Kernel Design Issues

A Possible Kernel Implementation is
Used to Draw Out and Expose Issues

Winter 2014

(Example) Kernel Services

® process_create create a new process
e sema4_create create a semaphore
e sema4_wait wait on a semaphore

e sema4_signal signal a sema4

e install_ISR bind an interrupt to an ISR

(Example) Kernel Services (con't)

e sema4_wait_timed
— wait on a semaphore with a maximum specified
time limit
e driver_create
— create an (application) driver
e driver_sleep

— place the driver in the asleep state — may only be
called by the driver to be put to sleep (i.e. self-
inflicted sleep only; the driver yields the
processor)

(Example) Kernel ISR Services

e driver_awake

— awake an application driver — note: if the driver is
not currently asleep, then the call has no effect

e Also need Timer ISR (internal to kernel) to
support semad_wait_timed

Design Issues to Expose

e Stack - Save state for Context Switch !
e S/W Interrupt to invoke Service
e ISR use of Kernel:

— sema4_wait_timed service

— driver_awake

e Interrupt = results in kernel activity and
possibly a context switch!

e Kernel protection > kernel_busy flag
— Protect from ISR interference

Context Switch Design

e What does the stack look like for a process
that is not running? € must be only one
format!!

Rest of saved registers

Subset used by all
services

Saved Working Registers

Execute from this Saved “Continue” Address
address

Saved PSW

PSW includes
current processor
Flag values

Service Design

e Service entry via s/w interrupt (SWI)
— SWI pushes PSW and Return Address
— No “function” return values in signatures

« If a return value is needed, pass in a pointer to a
variable where value is to be written

— If process gets switched off processor, save
registers on top of return address and PSW

o Will resume at instruction after SWI into service!
ei.e. won't resume in the kernel
- think about stack!

Invoking Service

Process Code:

SWI(service, params)
Next_instruction

service

On arrival in service:

SPreg return address Relate to
previous
If context switch, PSW slide!

will eventually
continue at Stack
Next_instruction

Service Design (con't)
e all services end with common exit procedure
which includes a context switch if needed

- “goto do_exit” (goto? no return address! ©)
e All services are protected by “kernel_busy” flag
- ISR’s can’t come into kernel if kernel is busy

- ISR’s leave a message in memory if kernel is busy

— Checking for messages is part of the (common)
exit procedure for all service calls

Globals

e Assume kernel_busy Boolean: true indicates that
the kernel is busy executing a service call that
should not be interrupted. Initial value = false.

e Assume RTRQ pointer to the head of the ready to
run queue. Initial value = null.

— RTRQ is priority-ordered.
e Assume currentP ... BUT ... note next slide!

e Assume TimedQ pointer to head of queue of
processes blocked on timed_wait’s.

Initial value = null

e More to come when needed!
10

Note about RTRQ
e Leave process’s PCB in RTRQ while running
e While a process is running (no kernel activity)
RTRQ == currentP (point to same PCB)

e During kernel activity, a process might be inserted or
removed from the RTRQ, but currentP is not modified

e After kernel activity if currentP == RTRQ

then: the activity did not result in a need
for a context switch

otherwise: a context switch is needed! (and the
RTRQ has already been adjusted)

1

PCB Contents

® priority

e status /I (running, blocked, asleep)

o RTRQptr Il for linkage in the RTRQ

e SP I/ stack pointer value

e semadptr Il for linkage in a sema4Q

e sema4lD I/l sema4 that process is blocked on

e time_count // for timeout management
e timedQprt /I for linkage in the TimedQ
e timedRtnPtr // for returning sleep exit status

12

process_create (PCB, stackptr, start_address,
priority, processIDptr}—__

{ save working registers on stack // standard entry code! Return
)) value!
tempreg := SPreg I/ save current SP value in a register
I set up stack for launch
SPreg := stackptr /I could use alternate approach and just write to memory ...
push default PSW value (includes interrupts enabled!)
push start_address /I What does the stack look like for
push default_register_values Il aprocess that is not running?
*PCB.SP := SPreg Il save SP for launch
SPreg := tempreg /I restore SP
*PCB.status := ready
*PCB.priority := priority
*PCB.timedRtnPtr := null 1 default = not a sleeper
*process|Dptr := PCB /I give ID of process to creator {—=

kernel_busy :=true // up until now, nothing needed to be protected
prioritylnsertintoRTRQ (PCB) // code not provided
goto do_exit // non-traditional control flow! stack state?

Sema4d

SCB: sema4Q /I pointer to head of the sema4Q
count /I sema4 count value

semad_create (SCB, count, sema4IDptr)
{ save working registers

*SCB.sema4Q := null

*PCB.count := count

*sema4IDptr := SCB // give ID of sema4 to creator

/I if there are no further linkages to internal structures ... then done!
/I no real internal “work” has been done ... just leave

restore working registers

RTI € Return from interrupt: pops return address and PSW!

14

semad_wait (sema4ID)
Note: sema4 count can go below 0!

{ save working registers on stack // standard entry procedure!

kernel_busy :=true

if (--(*sema4ID.count) < 0) { 11 block the process!
*currentP.status := blocked
*currentP.sema4 := sema4|D
PutinSema4Q (sema4ID, currentP) // code not provided
RTRQ := *currentP.RTRQptr // remove process from RTRQ

/I note: at this point, currentP != RTRQ
}

goto do_exit

15

sema4_wait_timed (sema4ID, time_count, rtnptr)

{ save working registers on stack // standard entry procedure!

kernel_busy :=true

if (--(*sema4ID.count) < 0) { /I block the process!
*currentP.status := blocked
*currentP.sema4 := sema4|D
*currentP.timedRtnPtr := rtnPtr // save for later!
*currentP.time_count := time_count
PutinSema4Q (sema4lID, currentP) // code not provided
PutinTimedQ (sema4lID, currentP) // code not provided
RTRQ := *currentP.RTRQptr // remove process from RTRQ

}else { *rtnptr := OK }

goto do_exit

16

semad_signal (sema4ID)

{ save working registers on stack // standard entry procedure!
kernel_busy :=true
if ((*sema4ID.count)++<0){ //unblock a process!
procID := DequeueFromSema4Q(sema4ID) // code not provided
*proclD.status := ready
if (*procID.timedRtnPtr = null) { // timed waiter!
*(*procID.timedRtnPtr) := OK // no timeout!
*procID.timedRtnPtr := null // reset to default
RemoveFromTimedQ(proclID) // code not provided
}
prioritylnsertintoRTRQ (proclD) // code not provided
}
goto do_exit

}

17

driver_sleep

{ save working registers on stack
*currentP.status := asleep
kernel_busy :=true
RTRQ :=*currentP.RTRQptr // remove from RTRQ
goto do_exit

18

H/W ISR Design
e H/W ISRs:

1. start in the kernel — increment counter of nested
interrupts in progress (leave ints disabled)

2. If App int: Perform SWI to App ISR (ints disabled)

« App ISR executes RTI - returns to kernel, ints
disabled

o If Timer int: do timer processing

3. Perform ISR exit procedure: decrement nested
counter

o Do kernel behaviour if needed

19

Major Issue: Protect Kernel

e ISR can't invoke kernel activity if kernel is busy
e Solution: ISR leaves “request for work” and then
finishes ... must run to completion

— Kernel services check for requests before leaving
(part of do_exit)

— If finds requests, do associated processing that
would have been done by ISR if kernel was not busy

e Multiple concurrent interrupts?
— Last one to finish does requested work

20

Managing Driver_Awake Calls

e Request a driver to be awoken by putting driver id
in AwakeTable
— Order in table is irrelevant

e AwakeTable: array of Driver (Process) IDs
— Assume max size = 8 (assuming 8 int sources)

e AwakeTablelndex: index of next free entry in table
— Initially: 0

Draw on board?

21

driver_awake(driver process id)

[called by ISR!]
{ /l'just log the request here

/... process later in ISR exit code!!

disable //protect!

AwakeTable[AwakeTablelndex++]

:= driver process id

RTI // restores interrupt state & con'’t

} Expand on board?

Include interrupt state/PSW
2

ISR Detalls

e ProcessorVectorTable: hardware vectors ISR though
this table

e Do Nothing ISR ... int not used in application
e App_ISR_Table: saves application ISR addresses

e Do Something ISR ... unique ISR for each interrupt level
used by App (and timer) ... installed in
ProcessVectorTable ... will (eventually) redirect through
App_ISR_Table

e int_count: counter of currently active (nested) interrupts
— Initially =0

23

Kernel ISR Design

App ISR Table do_timer

Do
Nothing

Driver

\ ISR

Awake

int_count
cessor Vector T4

g

24

Do-Nothing ISR

/[at this point: interrupts are disabled
RTI // pop return address and PSW

/l PSW contents will re-enable interrupts
/[at the processor

In theory, these interrupts should never occur!!

25

install_ISR (intNo, ISRaddress)
[kernel service]

{ disable // be safe!
App_ISR_table[intNo] := ISRaddress
ProcessorVectorTable[intNo]
:= appropriate “do something” ISR (slide 28)
RTI // return from service, restore interrupt state
}
(assume timer is “installed” on interrupt 2
install INT2ISR in processor vector table)

26

Timer (Application) ISR

e Treat it like an application ISR, but code is in kernel ©
e Allit does is:

do_timer = true // request work

re-enable interrupts at the controller

RTI // back to kernel ISR manager
e Requested work will be done in exit code ©

27

DO0-Something ISR

/I one of these for each interrupt number in use by app
IntxISR: // for interrupt number X

save 15t working register (call it Regl)
Regl := X //ISR specific! E.g. X = 2 for timer
goto common_ int_entry

/I one common entry is shared by all Do-Something ISRs
common_int_entry:
save rest of working registers

int_count++ /l'log the start of a new ISR
/I now do the body of the ISR:

SWI App_ISR_table[Regl1] //launch app ISR
/I return from App ISR will return to this point

- ints were disabled when SWI executed so they will be disabled
here too!! (after ISR executes RTI) © follow with exit code

28

Stack State & Interrupt State?

e Go back to slides 24 and 28 and develop
state over time on board

e Show tables and variable
... sequences ...

29

Kernel ISR exit code

[remember: ints are disabled here!]
if ((--int_count !'= 0) OR kernel_busy){
/] easy case ... exit processing will be done later
restore working registers
RTI
/l interrupt state will be returned to state at time of the
/l interrupt by RTI
}
/[at this point, int_count == 0 AND kernel_busy = false
/l... do exit processing - involves kernel activity
kernel_busy :=true
/I do-any-pending-work ... (next slide ... ints are still
disabled)

30

do-any-pending-work
do_exit: € entry from kernel services too ! ©
[interrupts must be disabled here for loop test!!]
disable //if already disabled ... won't matter
while ((AwakeTablelndex > 0) OR do_timer) do
{ /I may have to iterate several times to finish work
enable
Il kernel_busy is set, so interrupts can safely happen
do-specific-requested-work (timer or awake driver(s))
disable // and check loop again
} /l ints disabled when exit loop ... continue on slide 33
let's look at doing specific requested work first ...

31

Specific Requested Work:
Awaken Sleeping Driver
disable
/l this is a critical region
1 - AwakenTable shared with ISRs
driverID := AwakenTable[--AwakenTablelndex]
enable
*driverID.status = ready
PrioritylnsertintoRTRQ(driverID)
/l that's all for now ©

32

Specific Requested Work:

Timer processing (no code?) ®
e Set do_timer false

e Walk the queue of timed-blocked processes

e For each:
— Decrement the time_count
— If the count is not zero, leave process blocked

— Otherwise: remove from the sema4Q and the
TimedQ, return status := timed_out, and put
process in the RTRQ with status = ready

¢ Must also increment count of sema4!
— Perform with interrupts enabled (kernel_busy!)

33

Continuing after requested

work
[ints still disabled!]

if (RTRQ !=currentP) { // context switch is needed!
/I RTRQ already manipulated! ... just save context
save registers outside of working subset
*currentP.SP := SPreg // save stack pointer
currentP := RTRQ
SPreg := *currentP.SP
restore registers outside of working subset

And Finally ...

I release the process:
kernel_busy :=false
restore working register subset
RTI Il PSW restores interrupt state

©

35

