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Common Approaches For 
Real-Time Scheduling

� Clock -Driven (Time -Driven) : scheduling 
decision points are specified a priori (static)

� Weighted Round -Robin : weighted jobs join 
a FIFO queue – weight determines amount of 

( Liu Ch. 4 )
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a FIFO queue – weight determines amount of 
processor time allocated to the job  �

� Priority -Driven (Event-Driven) : scheduling 
decisions are made as events occur 
(dynamic)
– schedule ready job with highest priority



Clock -Driven Scheduling
� job parameters are known a priori
� job schedule precomputed off-line and 

stored as a table for use at run-time
� table -driven scheduler

� scheduling decision times in clock-driven 
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� scheduling decision times in clock-driven 
system is defined a priori; 
– scheduler periodically wakes up and generates 

next portion of the schedule (from the table)



Clock -Driven Scheduling

� Applicable when system is deterministic
– only a few aperiodic and sporadic jobs

� Some assumptions
– N periodic tasks in the system
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– N periodic tasks in the system
– task parameters known a priori
– each job is ready for execution as soon as 

it is released



Simplifying Assumptions

� Each task denoted by the tuple 
( pi, ei, Di )

� Sometimes only the period and 
execution time is provided all tasks have a 
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execution time is provided
– relative deadline = period 
– critical instant at time = 0 !
– denote tasks as pair (p i, ei)

all tasks have a 
job ready at time 0



How to Schedule?
� supported by hardware timer
� at run-time the scheduler dispatches jobs 

according to the preconceived schedule 
designed off-line
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� the problem then becomes, how to design 
this periodic static schedule or cyclic 
schedule



Example
� consider the following tasks and schedule:
{T1= (4,1) , T2= (5,1.8), T3 = (20,1) , T4 = (20,2)}

repeats every 
hyperperiod H = 20

slack timecritical 
instant

T1 T2 T3 T4
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0 4 6 8 10 122 14 16 18 20 22 24

...

hyperperiod H = 20
slack time

T1 T1 T1 T1 T1T3 T2T4 T1

instant

T2T2T2

critical 
instant

schedule was designed arbitrarily! 

T3 T2



Simple Table Driven Scheduler 
Implementation for Example:

� organize “blocks of activities” in hyperperiod

T T T T TT TT TTT

B1 B2 B3 B4 B5
0 4 6.5 12 16 18

burst start times:

B6
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0 4 6 8 10 122 14 16 18 20

T1 T1 T1 T1 T1T3 T2T4 T2T2T2

B1:
call T1     
call T3 
call T2

B2:
call T1     

B3:
call T4     
call T2 
call T1

etc.



Organize Blocks in HTable

Block Relative 
StartTime

B1 4

B2 2.5

Relative time 
until start of 
next burst
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B2 2.5

B3 5.5

B4 4

B5 2

B6 2



Static Clock -Driven Scheduler 
based on HTable

i = 0 ; 
<set timer to expire at time HTable[i].StartTime>
call HTable[i].Block;

cyclic repetition!
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timer ISR
i =  i+1  MOD  #of bursts;
<set timer to expire at time HTable[i].StartTime >
call HTable[i].Block;

cyclic repetition!



Analysis of Example

� arbitrary schedule
� could # of blocks be reduced?
� could # of blocks increase?

– worst case = one task per time interrupt?
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– worst case = one task per time interrupt?

� is there a more systematic approach?



Frame Scheduling
NB: static (off-line) scheduling!
� partition hyperperiod H into equal-sized 

frames
� constant frame length f = frame size
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� H is an integral multiple of f

� scheduling decision for a frame made at the 
start of the frame
– no preemption within frame



Frame Monitoring
� scheduler must be designed to ensure 

that at start of each frame:
1. jobs scheduled for execution in frame 

have been released and are ready

Feb 25, 2014 13

2. overrun does not occur
– i.e. jobs in previous frames completed 

3. jobs in the frame will meet their deadlines 
if completed by end of frame



Frame Size Constraints

� every job must be able to start and 
complete within a frame:

f ≥ max (e i)
� for at least one task Ti:     p i / f  – p i / f    =   0
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� for at least one task Ti:     p i / f  – p i / f    =   0

 floor function 
(round down, 
integer result)

Why?

So frame divides evenly 
into hyperperiod.



Frame Size Constraints (2)
� to ensure that every job completes by its 

deadline:  want f small enough that there is 
at least one frame between the release time 
and deadline of each job

ensures that job 
has a frame in 
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� Liu concludes constraint met when:
2f  – gcd ( p i , f ) ≤ Di

r D

frame has a frame in 
which to execute

gcd = greatest 
common divisor



Cyclic Schedule Creation 
for Previous Example

T = {(4, 1), (5, 1.8), (20, 1), (20, 2)}

� Constraints on possible values of f
f ≥  max (1, 1.8, 1, 2)   ≥ 2
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f ≥  max (1, 1.8, 1, 2)   ≥ 2
f = a divisor of one pi   

� one of  1, 2, 4, 5, 10, 20
2f – gcd (pi,f) ≤ Di    ????

satisfy first 
constraint



Determining f
consider 2f – gcd (pi,f) ≤ Di    for  2, 4, 5, 10, 20

pi Di 2f –gcd(pi, f=2 f=4 f=5 f=10   f=20 )
4 4 4-2 8-4 10-1 20-2 40-2
5 5 4-1 8-1 10-5 20-5 40-2
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5 5 4-1 8-1 10-5 20-5 40-2
20 20 4-2 8-4 10-5 20-10 40-2
� therefore, f = 2 only case to satisfy!



Cyclic Schedule with f = 2

� possible schedule :
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0 4 6 8 10 122 14 16 18 20

T1 T1 T1 T1 T1T3 T2T4 T2T2T2

H



Problems with Frame 
Constraints?

� what if tasks won’t all satisfy constraints?
� e.g. can’t meet both:

– minimum f to ensure a frame between release 
and deadline, and
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and deadline, and
– f greater than execution time

� can’t ensure that a job will be able to 
complete in one frame! ???



Job Slices

� solution: partition jobs of a task into 
slices with smaller execution times

ei

execution time execution time 

ei1 ei2
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� schedule slices in different frames
� planned preemption!

execution time 
before

execution time 
after



Design Decisions:

1. choose frame size f
2. partition jobs into slices
3. places slices in frames
� choices are not independent !
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� choices are not independent !
– algorithm for choices in Liu 5.8



Cyclic Executives

� modify clock-driven scheduler to make 
scheduling decisions on frame boundaries
– don’t need to adjust timer
– job slices are organized into blocks

use slack time to execute aperiodic/sporadic
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� use slack time to execute aperiodic/sporadic
jobs   (NB. dynamic, not static decisions!!)
– special “servers” ?
– run in background ?



Overrun

� if current block not completed by time 
next block starts � frame overrun !

� options:
– abort the offending block
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– abort the offending block
– let block complete in background
– finish the job and force others to be late

� exception handling!  (gnarly)



Improving Response of 
Aperiodic Jobs

� can use knowledge of deadlines to 
advantage!

� all slices in a block must complete within their 
frame

no advantage to completing earlier vs. later in the 
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– no advantage to completing earlier vs. later in the 
frame

� instead of allocating slack at end of frame, 
could use it at beginning! 



Slack Stealing

� execute aperiodic jobs ahead of periodic 
jobs in a frame whenever possible

frame
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required 
for block

available for 
aperiodic

frame

vs.



Slack Stealing Further

� scheduler can allow aperiodic jobs to 
execute whenever there is slack in a frame

� could interleave between slices in a block
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� increases aperiodic throughput
� increases (management) overhead !

s1 vs.s2 s1 s2



Sporadic Jobs

� hard deadlines!
� assume minimum release, max execution 

and deadline times are known
� when sporadic job released – perform an 
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� when sporadic job released – perform an 
acceptance test :
– if jobs already scheduled + new job are feasible
� then admit the job



Sporadic Job Deadline

� sporadic job can use any slack available in 
any frame prior to its deadline

� if enough slack exists to meet deadline, then 
admit and schedule the job
if insufficient slack – reject the job 
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� if insufficient slack – reject the job 
immediately

� if more than one sporadic job waiting – order 
them earliest deadline first



Implementation

� sporadic job queue � EDF ordering
� in each frame:
1. execute the periodic block first
2. then dynamically accept (or reject) from 
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2. then dynamically accept (or reject) from 
sporadic job queue

3. then allow aperiodic jobs
� Liu text has more details (5.6.3)



Mode Changes

� changes in operational mode can impact 
schedule

� mode change � “reconfigure” system
– possibly different set of jobs
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– possibly different set of jobs
– possibly different job parameters
– may need initialization phase to delete “old jobs” 

and initialize “new jobs”



Mode Changes (con’t)

� change scheduling table for periodic jobs
� how to handle outstanding sporadic jobs 

from “old” mode?
– must still meet their deadlines (?)
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– must still meet their deadlines (?)
– may not be possible due to reduced amounts 

of slack available (?)
– requires careful handling (gnarly)



Summary of Cyclic Executive
“loop forever” :
� wake up and execute at tf intervals (frame 

boundaries)
� retrieve the data structure which defines a frame
� wake up the periodic task server
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� wake up the periodic task server
� service the sporadic job queue
� service the aperiodic job queue
� perform general maintenance

– manage slack time, perform error checking



Pros of Clock -Driven Scheduling

advantages of clock-driven scheduling:
� simple to understand
� the validation problem is very easy 

(deterministic)
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(deterministic)
� precedence and dependency can be dealt 

with off-line by choice of the schedule



Cons of Clock -Driven Scheduling
disadvantages of clock-driven scheduling:
� not well suited for applications with varying 

temporal & resource requirements 
– where exact nature of the workload model is 

not known a priori
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not known a priori

� not always easy to design,  usually hard to 
change !

� sophisticated approaches  � overheads


