
SYSC 5701
Operating System Methods for

Real-Time ApplicationsReal-Time Applications

Clock -Driven Scheduling

Winter 2014

Common Approaches For
Real-Time Scheduling

� Clock -Driven (Time -Driven) : scheduling
decision points are specified a priori (static)

� Weighted Round -Robin : weighted jobs join
a FIFO queue – weight determines amount of

(Liu Ch. 4)

Feb 25, 2014 2

a FIFO queue – weight determines amount of
processor time allocated to the job �

� Priority -Driven (Event-Driven) : scheduling
decisions are made as events occur
(dynamic)
– schedule ready job with highest priority

Clock -Driven Scheduling
� job parameters are known a priori
� job schedule precomputed off-line and

stored as a table for use at run-time
� table -driven scheduler

� scheduling decision times in clock-driven

Feb 25, 2014 3

� scheduling decision times in clock-driven
system is defined a priori;
– scheduler periodically wakes up and generates

next portion of the schedule (from the table)

Clock -Driven Scheduling

� Applicable when system is deterministic
– only a few aperiodic and sporadic jobs

� Some assumptions
– N periodic tasks in the system

Feb 25, 2014 4

– N periodic tasks in the system
– task parameters known a priori
– each job is ready for execution as soon as

it is released

Simplifying Assumptions

� Each task denoted by the tuple
(pi, ei, Di)

� Sometimes only the period and
execution time is provided all tasks have a

Feb 25, 2014 5

execution time is provided
– relative deadline = period
– critical instant at time = 0 !
– denote tasks as pair (p i, ei)

all tasks have a
job ready at time 0

How to Schedule?
� supported by hardware timer
� at run-time the scheduler dispatches jobs

according to the preconceived schedule
designed off-line

Feb 25, 2014 6

� the problem then becomes, how to design
this periodic static schedule or cyclic
schedule

Example
� consider the following tasks and schedule:
{T1= (4,1) , T2= (5,1.8), T3 = (20,1) , T4 = (20,2)}

repeats every
hyperperiod H = 20

slack timecritical
instant

T1 T2 T3 T4

Feb 25, 2014 7

0 4 6 8 10 122 14 16 18 20 22 24

...

hyperperiod H = 20
slack time

T1 T1 T1 T1 T1T3 T2T4 T1

instant

T2T2T2

critical
instant

schedule was designed arbitrarily!

T3 T2

Simple Table Driven Scheduler
Implementation for Example:

� organize “blocks of activities” in hyperperiod

T T T T TT TT TTT

B1 B2 B3 B4 B5
0 4 6.5 12 16 18

burst start times:

B6

Feb 25, 2014 8

0 4 6 8 10 122 14 16 18 20

T1 T1 T1 T1 T1T3 T2T4 T2T2T2

B1:
call T1
call T3
call T2

B2:
call T1

B3:
call T4
call T2
call T1

etc.

Organize Blocks in HTable

Block Relative
StartTime

B1 4

B2 2.5

Relative time
until start of
next burst

Feb 25, 2014 9

B2 2.5

B3 5.5

B4 4

B5 2

B6 2

Static Clock -Driven Scheduler
based on HTable

i = 0 ;
<set timer to expire at time HTable[i].StartTime>
call HTable[i].Block;

cyclic repetition!

Feb 25, 2014 10

timer ISR
i = i+1 MOD #of bursts;
<set timer to expire at time HTable[i].StartTime >
call HTable[i].Block;

cyclic repetition!

Analysis of Example

� arbitrary schedule
� could # of blocks be reduced?
� could # of blocks increase?

– worst case = one task per time interrupt?

Feb 25, 2014 11

– worst case = one task per time interrupt?

� is there a more systematic approach?

Frame Scheduling
NB: static (off-line) scheduling!
� partition hyperperiod H into equal-sized

frames
� constant frame length f = frame size

Feb 25, 2014 12

� H is an integral multiple of f

� scheduling decision for a frame made at the
start of the frame
– no preemption within frame

Frame Monitoring
� scheduler must be designed to ensure

that at start of each frame:
1. jobs scheduled for execution in frame

have been released and are ready

Feb 25, 2014 13

2. overrun does not occur
– i.e. jobs in previous frames completed

3. jobs in the frame will meet their deadlines
if completed by end of frame

Frame Size Constraints

� every job must be able to start and
complete within a frame:

f ≥ max (e i)
� for at least one task Ti: p i / f – p i / f = 0

Feb 25, 2014 14

� for at least one task Ti: p i / f – p i / f = 0

 floor function
(round down,
integer result)

Why?

So frame divides evenly
into hyperperiod.

Frame Size Constraints (2)
� to ensure that every job completes by its

deadline: want f small enough that there is
at least one frame between the release time
and deadline of each job

ensures that job
has a frame in

Feb 25, 2014 15

� Liu concludes constraint met when:
2f – gcd (p i , f) ≤ Di

r D

frame has a frame in
which to execute

gcd = greatest
common divisor

Cyclic Schedule Creation
for Previous Example

T = {(4, 1), (5, 1.8), (20, 1), (20, 2)}

� Constraints on possible values of f
f ≥ max (1, 1.8, 1, 2) ≥ 2

Feb 25, 2014 16

f ≥ max (1, 1.8, 1, 2) ≥ 2
f = a divisor of one pi

� one of 1, 2, 4, 5, 10, 20
2f – gcd (pi,f) ≤ Di ????

satisfy first
constraint

Determining f
consider 2f – gcd (pi,f) ≤ Di for 2, 4, 5, 10, 20

pi Di 2f –gcd(pi, f=2 f=4 f=5 f=10 f=20)
4 4 4-2 8-4 10-1 20-2 40-2
5 5 4-1 8-1 10-5 20-5 40-2

Feb 25, 2014 17

5 5 4-1 8-1 10-5 20-5 40-2
20 20 4-2 8-4 10-5 20-10 40-2
� therefore, f = 2 only case to satisfy!

Cyclic Schedule with f = 2

� possible schedule :

Feb 25, 2014 18

0 4 6 8 10 122 14 16 18 20

T1 T1 T1 T1 T1T3 T2T4 T2T2T2

H

Problems with Frame
Constraints?

� what if tasks won’t all satisfy constraints?
� e.g. can’t meet both:

– minimum f to ensure a frame between release
and deadline, and

Feb 25, 2014 19

and deadline, and
– f greater than execution time

� can’t ensure that a job will be able to
complete in one frame! ???

Job Slices

� solution: partition jobs of a task into
slices with smaller execution times

ei

execution time execution time

ei1 ei2

Feb 25, 2014 20

� schedule slices in different frames
� planned preemption!

execution time
before

execution time
after

Design Decisions:

1. choose frame size f
2. partition jobs into slices
3. places slices in frames
� choices are not independent !

Feb 25, 2014 21

� choices are not independent !
– algorithm for choices in Liu 5.8

Cyclic Executives

� modify clock-driven scheduler to make
scheduling decisions on frame boundaries
– don’t need to adjust timer
– job slices are organized into blocks

use slack time to execute aperiodic/sporadic

Feb 25, 2014 22

� use slack time to execute aperiodic/sporadic
jobs (NB. dynamic, not static decisions!!)
– special “servers” ?
– run in background ?

Overrun

� if current block not completed by time
next block starts � frame overrun !

� options:
– abort the offending block

Feb 25, 2014 23

– abort the offending block
– let block complete in background
– finish the job and force others to be late

� exception handling! (gnarly)

Improving Response of
Aperiodic Jobs

� can use knowledge of deadlines to
advantage!

� all slices in a block must complete within their
frame

no advantage to completing earlier vs. later in the

Feb 25, 2014 24

– no advantage to completing earlier vs. later in the
frame

� instead of allocating slack at end of frame,
could use it at beginning!

Slack Stealing

� execute aperiodic jobs ahead of periodic
jobs in a frame whenever possible

frame

Feb 25, 2014 25

required
for block

available for
aperiodic

frame

vs.

Slack Stealing Further

� scheduler can allow aperiodic jobs to
execute whenever there is slack in a frame

� could interleave between slices in a block

Feb 25, 2014 26

� increases aperiodic throughput
� increases (management) overhead !

s1 vs.s2 s1 s2

Sporadic Jobs

� hard deadlines!
� assume minimum release, max execution

and deadline times are known
� when sporadic job released – perform an

Feb 25, 2014 27

� when sporadic job released – perform an
acceptance test :
– if jobs already scheduled + new job are feasible
� then admit the job

Sporadic Job Deadline

� sporadic job can use any slack available in
any frame prior to its deadline

� if enough slack exists to meet deadline, then
admit and schedule the job
if insufficient slack – reject the job

Feb 25, 2014 28

� if insufficient slack – reject the job
immediately

� if more than one sporadic job waiting – order
them earliest deadline first

Implementation

� sporadic job queue � EDF ordering
� in each frame:
1. execute the periodic block first
2. then dynamically accept (or reject) from

Feb 25, 2014 29

2. then dynamically accept (or reject) from
sporadic job queue

3. then allow aperiodic jobs
� Liu text has more details (5.6.3)

Mode Changes

� changes in operational mode can impact
schedule

� mode change � “reconfigure” system
– possibly different set of jobs

Feb 25, 2014 30

– possibly different set of jobs
– possibly different job parameters
– may need initialization phase to delete “old jobs”

and initialize “new jobs”

Mode Changes (con’t)

� change scheduling table for periodic jobs
� how to handle outstanding sporadic jobs

from “old” mode?
– must still meet their deadlines (?)

Feb 25, 2014 31

– must still meet their deadlines (?)
– may not be possible due to reduced amounts

of slack available (?)
– requires careful handling (gnarly)

Summary of Cyclic Executive
“loop forever” :
� wake up and execute at tf intervals (frame

boundaries)
� retrieve the data structure which defines a frame
� wake up the periodic task server

Feb 25, 2014 32

� wake up the periodic task server
� service the sporadic job queue
� service the aperiodic job queue
� perform general maintenance

– manage slack time, perform error checking

Pros of Clock -Driven Scheduling

advantages of clock-driven scheduling:
� simple to understand
� the validation problem is very easy

(deterministic)

Feb 25, 2014 33

(deterministic)
� precedence and dependency can be dealt

with off-line by choice of the schedule

Cons of Clock -Driven Scheduling
disadvantages of clock-driven scheduling:
� not well suited for applications with varying

temporal & resource requirements
– where exact nature of the workload model is

not known a priori

Feb 25, 2014 34

not known a priori

� not always easy to design, usually hard to
change !

� sophisticated approaches � overheads

