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Resource-Sharing 
Dependencies

� A job cannot proceed (is blocked) because of 
resource-sharing synchronization 

� Resource-sharing requires mutually exclusive 
access to the resource

� Can cause priority inversions

� We looked into the priority ceiling protocol to 
deal with the priority inversions
– See slides:  PCPW14
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Properties of Basic Priority 
Ceiling Protocol

� no deadlock !
� job blocks in at most one critical section 

– blocking is bounded (at most one) 
– no chain blocking � shorter blocking 
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– no chain blocking � shorter blocking 
bound than Priority Inheritance Protocol

� once acquire first resource, all resources 
needed will be available when requested
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What about RM Theory?

� Priority Ceiling Protocol bounds delay to the 
single largest delay of a lower priority job !
– for each job, include max. delay

� recall RM utilization test:
∑ u ≤ n ( 21/n – 1 )
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∑ u i ≤ n ( 21/n – 1 )
� in following,  assume that if i < j

– then priority τi > priority τj
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Consider Utilization Test for 
Each Task

consider τ1 case:
� B1 is the worst case time τ1 spent blocked 

by lower priority tasks
C1  +    B1 ≤ u(1)
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1  1

T1 T1
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Consider Each Task (con’t)

� consider τ2 case:
C1 +   C2 +    B2 ≤ u(2)
T1 T2 T2
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T1 T2 T2

� blocking of C 1 is included in C 2 & B2 !
– ensured by protocol!  

(think this through on next slide!)
� do not need to consider an “additional” B
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Thinking Through …
� consider τ1 :

C1 +   B1 ≤ u(1)
T1 T1

B1 represents max. blocking by 
lower priority tasks (lower than τ1) 
using resources having a priority 
ceiling greater than (or equal to) 
the priority of τ1
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C1 +    C2 +     B2 ≤ u(2)
T1 T2 T2
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If τ2 caused B1
then B1 is included 
in C2 and  B2 is 
due to blocking by 
a task with lower 
priority than τ2 

If τ2 did not cause B1 then B1 =  B2 (same 
blocking by same lower priority task)

nth case

� nth task case:
C1 +   C2 +      +   Cn +   Bn ≤ u(n)
T1 T2 Tn Tn

… 

0

τn cannot be blocked by lower priority 
tasks since it is the lowest priority task
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� if constraints are satisfied for each case, 
then task set is schedulable,  i.e.:

∀i 1≤ i ≤ n      ∑ u i +  B i ≤ i ( 21/i – 1 ) 
Ti

represents worst case utilization of τi blockage 8

Example

τ1 : T1 = 30 C1 = 10 B1 =  10
τ2 : T2 = 80 C2 = 15 B2 =  20
τ3 : T3 = 100 C3 = 25 B3 =  0
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� want to consider
∀i 1≤ i ≤ n 
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Case:  i = 1

� ∑ u i +  B i ≤ u(1) 
Ti

10  +   10   ≤ 1
30 30
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30 30
� 0.66  ≤ 1   ☺
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Case:  i = 2

� ∑ u i +  B i ≤ u(2) 
Ti

10  +   15   +   20   ≤ 0.82
30       80        80
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30       80        80
� 0.771  ≤ 0.828   ☺
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Case:  i = 3

� ∑ u i +  B i ≤ u(3) 
Ti

10  +   15   +   25   +    0     ≤ 0.779
30        80       100      100
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30        80       100      100

0.771  ≤ 0.779   ☺

12



Simpler Test?
� can use tighter bound to avoid computing n 

equations:
∑ u i +  max {  B 1 ,  B2 ,  . . .  ,  Bn-1 }  ≤ n ( 21/n – 1 )

T1 T2 T n-1

� proof:   ∀i 1≤ i ≤ n:
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� proof:   ∀i 1≤ i ≤ n:
– n ( 21/n – 1 )  ≤ i ( 21/i – 1 )
– nth case gives tightest bound!

max {  B 1 ,  B2 ,  . . .  , Bn-1 }  ≥ B i

T1 T2 T n-1 Ti

– max is worst case! � conservative
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Hmmm … 

� tighter bound may fail when individual 
equations succeed

� previous example: 
10 + 15 + 25 + max( 10, 20)  ≤ 0.779
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30    80   100             30  80
� 0.804  ≤ 0.779   �
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Demand Analysis Revisited
(for cases where utilization test fails)

� can formalize utilization at scheduling 
points:
– denote set of scheduling points for interval 

[0, T] as:  S(T)
� set of scheduling points for tasks with 
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� set of scheduling points for tasks with 
periods less than or equal to Ti:
Si (Ti)  = {  k ⋅ Tj |  j = 0. . i ;  k = 0 . .  Ti / Tj  } 

remember:  Tj ≤ Ti for   j = 0 . . i !!
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Visualize on blackboard

� maximum period in set of i + 1 tasks:   T i

� set of scheduling points for the set of tasks:  S i (Ti)
� utilization by tasks at scheduling point  T s ∈ Si (Ti)

Scheduling Point (con’t)
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 Tj

Ts

j =0

i

Cj

Ts

∑
=

number of task j 
jobs released 
during interval Ts
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Min U at Scheduling Point
� for i tasks, minimum utilization over set of 

scheduling points S i(Ti): Umin

=    min
 Tj

Ts

j =0

i

Cj∑
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=    min

� Task i guaranteed schedulable when:   U min ≤ 1

 Tjj =0

Ts

∑

Ts ∈ Si (Ti)
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Scheduling Point + Blocking
� generalize Scheduling Point solution to include 

blocking
� consider set of i tasks:   T i is largest period
� utilization for task i must include: 

single execution of job i
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single execution of job i
+    all preemption by higher priority jobs 
+    worst case blocking by a lower job
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U at Scheduling Point

preemption by i – 1 
higher priority tasks

worst case blocking 
by a lower priority job

execution of job i
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∑  Tj

Ts

j = 0

i - 1

Cj

Ts

+
Ci

Ts Ts

Bi
+
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Schedulability Test
For all i : 0 ≤ i ≤ n ,  exists T s ∈ Si(Ti)

∑  Tj

Ts

j = 0

i - 1

Cj

T
+

Ci

T T

Bi
+ ≤ 1
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Ts

+
Ts Ts

+ ≤ 1
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How to compute B i ?
1. identify βi

� set of resources accessed by lower priority 
tasks (lower than τi) and having a priority ceiling 
greater than (or equal to) the priority of τi

� the resource accesses that might block τi !
β
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2. create βi
*

� subset of   βi created by merging nested critical 
sections (inner section subsumed by outer 
section)

3. select B i = member of  βi
* with longest duration
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τ1 :   L(S1)      U(S1)

τ2 :   L(S2)                  U(S2)

B i Selection Example

1 sec

2 sec

determines ceiling of S1

determines ceiling of S2
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τ2 :   L(S2)                  U(S2)

τ3 :   L(S1)        L(S2)     U(S2)           U(S1)

Ceiling (S 1) = priority ( τ1) Ceiling(S 2) = priority ( τ2)

3 sec

1 sec
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Determining B i’s
� Ceiling (S 1) = 1 Ceiling(S 2) = 2
� for τ1: 

β1
* = { τ3[L(S1)  U(S1)] } 

∴ B1 = 3 sec

3 sec
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1

� for τ2: β2
* = { τ3[L(S1)  U(S1)] }   

∴ B2 = 3 sec

3 sec
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Recall Client / Server 
Example

τ3

τ4

S2

only during   
τ4 call

access time = 4   (including time in S1)
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τ5

τ2

τ1

S1

τ4 call

access time = 3

access time = 2

access time = 1 Ceiling(S1)  =  Priority(τ2)

Ceiling(S2)  =  Priority(τ1)
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Determining B i’s

Consider βi :   

� β5 : τ5 is the lowest priority task    ∴ B5 = 0

� β4 : τ4 blocked by τ5 access to S 1 ∴ B4 = 3
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β4 : τ4 blocked by τ5 access to S 1 ∴ B4 = 3

� β3 : τ3 blocked by τ5 access to S 1

and by τ4 access to S 2 ∴ B3 = 4
� N.B. τ3 blocked indirectly even though it 

does not access servers!
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Determining B i’s (con’t)
� β2:  τ2 blocked by τ5 access to S 1

and by τ4 access to S 2 ∴ B2 = 4

� β1: τ1 blocked by τ4 access to S 2 ∴ B1 = 4
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� β1: τ1 blocked by τ4 access to S 2 ∴ B1 = 4
– N.B. τ1 not blocked for access to S 1

since ceiling of S 1 = Priority( τ2)
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Resource Access
Purpose vs. Technical Detail

� so far, only case of access dependency 
considered has been nested access

� may have alternate dependencies
– e.g. read x, modify value, then write x
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– involves multiple accesses (read, write)
– really want to lock x for duration of 

read � modify � write
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Serializability

� for operations involving multiple accesses 
to a resource

� concurrent operations by job 1 and job 2 
have potential for interleaving of accesses
want net behaviour to be serialization of 
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� want net behaviour to be serialization of 
accesses � result is same as if job1 
followed by job2, or vice versa
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2 Phase Locking (2PL)

� ensures serializability
� Rule: a job never requests any lock after 

its first release of any lock

request locks

Mar 06/14

request locks
never request locks

first release 
of a lock
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Augment with 2PL

� augment Priority Ceiling Protocol with 2PL
– Advantages: serializable, no deadlock, 

no chain blocking
– Penalty: may have prolonged 

unnecessary blocking

Mar 06/14

unnecessary blocking

held only to satisfy rule

lock

unlock
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Alternative:
Convex-Ceiling Protocol

� reduces duration of blocking (over 2PL)
� for each job, maintain remainder priority ceiling 

function:
� RP( J, t ) = highest priority ceiling of all 

resources J requires after time t
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resources J requires after time t
� when job released:   RP( J, 0) = highest priority 

ceiling of all resources J requires
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Remainder Priority Ceiling 
Function (con’t)

� when no resources required, RP(J, t) = Ω
� when job is finished with resource, sends 

notification to scheduler
– if ceiling for remaining required resources is 

lower, scheduler adjusts RP down to value of 
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lower, scheduler adjusts RP down to value of 
remainder ceiling

� RP is a strictly decreasing function !
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Priority Ceiling Function

� also maintain priority ceiling function for job:      
Π( J , t )

� when job released, Π( J, 0) = Ω
� each time a resource locked by job, if ceiling of 

resource is higher than Π, then adjust Π to 
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resource is higher than Π, then adjust Π to 
ceiling of resource

� Π increases until it meets initial RP value
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Priority Ceiling Function (con’t)

� when resource released, adjust RP first
� if  new value of  RP < Π , then adjust Π

down to RP
� RP and Π decrease in unison
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Integrate into a Protocol?

� current priority ceiling:  Π(t)
= maximum priority ceiling function Π( J , t )

of all jobs at time t

^
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Example

� suppose 3 resources X, Y, Z
� priority ceilings:  X: 1   Y: 2   Z: 3
� job requires Y, then X, then Y then Z

Mar 06/14

0 1 2 3 4 5 6 7 8 9 10
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Comparison
2 1 2 3

0 1 2 3 4 5 6 7 8 9 10

1
2
3

Ω
RP(J,t)
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2
3

Ω
Π(J,t)

1

2
3

Ω
Π(t)

1
^

2PL

ot
he

rs
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Going Further …

Daniel I. Katcher, Hiroshi Arakawa, and Jay
K. Strosnider,
Engineering and Analysis of Fixed Priority
Schedulers
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Schedulers
IEEE Transactions on Software Engineering, 
Vol. 19, No. 9, September 1993, pp.920 - 934
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Katcher et al.

� research “towards bridging the gap” between 
real-time scheduling theory and realistic 
implementations

� analyzes event-driven and timer-driven 
scheduling

Mar 06/14

scheduling
� scheduling costs (overheads)

– notes dependence on h/w platform!
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Katcher et al.
� Assumes all jobs released by interrupts
� looks more closely at interrupts from h/w and 

o/s perspectives
– register use
– independently run ISR vs. ISR “job”
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– independently run ISR vs. ISR “job”
� schedule, context switch

– ISR executing kernel code � interaction 
with scheduler

40

Katcher et al.

� 6 Definitions of o/s Execution Activities:

Cint : time to handle an interrupt � minimal 
context save & invoke scheduler

Csched : time to execute scheduling code to 
determine next job to run
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sched
determine next job to run

Cresume : time to resume a job after an interrupt 
but no context switch

Cstore : time to save job state and save job in 
ready-to-run queue
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Katcher et al.

Cload : time to launch a new active job from 
front of ready-to-run queue

Ctrap : time to deal with a completed (current) 
job and select a new active job 
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� interrupts:    integrated vs. nonintegrated
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Katcher et al.
Integrated Interrupts: supported in ARM!!
� h/w interrupt priorities are matched to s/w job 

priorities
– e.g. ISR job at priority 5 has lower priority than 

job at priority 3  (lower priority cannot 
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interrupt higher!)
– ISR scheduling integrated with job scheduling

� assumes all jobs triggered by interrupts … oh ☺

– Offloading to h/w interrupt priority handler!
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Katcher et al.

� when an integrated interrupt occurs:
Cpreempt = Cint + Csched + Cstore + Cload

� when ISR job terminates:
interrupt handling scheduling store job load new ISR job
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� when ISR job terminates:
Cexit = Ctrap + Cload

� worst case o/s overhead  = C preempt +  Cexit

done ISR job load new job
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Katcher et al.

� Recall schedulability test:
For all i : 1 ≤ i ≤ n ,  exists T s ∈ Si(Ti)

 Ts
i - 1

C∑
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≤ 1
 Tj

Ts

j = 0
Cj

Ts

∑

does not account for blocking by lower priority jobs!
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Katcher et al.

schedulability test for integrated interrupts:
For all i : 1 ≤ i ≤ n ,  exists T s ∈ Si(Ti)
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≤ 1 
Ti

Ts

i =1

n Ci + Cpreempt + Cexit

Ts
∑
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interrupt 

Katcher et al.
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interrupt 
deferred!

idle task task 1

task 2

task 3

Cpreempt

Cexit
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Katcher et al.
NonIntegrated Interrupts: � more typical!
� h/w interrupt priorities are independent of s/w 

job priorities
– interrupt always preempts current job 
– may introduce preemption blocking!
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– may introduce preemption blocking!
� assumes all jobs triggered by interrupts
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Katcher et al.

� when a nonintegrated interrupt occurs – if 
ISR job should preempt � same as before:
Cpreempt = Cint + Csched + Cstore + Cload

Cexit = Ctrap + Cload
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� if ISR job should not preempt:
Cnonpreempt = Cint + Csched + Cresume

interrupt handling scheduling back to job
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Katcher et al.
task 3 preempts task 1!

Mar 06/14

idle task task 1

task 2

task 3

Cpreempt

Cexit

Cnonpreempt
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Katcher et al.
� schedulability test for nonintegrated 

interrupts � must include blocking due to 
lower priority job interrupt preemption!

 
n C + C + C
∑
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≤ 1
 

Ti

Ts

i =1

n Ci + Cpreempt + Cexit

Ts
∑

Ts

(n – i) Cnonpreempt
+

number of lower priority jobs
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Katcher et al.

� results from two case studies:  overhead and 
blocking due to event-driven kernel led to 
degradation of schedulable utilization by 13%
and 18%

� conclude tradeoff exists: 
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� conclude tradeoff exists: 
more blocking � reduce overhead
decrease blocking � increase overhead
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EDF (Very Briefly)

� dynamic priority scheme, optimal
� job with nearest absolute deadline is highest 

priority
� priority at time t depends on jobs ready at t
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� PRO:  schedulable utilization = 1.0
� CON: cannot predict which jobs will miss 

deadlines & domino effect
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EDF Problem
� cannot predict (a priori) which job might miss 

deadline
� priority depends on dynamic load

� when job misses deadline, can cause other jobs 
to miss  � domino effect
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to miss  � domino effect
� need overrun strategy
� rate monotonic does not have this problem 

– lowest priority jobs miss deadlines
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EDF Utilization (6.2 in text)

� Sufficient (but pessimistic when D k < pk):

k = 1

n

∑ ≤ 1
ek

min( Dk , pk )
U =
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� If   Dk ≥ pk for all k:
then U ≤ 1 is necessary and sufficient
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EDF Deferrable Server
� Liu text: Theorem 7.3
� deferrable server:  

period = p s budget = e s utilization = u s

� in system of n tasks and the deferrable 
server, task with period T schedulable 
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server, task with period T i schedulable 
when:

k = 1

n

∑ ≤ 1ek

min( Dk , pk )
+  us 1 +

ps - es

Di
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EDF Blocking 

� Liu concludes that priority ceiling protocol 
better suited to fixed priority scheme than 
dynamic priority scheme … 

no comparable protocol for EDF
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�
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