SYSC 5701
Operating System Methods for
Real-Time Applications

Access Control
Winter 2014

» Resource-Sharing
O

Q@ Dependencies

e A job cannot proceed (is blocked) because of
resource-sharing synchronization

e Resource-sharing requires mutually exclusive
access to the resource

e Can cause priority inversions

e \We looked into the priority ceiling protocol to
deal with the priority inversions

— See slides: PCPW14

Mar 06/14

» Properties of Basic Priority
O -
¥ Ceiling Protocol

e no deadlock !
e job blocks in at most one critical section
- blocking is bounded (at most one)

- no chain blocking - shorter blocking
bound than Priority Inheritance Protocol

e once acquire first resource, all resources
needed will be available when requested

Mar 06/14 3

What about RM Theory?

e Priority Ceiling Protocol bounds delay to the
single largest delay of a lower priority job !

— for each job, include max. delay
e recall RM utilization test:
Yu sn(2¥-1)
e in following, assume thatifi <]
— then priority T, > priority T

Mar 06/14

Consider Utilization Test for
Each Task

consider T, case:

e B, is the worst case time T, spent blocked
by lower priority tasks

C+ By = u@)
T, T,

Mar 06/14 5

Consider Each Task (con't)

e consider T, case:
C, +C, + B, = u@
T,
® blocking of C ; isincludedinC ,&B,!
— ensured by protocol!
(think this through on next slide!)

e do not need to consider an “additional” B

Mar 06/14

Thinking Through ...

e consider T, :

the priority of 1,

B, represents max. blocking by
lower priority tasks (lower than 1,)
C, + By = U(l) |using resources having a priority
ceiling greater than (or equal to)

C, + C,+ B, = u@
Tl T2 T2

If T, caused B,
—= then B, is included
inC, and B,is
due to blocking by

nth case

T, cannot be blocked by lower priority

e nth task case:

C,+ C, + + NBHO < u(n)
Tn n

T T,

e if constraints are satisfied for each case,
then task set is schedulable, i.e.:

0 1<sisn X u + B <i(2¥-1)

tasks since it is the lowest priority task

- a task with lower T
Ift, c_hd not cause B, then_Bl_ = B, (same priority than T, / !
blocking by same lower priority task)
Mar 06/14 7 Mar 06/14 ‘ represents worst case utilization of T; blockage ‘ 8
Example Case: i=1
T,: T,=30 c,=10 B,= 10 ° > ui+Bisu(1)
T,: T1,=80 C,=15 B,= 20 T
L T3:100 C3:25 B3:0 10 + 10 =1
30 30
e want to consider 0066 <1 ©
0 1<i<n
Mar 06/14 9 Mar 06/14 10
Case: =2 Case: i=3
° up + B, = u(2) > u + B, < u(3)
T T

10 + 15 + 20 <082
30 80 80
e 0.771 < 0.828 ©

Mar 06/14

11

10+ 15 + 25 + 0 <0779
30 80 100 100

0.771 £ 0.779 ©

Mar 06/14

12

Simpler Test?

e can use tighter bound _ to avoid computing n

equations:

uy+max{B,,B,, ..., B ;}sn(2-1)
Tl TZ n-1

e proof: [0 1sisn:

-n(2M-1) <i(2¥-1)

— nt case gives tightest bound!

max { 5’71& ,Bn;l} > 5
Tl T2 Tn-l Ti

— max is worst case! - conservative

—

Mar 06/14 13

Hmmm ...

e tighter bound may fail when individual
eguations succeed

e previous example:
10 + 15 + 25 + max(10, 20) < 0.779
30 80 100 30 80

¢ 0.804 £ 0.779 ®

Mar 06/14 14

Demand Analysis Revisited
(for cases where utilization test fails)
e can formalize utilization at scheduling
points:
- denote set of scheduling points for interval
[0, T]as: S(T)
e set of scheduling points for tasks with
periods less than or equalto _ T;:

S(T) ={ kI | j=0..i; k=0..LT,/T 1}

remember: T, < T,for j=0..i !

Visualize on blackboard

Mar 06/14 15

Scheduling Point (con't)

e maximum period in setof i + 1 tasks: T |
e set of scheduling points for the set of tasks: S (T;)
e utilization by tasks at scheduling point T OS; (T)

) number of task j
' |_TS—|‘/ jobs released
Z i CJ- during interval T,
e

T

S

Mar 06/14 16

Min U at Scheduling Point

e for i tasks, minimum utilization over set of
scheduling points S (T;): U

Ts T.0S.(T)

min

= min

e Task i guaranteed schedulable when: U . < 1

min

Mar 06/14 17

Scheduling Point + Blocking

e generalize Scheduling Point solution to include
blocking

e consider set of i tasks: T ;is largest period
e utilization for task i must include:
single execution of job i
+ all preemption by higher priority jobs
+ worst case blocking by a lower job

Mar 06/14 18

U at Scheduling Point

preemption by i — executlon ofjobi Wworst case blocking
higher priority tasks by a lower priority job

Lox

Mar 06/14 19

Schedulability Test

Foralli:0 <i<n, exists T O S(T)

> %]
716 ., B

C .
i= i I I
i=0 + — + — < 1
TS TS TS
Mar 06/14 20

=

N

How to compute B ; ?
identify B,
set of resources accessed by lower priority
tasks (lower than t;) and having a priority ceiling
greater than (or equal to) the priority of T,

I
- the resource accesses that might block t;!
create B

subset of 3, created by merging nested critical
sections (inner section subsumed by outer
section)

select B, = member of B" with longest duration

Mar 06/14 21

B, Selection Example

1 sec . determines ceiling of S
T, 0 |LS) Uy g0t
determines ceiling of S,
2 sec
T, LS U(S,)
T LSy LS, UGS, ues,)
1sec

Ceiling (S ;) = priority (t,) Ceiling(S ,) = priority (T,)

Mar 06/14 22

Determining B ;'s

e Ceiling (S) =1 Ceiling(S,) =2
o for 1, 3 sec
B, ={T[L(Sy) U(SYI}
O B,=3sec
3 sec
—
o for 1,0 B, ={T4[L(S,) US)I}
0 B,=3sec
Mar 06/14 23

Recall Client / Server
Example

access time =4 (including time in S;)

only during
114 call

access time = 3 '

Ceiling(S,) = Priority(t,)

Ceiling(S,) = Priority(t,)

[%/
v
[57

Mar 06/14 24

Determining B ;'s
Consider B;:
e B.: 1. is the lowest priority task O0B,=0

e B,:1,blocked by Tt accesstoS, O B,=3

e B,:1,blocked by 1 accesstoS
and by 1,accesstoS, OB;=4

« N.B. 1, blocked indirectly even though it
does not access servers!

Mar 06/14

25

Determining B ;'s (con’t)
e 3,: 1,blocked by T accesstoS
and by 1,accesstoS, 0OB,=4

e B,: 1, blocked by 1,accesstoS, 0B, =4

- N.B. 1, not blocked for accessto S
since ceiling of S | = Priority(T,)

Mar 06/14 26

Resource Access
Purpose vs. Technical Detall

e so far, only case of access dependency
considered has been nested access
e may have alternate dependencies
- e.g. read x, modify value, then write x
- involves multiple accesses (read, write)
- really want to lock x for duration of
read - modify - write

Mar 06/14

27

Serializability

e for operations involving multiple accesses
to a resource

e concurrent operations by job 1 and job 2
have potential for interleaving of accesses

e want net behaviour to be serialization of
accesses -» result is same as if jobl
followed by job2, or vice versa

Mar 06/14 28

2 Phase Locking (2PL)

e ensures serializability

e Rule: a job never requests any lock after
its first release of any lock

request locks

— never request locks

ol 1HTO

first release /
of a lock

Mar 06/14

29

Augment with 2PL

e augment Priority Ceiling Protocol with 2PL

— Advantages: serializable, no deadlock,
no chain blocking

— Penalty: may have prolonged
unnecessary blocking

T HZM ;

held only to satisfy rule

Mar 06/14 30

Alternative:
Convex-Ceiling Protocol

e reduces duration of blocking (over 2PL)

e for each job, maintain remainder priority ceiling
function:

e RP(J, t) = highest priority ceiling of all
resources J requires after time t

e when job released: RP(J, 0) = highest priority
ceiling of all resources J requires

Mar 06/14 31

Remainder Priority Ceiling
Function (con’t)

e when no resources required, RP(J,t) = Q

e when job is finished with resource, sends
notification to scheduler

— if ceiling for remaining required resources is
lower, scheduler adjusts RP down to value of
remainder ceiling

e RP is a strictly decreasing function !

Mar 06/14 32

Priority Ceiling Function

e also maintain priority ceiling function for job:
nea,t)
e when job released, M(J,0)=Q

e each time a resource locked by job, if ceiling of
resource is higher than M, then adjust M to
ceiling of resource

e [1 increases until it meets initial RP value

Mar 06/14 33

Priority Ceiling Function (con't)

e when resource released, adjust RP first

e if new value of RP < M, then adjust N
down to RP

e RP and N decrease in unison

Mar 06/14 34

Integrate into a Protocol?

N
e current priority ceiling: Mn()
= maximum priority ceiling function neJ,t)
of all jobs at time t

Mar 06/14 35

Example

e suppose 3 resources X, Y, Z

e priority ceilings: Xi1 Y[2 Z3
e job requires Y.lthen X, then Y then z[|

Mar 06/14 36

Comparison
[1 [2T7a[] [2]] T3]

0 1 2 3 4 5 6 7 8 9 10

Mar 06/14 37

Going Further ...

Daniel I. Katcher, Hiroshi Arakawa, and Jay
K. Strosnider,

Engineering and Analysis of Fixed Priority
Schedulers

IEEE Transactions on Software Engineering,
Vol. 19, No. 9, September 1993, pp.920 - 934

Mar 06/14 38

Katcher et al.

e research “towards bridging the gap” between
real-time scheduling theory and realistic
implementations

e analyzes event-driven and timer-driven
scheduling

e scheduling costs (overheads)
- notes dependence on h/w platform!

Mar 06/14 39

Katcher et al.

o Assumes all jobs released by interrupts

e looks more closely at interrupts from h/w and
o/s perspectives

— register use
- independently run ISR vs. ISR “job”
¢ schedule, context switch

- ISR executing kernel code - interaction
with scheduler

Mar 06/14 40

Katcher et al.

e 6 Definitions of o/s Execution Activities:

Cii: time to handle an interrupt > minimal
context save & invoke scheduler

Cqcheq - time to execute scheduling code to
determine next job to run

Cresume - time to resume a job after an interrupt
but no context switch

C.iore : time to save job state and save job in
ready-to-run queue

Mar 06/14 41

Katcher et al.

Cioaq: time to launch a new active job from
front of ready-to-run queue

Ciap: time to deal with a completed (current)
job and select a new active job

e interrupts: integrated vs. nonintegrated

Mar 06/14 42

Katcher et al.
Integrated Interrupts: supported in ARM!!
e h/w interrupt priorities are matched to s/w job
priorities
—e.g. ISR job at priority 5 has lower priority than
job at priority 3 (lower priority cannot
interrupt higher!)
— ISR scheduling integrated with job scheduling
e assumes all jobs triggered by interrupts ... oh ©
- Offloading to h/w interrupt priority handler!

Mar 06/14 43

Katcher et al.

e when an integrated interrupt occurs:
Cpreempt = Tint + Csch d + Cstore + CIo d
interrupt handling scheduling store job load new ISR job
e when ISR job terminates:
Cexit = Ctrap + CIoad

t
done ISR job load new job
e worst case o/s overhead = C eempt + Cexit

Mar 06/14 44

Katcher et al.

e Recall schedulability test:
Foralli:1 <isn, exists T, O S(T))

[t
2, 116
i=0

TS

does not account for blocking by lower priority jobs!

Mar 06/14 45

Katcher et al.

schedulability test for integrated interrupts:
Foralli:1 <i<sn, exists T O S(T)

X Ci + Cpreempt + Cexit |—TS—|
3 i
T. T

i=1 S

Mar 06/14 46

Katcher et al.
/s /s
| 7 | [[%_’7

— intefrupt r:—‘

gi kdef& rred! ﬁ %

[idle task []task1
Coreempt []task2
L Cept I task 3

Mar 06/14 47

Katcher et al.

Nonlintegrated Interrupts: - more typical!

e h/w interrupt priorities are independent of s/w
job priorities
— interrupt always preempts current job
— may introduce preemption blocking!

e assumes all jobs triggered by interrupts

Mar 06/14 48

Katcher et al.

e when a nonintegrated interrupt occurs — if
ISR job should preempt -> same as before:

Cpreempt = Cint + Csched + Cstore + CIoad
Cexit = Ctrap + CIoad
e if ISR job should not preempt:
Cnonpreempt = Cint + Csched + Cresume

1 1
interrupt handling scheduling back to job

Mar 06/14 49

Katcher et al.

task 3 preempts task 1!

v T w1

/B N

I =

hoboA b

] idle task []task 1
Cpreempt] Cnonpreempt] task 2
 Coit Il task 3

Mar 06/14 50

Katcher et al.

e schedulability test for nonintegrated
interrupts - must include blocking due to
lower priority job interrupt preemption!

i Ci + Cpreempt + Cexit I_TS—|
T, T,

i=1 s

(n N i) Cnonreempt
* T,
S
number of lower priority jobs

Mar 06/14 51

Katcher et al.

e results from two case studies: overhead and
blocking due to event-driven kernel led to
degradation of schedulable utilization by 13%
and 18%

e conclude tradeoff exists:
more blocking ->» reduce overhead
decrease blocking ->» increase overhead

Mar 06/14 52

EDF (Very Briefly)

e dynamic priority scheme, optimal

e job with nearest absolute deadline is highest
priority

e priority at time t depends on jobs ready at t

e PRO: schedulable utilization = 1.0

e CON: cannot predict which jobs will miss
deadlines & domino effect

Mar 06/14 53

EDF Problem

e cannot predict (a priori) which job might miss
deadline
-> priority depends on dynamic load

e when job misses deadline, can cause other jobs
to miss > domino effect

e need overrun strategy
e rate monotonic does not have this problem
— lowest priority jobs miss deadlines

Mar 06/14 54

EDF Utilization (6.2 in text)

o Sufficient (but pessimistic when D |, <p,):
n

€y
— =<1
= mln(Dk,pk)

o If D, =p, forallk:
then U < 1 is necessary and sufficient

U=

Mar 06/14 55

EDF Deferrable Server

e Liu text: Theorem 7.3
e deferrable server:
period =p, budget=e utilization=u
e in system of n tasks and the deferrable
server, task with period T ; schedulable
when:

Mar 06/14 56

EDF Blocking

e Liu concludes that priority ceiling protocol
better suited to fixed priority scheme than
dynamic priority scheme ...

no comparable protocol for EDF

®

Mar 06/14 57

