Operating System Methods for
Real-Time Applications

Access Control
Winter 2014

5 Resource -Sharing
O

QL Dependencies

e A job cannot proceed (is blocked) because of
resource-sharing synchronization

e Resource-sharing requires mutually exclusive
access to the resource

e Can cause priority inversions

e \We looked into the priority ceiling protocol to
deal with the priority inversions

— See slides: PCPW14

Mar 06/14 g% Carleton

— UNIVERSITY

» Properties of Basic Priority
O S5
il Ceiling Protocol

e No deadlock !
e |ob blocks in at most one critical section
— blocking I1s bounded (at most one)

— no chain blocking -» shorter blocking
bound than Priority Inheritance Protocol

e once acquire first resource, all resources
needed will be avallable when requested

Mar 06/14 ﬂ Carleton

UNIVERSITY

What about RM Theory?

e Priority Celling Protocol bounds delay to the
single largest delay of a lower priority job !

— for each job, include max. delay
e recall RM utilization test:

2 U < n(2¥n-1)
e In following, assume thatif 1<
—then priority T, > priority T,

Mar 06/14 g% Carleton

— UNIVERSITY

Consider Utilization Test for
Each Task

consider T, case:

e B, Is the worst case time T, spent blocked
by lower priority tasks

C,+ B < u(l)

—1
Tl Tl

Mar 06/14 w Carleton

— UNIVERSITY

Consider Each Task (con'’t)

® consider T, case:
cC, + C, + B, < u@
T T
e blocking of C ,IsincludedinC ,&B,!
— ensured by protocol!
(think this through on next slide!)

e do not need to consider an “additional”

Mar 06/14 g% Carleton

— UNIVERSITY

B

Thinking Through ...

e consider T1,:

B, represents max. blocking by
lower priority tasks (lower than 1)

< U(1) |using resources having a priority

ceiling greater than (or equal to)
the priority of T,

C,+ B, < u()

T 0T

If T, did not cause B, then B, = B, (same
blocking by same lower priority task)

If T, caused B,
then B, is included
iInC, and B,Is
due to blocking by
a task with lower
priority than T,

Mar 06/14 g% Carleton

— UNIVERSITY

7

T, cannot be blocked by lower priority
tasks since it is the lowest priority task

e nt" task case:

C,+ C, + + MB,]O/ < u(n)
n n

T, T, T

e If constraints are satisfied for each case,

then task set is schedulable, 1.e.:
0, 1<isn X u, + B, i(2Y-1)
T

Mar 06/14 represents worst case utilization of T; blockage

Example

=30 C,=10 B,
,=80 C,=15 B,
,=100 C,=25 B,

e want to consider
[l 1<i<n

Mar 06/14 g% Carleton

S UNIVERSITY

Case:

> u + B, < u@)
Ti
10 + 10 <1
30 30

e 066 <1 ©

Mar 06/14 g% Carleton

— UNIVERSITY

Case: 1=2

> u + B, < u(2
Ti
10 + 15 + 20 < 0.82
30 80 80

e 0.771 < 0.828 ©

Mar 06/14 g% Carleton

— UNIVERSITY

Case: 1=3

> u + B, < u(3
Ti
10+ 15 + 25 + 0 < 0.779
30 80 100 100

0.771 < 0.779 ©

Mar 06/14 g% Carleton

— UNIVERSITY

Simpler Test?

e can use tighter bound to avoid computing n
equations:
> u +max{B,, B,, ... _ n(2¥m—-1)

Tl T2
e proof: [1<i<n:

—n(2¥h-1) <i(2¥-1)
— nt" case gives tightest bound!
,B,,...,B.,} = B

T4 T

|
— max Is worst case! =2 conservative

Mar 06/14 g% Carleton

— UNIVERSITY

Hmmm ...

e tighter bound may fail when individual
equations succeed

® previous example:
10 + 15 + 25 + max(10, 20) < 0.779

30 80 100 30 80
e 0.804 < 0.779 ®

Mar 06/14 g% Carleton

— UNIVERSITY

Demand Analysis Revisited
(for cases where utilization test falls)

e can formalize utilization at scheduling
points:

— denote set of scheduling points for interval
0, T]as: S(T)
e set of scheduling points for tasks with
periods less than or equalto T

S(T) ={ kOT, | j=0..i; k=0..LT,/T, 1}

remember: T, < T;for j=0..1 !

Visualize on blackboard

Mar 06/14 ﬂ Carleton

UNIVERSITY

Scheduling Point (con’t)

e maximum period in set of | + 1 tasks: T.

e set of scheduling points for the set of tasks: S (T)
e utilization by tasks at scheduling point T, US (T)

number of task |
jobs released
during interval T

Mar 06/14 ﬂ Carleton

UNIVERSITY

Min U at Scheduling Point

e for I tasks, minimum utilization over set of
scheduling points S (T;): U_.

-

T. O S, (T)

e Task | guaranteed schedulable when: u. <1

min

Mar 06/14 g% Carleton

— UNIVERSITY

Scheduling Point + Blocking

e generalize Scheduling Point solution to include
blocking

e consider set of | tasks: T: Is largest period
e utilization for task | must include:
single execution of |ob I
+ all preemption by higher priority jobs
+ worst case blocking by a lower job

Mar 06/14 g% Carleton

— UNIVERSITY

U at Scheduling Point

preemption by i —1 execution of job i WOrst case blocking
higher priority tasks by a lower priority job

Mar 06/14 g% Carleton

— UNIVERSITY

Schedulability Test

Foralli:0 <i<n, exists T _ U S,(T)

31

~

B,
+ + —
TS

Ci
Ts

v

Mar 06/14 g% Carleton

How to compute B . ?
identify 3
set of resources accessed by lower priority

tasks (lower than T;) and having a priority ceiling
greater than (or equal to) the priority of T,

- the resource accesses that might block 1!

create f3

subset of [3 created by merging nested critical
sections (inner section subsumed by outer
section)

select B, = member of " with longest duration

Mar 06/14 g% Carleton

— UNIVERSITY

B. Selection Example

1 sec

LS,) UGS

determines ceiling of S,

determines ceiling of S,

L(S>)

U(S,)

3 sec

L(S 1)

L(S,)

U(S,) U(Sy)

1 sec

Ceiling (S) = priority (T,)

Mar 06/14

Celling(S ,) = priority (T,)

s Carleton

— UNIVERSITY

Determining B ;'s

e Ceiling(S,)=1 Ceiling(S,) =2
o for T,: 3 sec

N

B, = { LIL(S,) U(S)I}
[] = 3 secC
3 sec

o for 1,; B, ={ T;[L(S 1)AU(51)T}
[] = 3 sec

Mar 06/14 g% Carleton

Recall Client / Server
Example

accesstime =4 (including time in S,)

y /
only during

T, call

access time = 2

access time = 1 Ceiling(S,) = Priority(t,)

Ceiling(S,) = Priority(t,)

— H

Mar 06/14 g% Carleton

— UNIVERSITY

Determining B ;'S

Consider f3:

® (3.: 1-Is the lowest priority task]
® 5,:1,blocked by t,accesstoS; [

® [3,:1;blocked by 1 accesstoS ;

and by t1,accesstoS, [

e N.B. 1, blocked indirectly even though it
does not access servers!

Mar 06/14 g% Carleton

e’ UNIVERSITY

Determining B 's (con't)

e 3,: 1,blocked by Tt.accesstoS ,
and by t1,accesstoS, [

® 3. 1,blocked by t1,accesstoS, [

— N.B. 1, not blocked for accessto S
since celling of S | = Priority(T,)

Mar 06/14 g% Carleton

— UNIVERSITY

Resource Access
Purpose vs. Technical Detall

e so far, only case of access dependency
considered has been nested access

e may have alternate dependencies
— e.g. read x, modify value, then write X
— Involves multiple accesses (read, write)
— really want to lock x for duration of
read - modify -> write

Mar 06/14 g% Carleton

— UNIVERSITY

Serializablility

e for operations involving multiple accesses

to a resource

e concurrent operations
have potential for inter

e want net behaviour to

oy job 1 and job 2
eaving of accesses

pe serialization of

accesses -» resultis same as if jobl
followed by job2, or vice versa

Mar 06/14 g% Carleton

— UNIVERSITY

2 Phase Locking (2PL)

e ensures serializability

e Rule: a job never requests any lock after
Its first release of any lock

request locks

- ~ never request locks

I O W

B
of a lock

Mar 06/14 ﬂ Carleton

UNIVERSITY

Augment with 2PL

e augment Priority Ceiling Protocol with 2PL

— . serializable , no deadlock,
no chain blocking

= . may have prolonged
unnecessary blocking

lOCkl . l l
unlockl

held only to satisfy rule
Mar 06/14 g% Carleton

— UNIVERSITY

Alternative:
Convex -Celling Protocol

e reduces duration of blocking (over 2PL)

e for each job, maintain remainder priority ceiling
function

e RP(J,) = highest priority ceiling of all
resources J requires after time t

e when job released:. RP(J, 0) = highest priority
celling of all resources J requires

Mar 06/14 g% Carleton

— UNIVERSITY

Remainder Priority Celling
Function (con’t)

e when no resources required, RP(J,t)=Q

e when job is finished with resource, sends
notification to scheduler

— If celling for remaining required resources IS
lower, scheduler adjusts RP down to value of
remainder ceiling

e RP is a strictly decreasing function !

Mar 06/14 g% Carleton

— UNIVERSITY

Priority Ceiling Function

e also maintain priority ceiling function for job:
MeJ, t)
e when job released, I1(J,0)=Q

e ecach time a resource locked by job, If celling of
resource Is higher than TI1, then adjust [1to
celling of resource

e [1 Increases until it meets initial RP value

Mar 06/14 g% Carleton

— UNIVERSITY

Priority Ceiling Function (con’t)

e when resource released, adjust RP first

e If new value of RP < TI1, then adjust Tl
down to RP

e RP and I decrease In unison

Mar 06/14 g% Carleton

— UNIVERSITY

Integrate into a Protocol?

N
e current priority ceiling : T1(t)
= maximum priority ceiling function MN(J,t)
of all jobs at time t

Mar 06/14 w Carleton

— UNIVERSITY

Example

® suppose 3 resources X, Y, Z

e priority ceilings: Bt 1 B 2 4: 3
® job requires B, then B%, thenlM then

B B
2 3 4 5 6 7 8

0 1 9

Mar 06/14 g% Carleton

— UNIVERSITY

Comparison

others|| convex-ceiling

Mar 06/14 s Carleton

UNIVERSITY

Going Further ...

Daniel I. Katcher , Hiroshi Arakawa, and Jay
K. Strosnider,

Engineering and Analysis of Fixed Priority
Schedulers

IEEE Transactions on Software Engineering,
Vol. 19, No. 9, September 1993, pp.920 - 934

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

e research “towards bridging the gap” between
real-time scheduling theory and realistic
Implementations

e analyzes event-driven and timer-driven
scheduling

e scheduling costs (overheads)
— notes dependence on h/w platform!

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

e Assumes all jobs released by interrupts

e |looks more closely at interrupts from h/w and
o/s perspectives

— register use
— Independently run ISR vs. ISR “job”
e schedule, context switch

— ISR executing kernel code -> interaction
with scheduler

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

e 6 Definitions of o/s Execution Activities:

Ci. time to handle an interrupt = minimal
context save & invoke scheduler

Cecheq - time to execute scheduling code to
determine next job to run

. time to resume a job after an interrupt

Cresume)

but no context switch
C.e . liIme to save job state and save job In

store -

ready-to -run queue

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

Cioaq- time to launch a new active job from
front of ready-to -run queue

Cirap- time to deal with a completed (current)
Job and select a new active job

e Interrupts: Integrated vs. nonintegrated

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

Integrated Interrupts: supported in ARM!!
e h/w Interrupt priorities are matched to s/w job
priorities
—e.g. ISR job at priority 5 has lower priority than
job at priority 3 (lower priority cannot
Interrupt higher!)

— ISR scheduling integrated with job scheduling
e assumes all jobs triggered by interrupts ... oh ©
— Offloading to h/w interrupt priority handler!

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

e when an integrated interrupt occurs:
=C,.+C + C +C
T|nt schFd StoTre Iofad

interrupt handling scheduling store job load new ISR job
e when ISR job terminates:

= CTtrap + CIoTad

done ISR job load new job

® worst case o/s overhead = C + C

preempt

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

e Recall schedulability test:
Foralli:1 <i1<n, exists T (00 S(T))

-

N

-1

2

J=0

C.

~

J

S

v

does not account for blocking by lower priority jobs!

Mar 06/14

Carleton

— UNIVERSITY

Katcher et al.

schedulability test for integrated interrupts:
Foralli:1 <i<n, exists T OS(T))

~

- Ci T Cpreempt T Cexit I_TS_‘
T, T,

S

Mar 06/14 g% Carleton

e’ UNIVERSITY

Katcher et al.
% %

deferred!

] Interrupt
LA

Bl idle task
Z Cpreempt
B C

exit

Mar 06/14 g% Carleton

— UNIVERSITY

Nonlntegrated
e h/w interrupt
job priorities
— Interrupt a
— may Introo

e assumes all |

Mar 06/14

Katcher et al.

Interrupts: -> more typical!
priorities are Independent of s/w

ways preempts current job
uce preemption blocking!
obs triggered by interrupts

s Carleton

— UNIVERSITY

Katcher et al.

e Wwhen a nonintegrated interrupt occurs — If
ISR job should preempt - same as before:

= Cint + Csched + Cstore + CIoad
= Ctrap + CIoad

e if ISR job should not preempt:
=C.+C +C

int sched resume

f f f

interrupt handling scheduling back to job

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

task 3 preempts task 1!

v M
77 R

.
LA

A

B idle task B task 1
% Cpreempt - Cnonpreempt - taSk 2

N C task 3
Mar 06/14 g% Carleton

— UNIVERSITY

exit

Katcher et al.

e schedulability test for nonintegrated
Interrupts -> must include blocking due to
lower priority job Interrupt preemption!

4 a

- Ci + Cpreempt T Cexit I_TS—‘
3 O ot ey

S I

N (n N i) Cnonpreempt

=l

\ S

number of lower priority jobs

Mar 06/14 g% Carleton

— UNIVERSITY

Katcher et al.

e results from two case studies: overhead and
blocking due to event-driven kernel led to
degradation of schedulable utilization o),
and

e conclude tradeoff exists:
more blocking -> reduce overhead
decrease blocking =-> increase overhead

Mar 06/14 g% Carleton

— UNIVERSITY

EDF (Very Briefly)

e dynamic priority scheme, optimal

job with nearest absolute deadline is highest
oriority

oriority at time t depends on jobs ready at t
PRO: schedulable utilization = 1.0

e CON: cannot predict which jobs will miss
deadlines & domino effect

Mar 06/14 g% Carleton

— UNIVERSITY

EDF Problem

e cannot predict (a priori) which job might miss
deadline

-> priority depends on dynamic load

e when job misses deadline, can cause other jobs
to miss -> domino effect

e need overrun strategy
e rate monotonic does not have this problem
— lowest priority jobs miss deadlines

Mar 06/14 g% Carleton

— UNIVERSITY

EDF Utilization (6.2 In text)

e Sufficient (but pessimistic when D | <p,):

— <
min(Dg. Pe) =

k=1
o If D =p, forall k:
then U < 1 Is necessary and sufficient

Mar 06/14 g% Carleton

— UNIVERSITY

EDF Deferrable Server

e Liu text: Theorem 7.3
e deferrable server:
period =p . budget=e _ utilization =u

e In system of n tasks and the deferrable

server, task with period T . schedulable
when:

2
min(Dy, Py)

k=1

Mar 06/14 g% Carleton

— UNIVERSITY

EDF Blocking

e Liu concludes that priority ceiling protocol
better suited to fixed priority scheme than
dynamic priority scheme ...

no comparable protocol for EDF

®

Mar 06/14 g% Carleton

— UNIVERSITY

