
SYSC 5701
Operating System Methods for

Real-Time ApplicationsReal-Time Applications

Access Control
Winter 2014

Resource-Sharing
Dependencies

� A job cannot proceed (is blocked) because of
resource-sharing synchronization

� Resource-sharing requires mutually exclusive
access to the resource

� Can cause priority inversions

� We looked into the priority ceiling protocol to
deal with the priority inversions
– See slides: PCPW14

Mar 06/14 2

Properties of Basic Priority
Ceiling Protocol

� no deadlock !
� job blocks in at most one critical section

– blocking is bounded (at most one)
– no chain blocking � shorter blocking

Mar 06/14

– no chain blocking � shorter blocking
bound than Priority Inheritance Protocol

� once acquire first resource, all resources
needed will be available when requested

3

What about RM Theory?

� Priority Ceiling Protocol bounds delay to the
single largest delay of a lower priority job !
– for each job, include max. delay

� recall RM utilization test:
∑ u ≤ n (21/n – 1)

Mar 06/14

∑ u i ≤ n (21/n – 1)
� in following, assume that if i < j

– then priority τi > priority τj

4

Consider Utilization Test for
Each Task

consider τ1 case:
� B1 is the worst case time τ1 spent blocked

by lower priority tasks
C1 + B1 ≤ u(1)

Mar 06/14

1 1

T1 T1

5

Consider Each Task (con’t)

� consider τ2 case:
C1 + C2 + B2 ≤ u(2)
T1 T2 T2

Mar 06/14

T1 T2 T2

� blocking of C 1 is included in C 2 & B2 !
– ensured by protocol!

(think this through on next slide!)
� do not need to consider an “additional” B

6

Thinking Through …
� consider τ1 :

C1 + B1 ≤ u(1)
T1 T1

B1 represents max. blocking by
lower priority tasks (lower than τ1)
using resources having a priority
ceiling greater than (or equal to)
the priority of τ1

Mar 06/14

C1 + C2 + B2 ≤ u(2)
T1 T2 T2

7

If τ2 caused B1
then B1 is included
in C2 and B2 is
due to blocking by
a task with lower
priority than τ2

If τ2 did not cause B1 then B1 = B2 (same
blocking by same lower priority task)

nth case

� nth task case:
C1 + C2 + + Cn + Bn ≤ u(n)
T1 T2 Tn Tn

…

0

τn cannot be blocked by lower priority
tasks since it is the lowest priority task

Mar 06/14

� if constraints are satisfied for each case,
then task set is schedulable, i.e.:

∀i 1≤ i ≤ n ∑ u i + B i ≤ i (21/i – 1)
Ti

represents worst case utilization of τi blockage 8

Example

τ1 : T1 = 30 C1 = 10 B1 = 10
τ2 : T2 = 80 C2 = 15 B2 = 20
τ3 : T3 = 100 C3 = 25 B3 = 0

Mar 06/14

� want to consider
∀i 1≤ i ≤ n

9

Case: i = 1

� ∑ u i + B i ≤ u(1)
Ti

10 + 10 ≤ 1
30 30

Mar 06/14

30 30
� 0.66 ≤ 1 ☺

10

Case: i = 2

� ∑ u i + B i ≤ u(2)
Ti

10 + 15 + 20 ≤ 0.82
30 80 80

Mar 06/14

30 80 80
� 0.771 ≤ 0.828 ☺

11

Case: i = 3

� ∑ u i + B i ≤ u(3)
Ti

10 + 15 + 25 + 0 ≤ 0.779
30 80 100 100

Mar 06/14

30 80 100 100

0.771 ≤ 0.779 ☺

12

Simpler Test?
� can use tighter bound to avoid computing n

equations:
∑ u i + max { B 1 , B2 , . . . , Bn-1 } ≤ n (21/n – 1)

T1 T2 T n-1

� proof: ∀i 1≤ i ≤ n:

Mar 06/14

� proof: ∀i 1≤ i ≤ n:
– n (21/n – 1) ≤ i (21/i – 1)
– nth case gives tightest bound!

max { B 1 , B2 , . . . , Bn-1 } ≥ B i

T1 T2 T n-1 Ti

– max is worst case! � conservative

13

Hmmm …

� tighter bound may fail when individual
equations succeed

� previous example:
10 + 15 + 25 + max(10, 20) ≤ 0.779

Mar 06/14

30 80 100 30 80
� 0.804 ≤ 0.779 �

14

Demand Analysis Revisited
(for cases where utilization test fails)

� can formalize utilization at scheduling
points:
– denote set of scheduling points for interval

[0, T] as: S(T)
� set of scheduling points for tasks with

Mar 06/14

� set of scheduling points for tasks with
periods less than or equal to Ti:
Si (Ti) = { k ⋅ Tj | j = 0. . i ; k = 0 . . Ti / Tj }

remember: Tj ≤ Ti for j = 0 . . i !!

15

Visualize on blackboard

� maximum period in set of i + 1 tasks: T i

� set of scheduling points for the set of tasks: S i (Ti)
� utilization by tasks at scheduling point T s ∈ Si (Ti)

Scheduling Point (con’t)

Mar 06/14

 Tj

Ts

j =0

i

Cj

Ts

∑
=

number of task j
jobs released
during interval Ts

16

Min U at Scheduling Point
� for i tasks, minimum utilization over set of

scheduling points S i(Ti): Umin

= min
 Tj

Ts

j =0

i

Cj∑

Mar 06/14

= min

� Task i guaranteed schedulable when: U min ≤ 1

 Tjj =0

Ts

∑

Ts ∈ Si (Ti)

17

Scheduling Point + Blocking
� generalize Scheduling Point solution to include

blocking
� consider set of i tasks: T i is largest period
� utilization for task i must include:

single execution of job i

Mar 06/14

single execution of job i
+ all preemption by higher priority jobs
+ worst case blocking by a lower job

18

U at Scheduling Point

preemption by i – 1
higher priority tasks

worst case blocking
by a lower priority job

execution of job i

Mar 06/14

∑ Tj

Ts

j = 0

i - 1

Cj

Ts

+
Ci

Ts Ts

Bi
+

19

Schedulability Test
For all i : 0 ≤ i ≤ n , exists T s ∈ Si(Ti)

∑ Tj

Ts

j = 0

i - 1

Cj

T
+

Ci

T T

Bi
+ ≤ 1

Mar 06/14

Ts

+
Ts Ts

+ ≤ 1

20

How to compute B i ?
1. identify βi

� set of resources accessed by lower priority
tasks (lower than τi) and having a priority ceiling
greater than (or equal to) the priority of τi

� the resource accesses that might block τi !
β

Mar 06/14

2. create βi
*

� subset of βi created by merging nested critical
sections (inner section subsumed by outer
section)

3. select B i = member of βi
* with longest duration

21

τ1 : L(S1) U(S1)

τ2 : L(S2) U(S2)

B i Selection Example

1 sec

2 sec

determines ceiling of S1

determines ceiling of S2

Mar 06/14

τ2 : L(S2) U(S2)

τ3 : L(S1) L(S2) U(S2) U(S1)

Ceiling (S 1) = priority (τ1) Ceiling(S 2) = priority (τ2)

3 sec

1 sec

22

Determining B i’s
� Ceiling (S 1) = 1 Ceiling(S 2) = 2
� for τ1:

β1
* = { τ3[L(S1) U(S1)] }

∴ B1 = 3 sec

3 sec

Mar 06/14

1

� for τ2: β2
* = { τ3[L(S1) U(S1)] }

∴ B2 = 3 sec

3 sec

23

Recall Client / Server
Example

τ3

τ4

S2

only during
τ4 call

access time = 4 (including time in S1)

Mar 06/14

τ5

τ2

τ1

S1

τ4 call

access time = 3

access time = 2

access time = 1 Ceiling(S1) = Priority(τ2)

Ceiling(S2) = Priority(τ1)

24

Determining B i’s

Consider βi :

� β5 : τ5 is the lowest priority task ∴ B5 = 0

� β4 : τ4 blocked by τ5 access to S 1 ∴ B4 = 3

Mar 06/14

β4 : τ4 blocked by τ5 access to S 1 ∴ B4 = 3

� β3 : τ3 blocked by τ5 access to S 1

and by τ4 access to S 2 ∴ B3 = 4
� N.B. τ3 blocked indirectly even though it

does not access servers!

25

Determining B i’s (con’t)
� β2: τ2 blocked by τ5 access to S 1

and by τ4 access to S 2 ∴ B2 = 4

� β1: τ1 blocked by τ4 access to S 2 ∴ B1 = 4

Mar 06/14

� β1: τ1 blocked by τ4 access to S 2 ∴ B1 = 4
– N.B. τ1 not blocked for access to S 1

since ceiling of S 1 = Priority(τ2)

26

Resource Access
Purpose vs. Technical Detail

� so far, only case of access dependency
considered has been nested access

� may have alternate dependencies
– e.g. read x, modify value, then write x

Mar 06/14

– involves multiple accesses (read, write)
– really want to lock x for duration of

read � modify � write

27

Serializability

� for operations involving multiple accesses
to a resource

� concurrent operations by job 1 and job 2
have potential for interleaving of accesses
want net behaviour to be serialization of

Mar 06/14

� want net behaviour to be serialization of
accesses � result is same as if job1
followed by job2, or vice versa

28

2 Phase Locking (2PL)

� ensures serializability
� Rule: a job never requests any lock after

its first release of any lock

request locks

Mar 06/14

request locks
never request locks

first release
of a lock

29

Augment with 2PL

� augment Priority Ceiling Protocol with 2PL
– Advantages: serializable, no deadlock,

no chain blocking
– Penalty: may have prolonged

unnecessary blocking

Mar 06/14

unnecessary blocking

held only to satisfy rule

lock

unlock

30

Alternative:
Convex-Ceiling Protocol

� reduces duration of blocking (over 2PL)
� for each job, maintain remainder priority ceiling

function:
� RP(J, t) = highest priority ceiling of all

resources J requires after time t

Mar 06/14

resources J requires after time t
� when job released: RP(J, 0) = highest priority

ceiling of all resources J requires

31

Remainder Priority Ceiling
Function (con’t)

� when no resources required, RP(J, t) = Ω
� when job is finished with resource, sends

notification to scheduler
– if ceiling for remaining required resources is

lower, scheduler adjusts RP down to value of

Mar 06/14

lower, scheduler adjusts RP down to value of
remainder ceiling

� RP is a strictly decreasing function !

32

Priority Ceiling Function

� also maintain priority ceiling function for job:
Π(J , t)

� when job released, Π(J, 0) = Ω
� each time a resource locked by job, if ceiling of

resource is higher than Π, then adjust Π to

Mar 06/14

resource is higher than Π, then adjust Π to
ceiling of resource

� Π increases until it meets initial RP value

33

Priority Ceiling Function (con’t)

� when resource released, adjust RP first
� if new value of RP < Π , then adjust Π

down to RP
� RP and Π decrease in unison

Mar 06/14 34

Integrate into a Protocol?

� current priority ceiling: Π(t)
= maximum priority ceiling function Π(J , t)

of all jobs at time t

^

Mar 06/14 35

Example

� suppose 3 resources X, Y, Z
� priority ceilings: X: 1 Y: 2 Z: 3
� job requires Y, then X, then Y then Z

Mar 06/14

0 1 2 3 4 5 6 7 8 9 10

36

Comparison
2 1 2 3

0 1 2 3 4 5 6 7 8 9 10

1
2
3

Ω
RP(J,t)

Mar 06/14

2
3

Ω
Π(J,t)

1

2
3

Ω
Π(t)

1
^

2PL

ot
he

rs

37

Going Further …

Daniel I. Katcher, Hiroshi Arakawa, and Jay
K. Strosnider,
Engineering and Analysis of Fixed Priority
Schedulers

Mar 06/14

Schedulers
IEEE Transactions on Software Engineering,
Vol. 19, No. 9, September 1993, pp.920 - 934

38

Katcher et al.

� research “towards bridging the gap” between
real-time scheduling theory and realistic
implementations

� analyzes event-driven and timer-driven
scheduling

Mar 06/14

scheduling
� scheduling costs (overheads)

– notes dependence on h/w platform!

39

Katcher et al.
� Assumes all jobs released by interrupts
� looks more closely at interrupts from h/w and

o/s perspectives
– register use
– independently run ISR vs. ISR “job”

Mar 06/14

– independently run ISR vs. ISR “job”
� schedule, context switch

– ISR executing kernel code � interaction
with scheduler

40

Katcher et al.

� 6 Definitions of o/s Execution Activities:

Cint : time to handle an interrupt � minimal
context save & invoke scheduler

Csched : time to execute scheduling code to
determine next job to run

Mar 06/14

sched
determine next job to run

Cresume : time to resume a job after an interrupt
but no context switch

Cstore : time to save job state and save job in
ready-to-run queue

41

Katcher et al.

Cload : time to launch a new active job from
front of ready-to-run queue

Ctrap : time to deal with a completed (current)
job and select a new active job

Mar 06/14

� interrupts: integrated vs. nonintegrated

42

Katcher et al.
Integrated Interrupts: supported in ARM!!
� h/w interrupt priorities are matched to s/w job

priorities
– e.g. ISR job at priority 5 has lower priority than

job at priority 3 (lower priority cannot

Mar 06/14

interrupt higher!)
– ISR scheduling integrated with job scheduling

� assumes all jobs triggered by interrupts … oh ☺

– Offloading to h/w interrupt priority handler!

43

Katcher et al.

� when an integrated interrupt occurs:
Cpreempt = Cint + Csched + Cstore + Cload

� when ISR job terminates:
interrupt handling scheduling store job load new ISR job

Mar 06/14

� when ISR job terminates:
Cexit = Ctrap + Cload

� worst case o/s overhead = C preempt + Cexit

done ISR job load new job

44

Katcher et al.

� Recall schedulability test:
For all i : 1 ≤ i ≤ n , exists T s ∈ Si(Ti)

 Ts
i - 1

C∑

Mar 06/14

≤ 1
 Tj

Ts

j = 0
Cj

Ts

∑

does not account for blocking by lower priority jobs!

45

Katcher et al.

schedulability test for integrated interrupts:
For all i : 1 ≤ i ≤ n , exists T s ∈ Si(Ti)

Mar 06/14

≤ 1
Ti

Ts

i =1

n Ci + Cpreempt + Cexit

Ts
∑

46

interrupt

Katcher et al.

Mar 06/14

interrupt
deferred!

idle task task 1

task 2

task 3

Cpreempt

Cexit

47

Katcher et al.
NonIntegrated Interrupts: � more typical!
� h/w interrupt priorities are independent of s/w

job priorities
– interrupt always preempts current job
– may introduce preemption blocking!

Mar 06/14

– may introduce preemption blocking!
� assumes all jobs triggered by interrupts

48

Katcher et al.

� when a nonintegrated interrupt occurs – if
ISR job should preempt � same as before:
Cpreempt = Cint + Csched + Cstore + Cload

Cexit = Ctrap + Cload

Mar 06/14

� if ISR job should not preempt:
Cnonpreempt = Cint + Csched + Cresume

interrupt handling scheduling back to job

49

Katcher et al.
task 3 preempts task 1!

Mar 06/14

idle task task 1

task 2

task 3

Cpreempt

Cexit

Cnonpreempt

50

Katcher et al.
� schedulability test for nonintegrated

interrupts � must include blocking due to
lower priority job interrupt preemption!

n C + C + C
∑

Mar 06/14

≤ 1

Ti

Ts

i =1

n Ci + Cpreempt + Cexit

Ts
∑

Ts

(n – i) Cnonpreempt
+

number of lower priority jobs

51

Katcher et al.

� results from two case studies: overhead and
blocking due to event-driven kernel led to
degradation of schedulable utilization by 13%
and 18%

� conclude tradeoff exists:

Mar 06/14

� conclude tradeoff exists:
more blocking � reduce overhead
decrease blocking � increase overhead

52

EDF (Very Briefly)

� dynamic priority scheme, optimal
� job with nearest absolute deadline is highest

priority
� priority at time t depends on jobs ready at t

Mar 06/14

� PRO: schedulable utilization = 1.0
� CON: cannot predict which jobs will miss

deadlines & domino effect

53

EDF Problem
� cannot predict (a priori) which job might miss

deadline
� priority depends on dynamic load

� when job misses deadline, can cause other jobs
to miss � domino effect

Mar 06/14

to miss � domino effect
� need overrun strategy
� rate monotonic does not have this problem

– lowest priority jobs miss deadlines

54

EDF Utilization (6.2 in text)

� Sufficient (but pessimistic when D k < pk):

k = 1

n

∑ ≤ 1
ek

min(Dk , pk)
U =

Mar 06/14

� If Dk ≥ pk for all k:
then U ≤ 1 is necessary and sufficient

55

EDF Deferrable Server
� Liu text: Theorem 7.3
� deferrable server:

period = p s budget = e s utilization = u s

� in system of n tasks and the deferrable
server, task with period T schedulable

Mar 06/14

server, task with period T i schedulable
when:

k = 1

n

∑ ≤ 1ek

min(Dk , pk)
+ us 1 +

ps - es

Di

56

EDF Blocking

� Liu concludes that priority ceiling protocol
better suited to fixed priority scheme than
dynamic priority scheme …

no comparable protocol for EDF

Mar 06/14

�

57

