Operating System Methods for
Real-Time Applications

Clock -Driven Scheduling

Winter 2014

?y\/Common Approaches For
Real-Time Scheduling (LiuCh.4)

. scheduling
decision points are specified a priori (static)
. weighted jobs join
a FIFO queue — weight determines amount of
processor time allocated to the job ®

o . scheduling
decisions are made as events occur
(dynamic)

— schedule ready job with highest priority

Feb 25, 2014 g% Carleton

o UNIVERSITY

Clock -Driven Scheduling

® job parameters are known a priori

e |ob schedule precomputed off-line and
stored as a table for use at run-time

- table -driven scheduler

e scheduling decision times in clock-driven
system Is defined a priori;

— scheduler periodically wakes up and generates
next portion of the schedule (from the table)

Feb 25, 2014 ﬂ Carleton

UNIVERSITY

Clock -Driven Scheduling

e Applicable when system is deterministic
— only a few aperiodic and sporadic jobs

® Some assumptions
— N periodic tasks In the system
— task parameters known a priori

— each job is ready for execution as soon as
it Is released

Feb 25, 2014 g% Carleton

— UNIVERSITY

Simplifying Assumptions

e Each task denoted by the tuple

(P; &, D)
e Sometimes only the period and
execution time is provided all tasks have a
— relative deadline = period Job ready at time O
— attime =0!
— denote tasks as pair (p;, €;)

Feb 25, 2014 g% Carleton

— UNIVERSITY

How to Schedule?

e supported by hardware timer

e at run-time the scheduler dispatches jobs
according to the preconceived schedule
designed off-line

ot
t

ne problem then becomes, how to design

nis periodic static schedule or cyclic

schedule

Feb 25, 2014 g% Carleton

Example

e consider the following tasks and schedule:
{T.=41),T,=(51.8), T;=(20,1), T, = (20,2)}

T .| T 7]

repeats every

slack time

2 B A A

2 4 6 8 10 12

schedule was designed arbitrarily!

Feb 25, 2014 g% Carleton

— UNIVERSITY

Simple Table Driven Scheduler

Implementation for Example:
e organize “blocks of activities” in hyperperiod

B4 B5 B6

T)][

4 8 10 12 14 16 18 20
Bl: B2: B3:
calT1 callTl call T4
call T3 call T2
call T2 call T1

etc.

Feb 25, 2014 ﬂ Carleton

Organize Blocks in HTable

Feb 25, 2014

Block

Relative
StartTime

+— Relative time

until start of

Bl

A4

next burst

B2

2.5

B3

5.5

B4

BS

B6

s Carleton

— UNIVERSITY

Static Clock -Driven Scheduler

based on HTable
1=0;
<set to expire at time HTable[i].StartTime>
call HTable[i].Block;

/ cyclic repetition!

| = 1+1 MOD #of bursts;
<set to expire at time HTable[i].StartTime >
call HTable[i].Block;

Feb 25, 2014 g% Carleton

— UNIVERSITY

Analysis of Example

e arbitrary sched
e could # of bloc
e could # of bloc

ule
KS be reduced?

KS INncrease”?

— worst case = one task per time interrupt?

e IS there a more systematic approach?

Feb 25, 2014

Carleton

— UNIVERSITY

Frame Scheduling

NB: static (off-line) scheduling!

e partition hyperperiod H into equal-sized
HEINES

e constant frame length f = frame size

o H s an integral multiple of f

e scheduling decision for a frame made at the
start of the frame

— no preemption within frame

Feb 25, 2014 g% Carleton

— UNIVERSITY

Frame Monitoring

e scheduler must be designed to ensure
that at start of each frame:

1. Jobs scheduled for execution In frame
have been released and are ready

2. overrun does not occur
— I.e. Jobs In previous frames completed

3. Jobs in the frame will meet their deadlines
If completed by end of frame

Feb 25, 2014 g% Carleton

— UNIVERSITY

Frame Size Constraints

e every job must be able to start and
complete within a frame:

f > max (e))
e for atleastonetask Ti: [p /f] - p;/f = 0

| floor function J/ Why?

(round down,
integer result) So frame divides evenly

Into hyperperiod.

Feb 25, 2014 g% Carleton

— UNIVERSITY

Frame Size Constraints (2)

e {0 ensure that every job completes by its
deadline: want f small enough that there Is
at least one frame between the release time

and deadline of each job |
ensures that job

has a frame In
which to execute

e Liu concludes constraint met when:

2f — gcd (p;,f) =D

gcd = greatest
common divisor

Feb 25, 2014 g% Carleton 15

— UNIVERSITY

Cyclic Schedule Creation

for Previous Example
T ={(4, 1), (5, 1.8), (20, 1), (20, 2)}

e Constraints on possible values of f

f=z2 max(1,1.8,1,2) =2
f = a divisor of one p. &

>oneof 1, 2, 4,5, 10, 20
2f — gcd (p,,f) = D; 2?7?77

satisfy first
constraint

Feb 25, 2014 ﬂ Carleton

Determining f
consider 2f —gcd (p,,f) = D, for 2,4,5, 10, 20

2f —gcd(p,
— o

f=2
~4-2

f=4
8-4

f=5
10-1

f=10
20-2

4-1

8-1

10-5

20-35

4-2

8-4

10-5

20-10

e therefore, f = 2 only case to satisfy!

Feb 25, 2014

s Carleton

UNIVERSITY

Cyclic Schedule with f = 2

e possible schedule :

|]] [m]

14 16 18

Feb 25, 2014

Problems with Frame

Constraints?

e what If tasks won't all satisfy constraints?

® €.g. can’'t meet both:

— minimum f to ensure a frame between release
and deadline, and

— f greater than execution time

e can’'t ensure that a job will be able to
complete in one frame! ???

Feb 25, 2014 g% Carleton

— UNIVERSITY

Job Slices

e solution: partition jobs of a task into
slices with smaller execution times

BN D

execution time execution time
before after

e schedule slices in different frames
e planned preemption!

Feb 25, 2014 g% Carleton

— UNIVERSITY

Design Decisions:

choose frame size f
partition jobs into slices
places slices In frames

choices are not independent !
— algorithm for choices in Liu 5.8

Feb 25, 2014 g% Carleton

— UNIVERSITY

Cyclic Executives

e modify clock-driven scheduler to make
scheduling decisions on frame boundaries

— don’t need to adjust timer
— Job slices are organized into blocks
e use slack time to execute aperiodic/sporadic
jobs (NB. dynamic, not static decisions!!)
— special “servers” ?
— run in background ?

Feb 25, 2014 g% Carleton

— UNIVERSITY

Overrun

e If current block not completed by time
next block starts - frame overrun !
e options:
— abort the offending block
— let block complete in background
— finish the job and force others to be late

e exception handling! (gnarly)

Feb 25, 2014 g% Carleton

— UNIVERSITY

Improving Response of
Aperiodic Jobs

e can use knowledge of deadlines to
advantage!

e all slices in a block must complete within their
frame

— no advantage to completing earlier vs. later in the
frame

e instead of allocating slack at end of frame,
could use it at beginning!

Feb 25, 2014 g% Carleton

Slack Stealing

e execute aperiodic jobs ahead of periodic
jobs In a frame whenever possible

frame
A

required available for
for block aperiodic

Feb 25, 2014 ﬂ Carleton

UNIVERSITY

Slack Stealing Further

e scheduler can allow aperiodic jobs to
execute whenever there Is slack in a frame

e could Iinterleave between slices In a block

OEEw - IEE

® Increases aperiodic throughput
- Increases (management) overhead !

Feb 25, 2014 ﬂ Carleton

UNIVERSITY

Sporadic Jobs

e hard deadlines!

® assume minimum release, max execution
and deadline times are known

e when sporadic job released — perform an

— If jobs already scheduled + new job are
- then admit the job

Feb 25, 2014 g% Carleton

— UNIVERSITY

Sporadic Job Deadline

e sporadic job can use any slack available in
any frame prior to its deadline

e If enough slack exists to meet deadline, then
admit and the job

e If Insufficient slack — reject the job
Immediately

e If more than one sporadic job waiting — order
them earliest deadline first

Feb 25, 2014 g% Carleton

Implementation

sporadic job queue -
In each frame:
execute the periodic b

then dynamically acce
sporadic job queue

EDF ordering

ock first

ot (or reject) from

then allow aperiodic jobs
Liu text has more details (5.6.3)

Feb 25, 2014 g% Carleton

Mode Changes

e changes in operational mode can impact
schedule

e mode change = “reconfigure” system
— possibly different set of jobs
— possibly different job parameters

— may need Initialization phase to delete “old jobs”
and initialize “new jobs”

Feb 25, 2014 g% Carleton

— UNIVERSITY

Mode Changes (con't)

e change scheduling table for periodic jobs

e how to handle outstanding sporadic jobs
from “old” mode?
— must still meet their deadlines (?)

— may not be possible due to reduced amounts
of slack available (?)

— requires careful handling (gnarly)

Feb 25, 2014 g% Carleton

— UNIVERSITY

Summary of Cyclic Executive

“loop forever” :

e wake up and execute at tf intervals (frame
boundaries)

e retrieve the data structure which defines a frame

e wake up the periodic task server

e service the sporadic job queue
e service the aperiodic job queue

e perform general maintenance
— manage slack time, perform error checking

Feb 25, 2014 g% Carleton

— UNIVERSITY

Pros of Clock -Driven Scheduling

of clock-driven scheduling:
e simple to understand

e the validation problem is very easy
(deterministic)

e precedence and dependency can be dealt
with off-line by choice of the schedule

Feb 25, 2014 g% Carleton

Cons of Clock -Driven Scheduling

of clock-driven scheduling:
e not well suited for applications with varying
temporal & resource requirements

— where exact nature of the workload model Is
not known a priori

e not always easy to design, usually hard to
change !

e sophisticated approaches - overheads

Feb 25, 2014 g% Carleton

— UNIVERSITY

