Assignment 2
Feedback

Winter 2014

Common Problems: Coding

* Code Documentation: Some documentation
appears to be written by people who have
never read someone else’s code (as a learning
experience)

* Coding style: See comment above
* Magic numbers: what do they mean?

e Parts 1 and 2 as a single file with no comment
about what was different in the two (i.e. just
code for Part 2).

* Results don’t match the submitted code ®
* Results are obviously wrong ® ®

Common Problems: Technical

* Timer configuration: Not getting the
intended/desired frequencies
— System clock, timer clock, interrupt rate (10 ms)

* Pre-scaling execution timer to a much slower rate

— E.G. processor @ 80 MHz but timer @ 10 KHz
¢ 80 MHz: 80Mtick = 12.5 nanoseconds
¢ 10 KHz: 10Ktick = 100 microseconds = 8,000 x 80MTick
— Accuracy in measuring overhead?
— ISR overhead ~40+ cycles: 1 10Ktick =~ 200 x ISR

e “Volatile” used “everywhere”

Interrupt Function

* No one declared their ISR (part 2) as an interrupt
function ® (in CCS: interrupt, in Keil: __irq)
interrupt void myISRFunction () { ...
e Well ... OK ... not strictly needed for Cortex-M4 ©
* ARM processor has “modes” of operation

—1 hinted at this in the discussion of Assignment 1:
SysTick timer requires privileged access ...

* ARM processor bank-switches registers when
changes mode (i.e. into IRQ mode to service
interrupt)

— Must change mode back to original mode when
leaving ISR

ARMV7 Program Status Register (PSR)

31 28 27 24 23 19 16 15 10 9 8 7 6 5 4
IGE[S: o]| T cond_abclE Al F[T]) ode
I I

S X

[
control

* Condition code flags * GEbits: SIM
— N = Negative result from ALU

¢ Interrupt Disf¥le bits.

— | =1: Disables the IRQ,

— 2= Zero result from ALU
— C=ALU operation Carried out

— V= ALU operation oVerflowed — F =1:Disables the FlQ.
¢« T bit:
¢ | T bits: Controls special conditional — T=0: Processor in ARM state
execution of Thumb2 — T=1:Processor in Thumb state
¢ Ebit: endianness of load/store * Mode bits

¢ Abit: disable special type of Abort (Data) — Specify the processor mode

Two PSR registers: Current PSR (CPSR) , Saved PSR (SPSR)

SP : Stack Pointer

. LR : Link Register
Reglster Set & MOd eS PC: Program Counter
CPSR: Current Program Status Register
SPSR: Saved Program Status Register

Current Visible Registers

User /
System
ro
r1
r2
r3
r4
rs
ré
r7

Abort Mode FIQ IRQ SVC Undefined

ro
ri
rz2
r3

r4
rs
ré
r7
r8 r8
r9 ro

r8
r9
rio rio r1o

ril r ril ri1
ri2 r ri2 riz
ri3 (sp) ri13 (sp) ri3 (sp)| REENE]

ria (lr) ri4 (Ir) rid (Ir)| NEZQES]
r15 (pc) r15 (pe) | r15 (pe) | r15 (pc)
Current PSR cpst cpsr cpsr cpsr cpsr
Saved PSR[spst | spsr spst spst

Banked out Registers NB: Cortex-M4 has some subtle differences

Normally

execute in

this mode
User /
System

Cortex-M Interrupt Handling

Interrupt: change mode!

Push on stack:
CPSR (with

mode = User),
return address,
some registers

CPSR to SPSR

Saves “special”

return address

ri3 (sp)
ri4 (Ir)
r15 (pc)

——)

At end of ISR, must return back to
“application”
-> Load PC from LR
-> Processor sees “special” return
address:
Pops registers (from stack)
Pops return address into PC
Pops saved PSR into CPSR
restores flags,
restores | flag (= 0)
restores to User mode

Saved PSR includes application
flag values, | flag = 0 and

Back to
User /
System

ro
ri
r2
r3
r4
rs
ré
r7
r8
r9
rio
rii
riz
ri3 (sp)
ri4 (Ir)
ri5 (pc)

= M “User” mode
31 28 27 24 23 19 16 15 10 9 8 7 6 5 4 0
[Nz cv]q] | G 3: 0]| T cond_abclE Al F[T] mode]

Is the Cortex-M Style of Interrupt

Handling “Common” ?
Saving state on stack = YES (PSR, return address)
“Special” return address = NO
Most would include a special “return from
interrupt” instruction
— Restores PSR as well as return address

In C: “interrupt” (or “__irg”) is needed to tell the
compiler to do anything special to turn a function
into an ISR

— E.G. “return from interrupt” instead of return from
function

