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Winter 2014

Common Problems: Coding

* Code Documentation: Some documentation
appears to be written by people who have
never read someone else’s code (as a learning
experience)

* Coding style: See comment above
* Magic numbers: what do they mean?

e Parts 1 and 2 as a single file with no comment
about what was different in the two (i.e. just
code for Part 2).

* Results don’t match the submitted code ®
* Results are obviously wrong ® ®

Common Problems: Technical

* Timer configuration: Not getting the
intended/desired frequencies
— System clock, timer clock, interrupt rate (10 ms)

* Pre-scaling execution timer to a much slower rate

— E.G. processor @ 80 MHz but timer @ 10 KHz
¢ 80 MHz: 80Mtick = 12.5 nanoseconds
¢ 10 KHz: 10Ktick = 100 microseconds = 8,000 x 80MTick
— Accuracy in measuring overhead?
— ISR overhead ~40+ cycles: 1 10Ktick =~ 200 x ISR

e “Volatile” used “everywhere”

Interrupt Function

* No one declared their ISR (part 2) as an interrupt
function ® (in CCS: interrupt, in Keil: __irq)
interrupt void myISRFunction () { ...
e Well ... OK ... not strictly needed for Cortex-M4 ©
* ARM processor has “modes” of operation

—1 hinted at this in the discussion of Assignment 1:
SysTick timer requires privileged access ...

* ARM processor bank-switches registers when
changes mode (i.e. into IRQ mode to service
interrupt)

— Must change mode back to original mode when
leaving ISR

ARMV7 Program Status Register (PSR)
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* Condition code flags * GEbits: SIM
— N = Negative result from ALU

¢ Interrupt Disf¥le bits.

— | =1: Disables the IRQ,

— 2= Zero result from ALU
— C=ALU operation Carried out

— V= ALU operation oVerflowed — F =1:Disables the FlQ.
¢« T bit:
¢ | T bits: Controls special conditional —  T=0: Processor in ARM state
execution of Thumb2 — T=1:Processor in Thumb state
¢ Ebit: endianness of load/store * Mode bits

¢ Abit: disable special type of Abort (Data) — Specify the processor mode

Two PSR registers: Current PSR (CPSR) , Saved PSR (SPSR)

SP : Stack Pointer

. LR : Link Register
Reglster Set & MOd eS PC: Program Counter
CPSR: Current Program Status Register
SPSR: Saved Program Status Register
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Banked out Registers NB: Cortex-M4 has some subtle differences
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Cortex-M Interrupt Handling

Interrupt: change mode!

Push on stack:
CPSR ( with

mode = User),
return address,
some registers

CPSR to SPSR

Saves “special”

return address

ri3 (sp)
ri4 (Ir)
r15 (pc)

——)

At end of ISR, must return back to
“application”
-> Load PC from LR
-> Processor sees “special” return
address:
Pops registers (from stack)
Pops return address into PC
Pops saved PSR into CPSR
restores flags,
restores | flag (= 0)
restores to User mode

Saved PSR includes application
flag values, | flag = 0 and

Back to
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Is the Cortex-M Style of Interrupt

Handling “Common” ?
Saving state on stack = YES (PSR, return address)
“Special” return address = NO
Most would include a special “return from
interrupt” instruction
— Restores PSR as well as return address

In C: “interrupt” (or “__irg”) is needed to tell the
compiler to do anything special to turn a function
into an ISR

— E.G. “return from interrupt” instead of return from
function




