 24 and 28 and develop
state over time on board

� Show tables and variable
… sequences …… sequences …

29

Kernel ISR exit code
[remember: ints are disabled here!]
if ((--int_count != 0) OR kernel_busy){

// easy case ... exit processing will be done later
restore working registers
RTI
// interrupt state will be returned to state at time of the // interrupt state will be returned to state at time of the
// interrupt by RTI

}
// at this point, int_count == 0 AND kernel_busy = false
//... do exit processing � involves kernel activity
kernel_busy := true
// do-any-pending-work … (next slide … ints are still

disabled)

30

do-any-pending-work
do_exit: � entry from kernel services too !!!!!!!! ☺
[interrupts must be disabled here for loop test!!]
disable // if already disabled … won’t matter
while ((AwakeTableIndex > 0) OR do_timer) do
{ // may have to iterate several times to finish work

enableenable
// kernel_busy is set, so interrupts can safely happen
do-specific-requested-work (timer or awake driver(s))
disable // and check loop again

} // ints disabled when exit loop … continue on slide 33
let’s look at doing specific requested work first …

31

Specific Requested Work:
Awaken Sleeping Driver

disable
// this is a critical region
// � AwakenTable shared with ISRs
driverID := AwakenTable[--AwakenTableIndex]
enable
*driverID.status = ready
PriorityInsertIntoRTRQ(driverID)

// that’s all for now ☺

32

Specific Requested Work:
Timer processing (no code?) �

� Set do_timer false
� Walk the queue of timed-blocked processes
� For each:

– Decrement the time_count
– If the count is not zero, leave process blocked – If the count is not zero, leave process blocked
– Otherwise: remove from the sema4Q and the

TimedQ, return status := timed_out, and put
process in the RTRQ with status = ready
� Must also increment count of sema4!

– Perform with interrupts enabled (kernel_busy!)
33

Continuing after requested
work

[ints still disabled!]
if (RTRQ != currentP) { // context switch is needed!

// RTRQ already manipulated! … just save context
save registers outside of working subset
*currentP.SP := SPreg // save stack pointer*currentP.SP := SPreg // save stack pointer
currentP := RTRQ
SPreg := *currentP.SP
restore registers outside of working subset

}

34

And Finally …

// release the process:

kernel_busy := false
restore working register subset
RTI // PSW restores interrupt state

☺

35

