SYSC 5701 Operating System Methods for Real-Time Applications

Access Control
Winter 2014

Resource-Sharing Dependencies

- A job cannot proceed (is blocked) because of resource-sharing synchronization
- Resource-sharing requires mutually exclusive access to the resource
- Can cause priority inversions
- We looked into the priority ceiling protocol to deal with the priority inversions
 - See slides: PCPW14

Properties of Basic Priority Ceiling Protocol

- no deadlock!
- job blocks in at most one critical section
 - blocking is bounded (at most one)
 - no chain blocking → shorter blocking bound than Priority Inheritance Protocol
- once acquire first resource, all resources needed will be available when requested

What about RM Theory?

- Priority Ceiling Protocol bounds delay to the single largest delay of a lower priority job!
 - for each job, include max. delay
- recall RM utilization test:

$$\sum u_i \le n (2^{1/n} - 1)$$

- in following, assume that if i < j
 - then priority τ_i > priority τ_j

Consider Utilization Test for Each Task

consider τ_1 case:

 B₁ is the worst case time τ₁ spent blocked by lower priority tasks

$$\frac{C_1}{T_1} + \frac{B_1}{T_1} \leq u(1)$$

Consider Each Task (con't)

• consider τ_2 case:

$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{B_2}{T_2} \le u(2)$$

- blocking of C₁ is included in C₂ & B₂!
 - ensured by protocol!

(think this through on next slide!)

do not need to consider an "additional"

Thinking Through ...

• consider τ_1 :

$$\frac{C_1}{T_1} + \frac{B_1}{T_1} \leq u(1)$$

 B_1 represents max. blocking by lower priority tasks (lower than τ_1) using resources having a priority ceiling greater than (or equal to) the priority of τ_1

$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{B_2}{T_2} \leq u(2)$$

If τ_2 did not cause B_1 then $B_1 = B_2$ (same blocking by same lower priority task)

If τ_2 caused B_1 then B_1 is included in C_2 and B_2 is due to blocking by a task with lower priority than τ_2

nth case

 τ_n cannot be blocked by lower priority tasks since it is the lowest priority task

• nth task case:

$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_n}{T_n} + \frac{B_n}{T_n} \le u(n)$$

 if constraints are satisfied for each case, then task set is schedulable, i.e.:

$$\forall_i \ 1 \le i \le n \qquad \sum u_i + \underline{B_i} \le i (2^{1/i} - 1)$$

Example

$$\tau_1: T_1 = 30 C_1 = 10 B_1 = 10$$

$$\tau_2$$
: $T_2 = 80$ $C_2 = 15$ $B_2 = 20$

$$\tau_3$$
: $T_3 = 100$ $C_3 = 25$ $B_3 = 0$

want to consider

$$\forall_i \ 1 \le i \le n$$

Case: i = 1

•
$$\sum u_i + B_i \le u(1)$$
 T_i
 $10 + 10 \le 1$
 $30 \quad 30$

● 0.66 ≤ 1 ②

Case: i = 2

•
$$\sum u_i + B_i \le u(2)$$

 T_i
 $\frac{10}{30} + \frac{15}{80} + \frac{20}{80} \le 0.82$

Case: i = 3

•
$$\sum u_i + B_i \le u(3)$$

$$T_i$$

$$\frac{10}{30} + \frac{15}{80} + \frac{25}{100} + \frac{0}{100} \le 0.779$$

$$0.771 \leq 0.779 \odot$$

Simpler Test?

can use <u>tighter bound</u> to avoid computing n equations:

$$\sum u_{i} + \max \left\{ \begin{array}{c} B_{1}, B_{2}, \dots, B_{n-1} \\ \hline T_{1} & T_{2} \end{array} \right\} \leq n \left(2^{1/n} - 1 \right)$$

- proof: $\forall_i \ 1 \le i \le n$:
 - $n (2^{1/n} 1) \le i (2^{1/i} 1)$
 - nth case gives tightest bound!

$$\max \left\{ \begin{array}{cccc} \underline{B_{1}} \, , \, \, \underline{B_{2}} \, \, , \, \, \ldots \, \, , \, \underline{B_{n-1}} \right\} \, \geq \, \, \underline{B_{i}} \\ \overline{T_{1}} \, \, \, \overline{T_{2}} \, \, \, \, \, \, \, \overline{T_{n-1}} \, \, \, \, \, \, \overline{T_{i}} \end{array}$$

- max is worst case! → conservative

Hmmm ...

- tighter bound may fail when individual equations succeed
- previous example:

$$\frac{10 + 15 + 25 + \max(10, 20)}{30 \ 80 \ 100} \le 0.779$$

• $0.804 \le 0.779 \otimes$

Demand Analysis Revisited (for cases where utilization test fails)

- can formalize utilization at scheduling points:
 - denote set of scheduling points for interval[0, T] as: S(T)
- set of scheduling points for tasks with periods less than or equal to T_i:

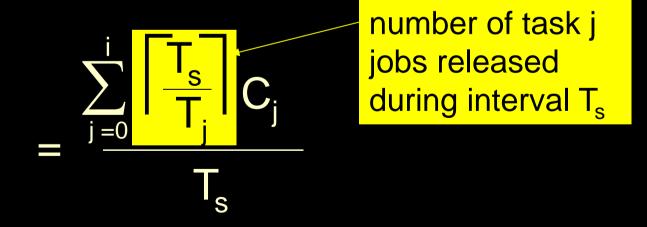
$$S_i(T_i) = \{ k \cdot T_j \mid j = 0...i; k = 0... \mid T_i / T_j \rfloor \}$$

```
remember: T_j \le T_i for j = 0 ... i !!
```

Visualize on blackboard

Scheduling Point (con't)

- maximum period in set of i + 1 tasks: T_i
- set of scheduling points for the set of tasks: S_i (T_i)
- utilization by tasks at scheduling point T_s ∈ S_i (T_i)



Min U at Scheduling Point

 for i tasks, minimum utilization over set of scheduling points S_i(T_i):

= min

$$T_s \in S_i(T_i)$$

Task i guaranteed schedulable when: U_{min} ≤ 1

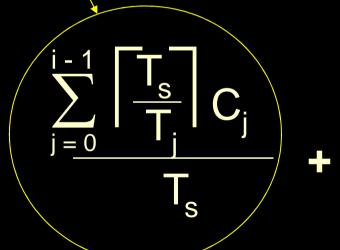
Scheduling Point + Blocking

- generalize Scheduling Point solution to include blocking
- consider set of i tasks: T_i is largest period
- utilization for task i must include: single execution of job i
 - + all preemption by higher priority jobs
 - worst case blocking by a lower job

U at Scheduling Point

preemption by i - 1 execution of job i higher priority tasks

worst case blocking by a lower priority job



Schedulability Test

For all $i: 0 \le i \le n$, exists $T_s \in S_i(T_i)$

$$\begin{bmatrix}
\sum_{j=0}^{i-1} \left\lceil \frac{T_s}{T_j} \right\rceil C_j \\
T_s
\end{bmatrix} + \frac{C_i}{T_s} + \frac{B_i}{T_s}$$

$$\leq 1$$

How to compute B_i?

- 1. identify β_i
- set of resources accessed by lower priority tasks (lower than τ_i) and having a priority ceiling greater than (or equal to) the priority of τ_i
 - \rightarrow the resource accesses that might block τ_i !
- 2. create <mark>β</mark>;*
- subset of β_i created by merging nested critical sections (inner section subsumed by outer section)
- 3. select B_i = member of β_i^* with longest duration

B_i Selection Example

$$au_1$$
: $L(S_1)$ $^{1 \text{ sec}}$ $U(S_1)$ $^{1 \text{ determines ceiling of } S_1$ $^{1 \text{ determines ceiling of } S_2$ $^{2 \text{ sec}}$ $U(S_2)$ $^{2 \text{ sec}}$ $U(S_2)$ $^{3 \text{ sec}}$ $L(S_1)$ $^{3 \text{ sec}}$ $L(S_2)$ $U(S_2)$ $U(S_1)$ $^{1 \text{ sec}}$

Ceiling (S_1) = priority (τ_1) Ceiling (S_2) = priority (τ_2)

Determining B_i's

```
• Ceiling (S_1) = 1 Ceiling (S_2) = 2
```

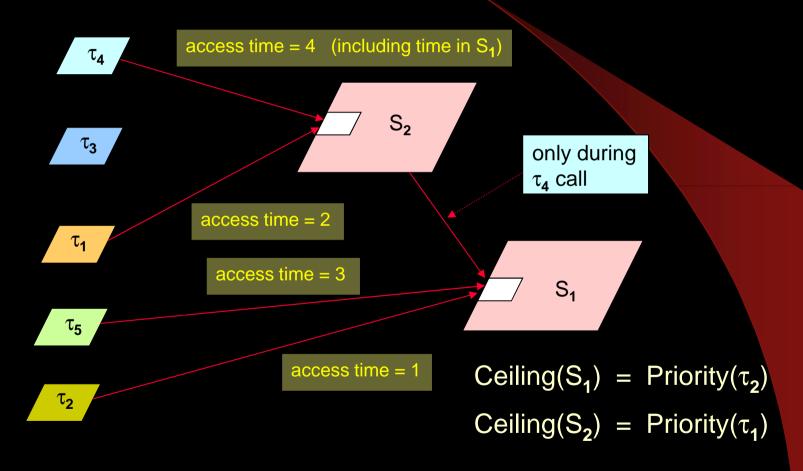
• for
$$\tau_1$$
:
$$\beta_1^* = \{ \tau_3[L(S_1) \ U(S_1)] \}$$

$$\therefore B_1 = 3 \text{ sec}$$

3 sec

• for
$$\tau_2$$
: $\beta_2^* = \{ \tau_3[L(S_1) \ U(S_1)] \}$
 $\therefore B_2 = 3 \text{ sec}$

Recall Client / Server Example



Determining B_i's

Consider β_i :

- β_5 : τ_5 is the lowest priority task $\therefore B_5 = 0$
- β_4 : τ_4 blocked by τ_5 access to S_1 : $B_4 = 3$
- β_3 : τ_3 blocked by τ_5 access to S_1 and by τ_4 access to S_2 \therefore $B_3 = 4$
 - N.B. τ_3 blocked indirectly even though it does not access servers!

Determining B_i's (con't)

• β_2 : τ_2 blocked by τ_5 access to S_1 and by τ_4 access to S_2 \therefore $B_2 = 4$

- β_1 : τ_1 blocked by τ_4 access to S_2 : $B_1 = 4$
 - N.B. τ_1 not blocked for access to S_1 since ceiling of S_1 = Priority(τ_2)

Resource Access Purpose vs. Technical Detail

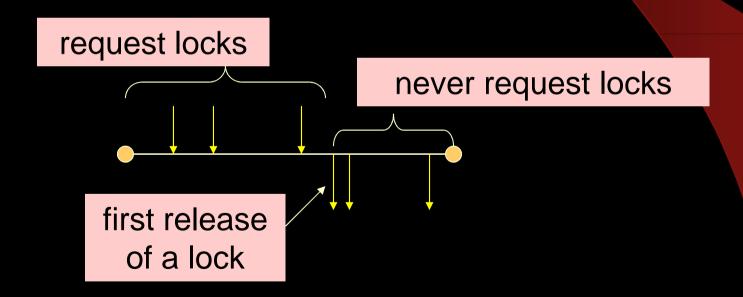
- so far, only case of access dependency considered has been nested access
- may have alternate dependencies
 - e.g. read x, modify value, then write x
 - involves multiple accesses (read, write)
 - really want to lock x for duration of read → modify → write

Serializability

- for operations involving multiple accesses to a resource
- concurrent operations by job 1 and job 2 have potential for interleaving of accesses
- want net behaviour to be serialization of accesses → result is same as if job1 followed by job2, or vice versa

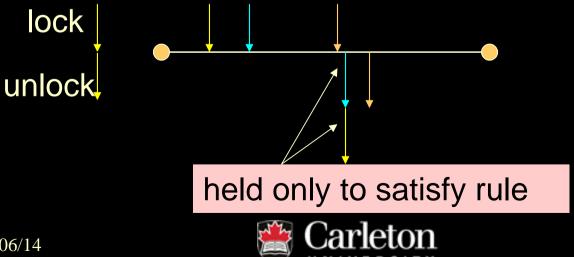
2 Phase Locking (2PL)

- ensures serializability
- Rule: a job never requests any lock after its first release of any lock



Augment with 2PL

- augment Priority Ceiling Protocol with 2PL
 - Advantages: serializable, no deadlock, no chain blocking
 - Penalty: may have prolonged unnecessary blocking



Alternative: Convex-Ceiling Protocol

- reduces duration of blocking (over 2PL)
- for each job, maintain remainder priority ceiling function:
- RP(J, t) = highest priority ceiling of all resources J requires <u>after</u> time t
- when job released: RP(J, 0) = highest priority ceiling of all resources J requires

Remainder Priority Ceiling Function (con't)

- when no resources required, $RP(J, t) = \Omega$
- when job is finished with resource, sends notification to scheduler
 - if ceiling for remaining required resources is lower, scheduler adjusts RP down to value of remainder ceiling
- RP is a strictly decreasing function!

Priority Ceiling Function

- also maintain priority ceiling function for job: $\Pi(J,t)$
- when job released, $\Pi(J, 0) = \Omega$
- each time a resource locked by job, if ceiling of resource is higher than Π , then adjust Π to ceiling of resource
- ullet Π increases until it meets initial RP value

Priority Ceiling Function (con't)

- when resource released, adjust RP first
- if new value of RP < Π , then adjust Π down to RP
- ullet RP and Π decrease in unison

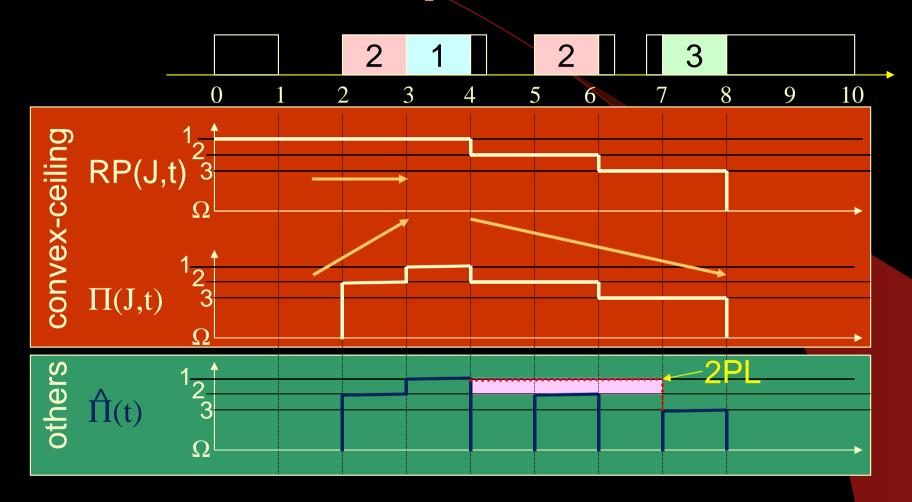
Integrate into a Protocol?

- current priority ceiling: $\Pi(t)$
 - = maximum priority ceiling function $\Pi(J, t)$ of all jobs at time t

Example

- suppose 3 resources X, Y, Z
- priority ceilings: X: 1 Y: 2 Z: 3
- job requires Y, then X, then Y then Z

Comparison



Going Further ...

Daniel I. Katcher, Hiroshi Arakawa, and Jay

K. Strosnider,

Engineering and Analysis of Fixed Priority

Schedulers

IEEE Transactions on Software Engineering,

Vol. 19, No. 9, September 1993, pp.920 - 934

- research "towards bridging the gap" between real-time scheduling theory and realistic implementations
- analyzes event-driven and timer-driven scheduling
- scheduling costs (overheads)
 - notes dependence on h/w platform!

- Assumes all jobs released by interrupts
- looks more closely at interrupts from h/w and o/s perspectives
 - register use
 - independently run ISR vs. ISR "job"
 - schedule, context switch
 - ISR executing kernel code → interaction with scheduler

6 Definitions of o/s Execution Activities:

C_{int}: time to handle an interrupt → minimal context save & invoke scheduler

C_{sched}: time to execute scheduling code to determine next job to run

C_{resume}: time to resume a job after an interrupt but no context <u>switch</u>

C_{store}: time to save job state and save job in ready-to-run queue

C_{load}: time to launch a new active job from front of ready-to-run queue

C_{trap}: time to deal with a completed (current) job and select a new active job

interrupts: integrated vs. nonintegrated

Integrated Interrupts: supported in ARM!!

- h/w interrupt priorities are matched to s/w job priorities
 - e.g. ISR job at priority 5 has lower priority than job at priority 3 (lower priority cannot interrupt higher!)
 - ISR scheduling integrated with job scheduling
- assumes all jobs triggered by interrupts ... oh ©
 - Offloading to h/w interrupt priority handler!

when an integrated interrupt occurs:

$$C_{preempt} = C_{int} + C_{sched} + C_{store} + C_{load}$$
interrupt handling scheduling store job load new *ISR job*

• when ISR job terminates:

$$C_{exit} = C_{trap} + C_{load}$$
done *ISR job* load new job

worst case o/s overhead = C_{preempt} + C_{exit}

Recall schedulability test:

For all $i: 1 \le i \le n$, exists $T_s \in S_i(T_i)$

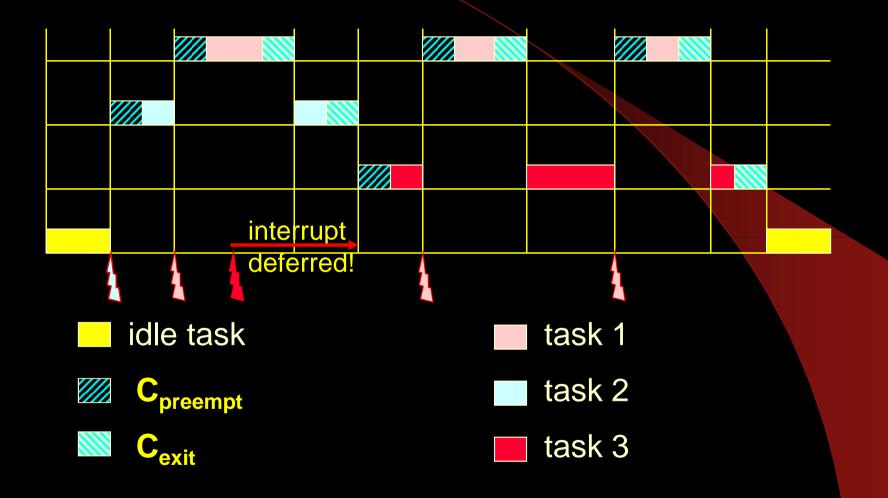
$$\begin{bmatrix} \frac{1}{s} - 1 & T_s & C_j \\ \frac{1}{s} - 1 & T_s & C_j \\ T_s & T_s \end{bmatrix} \leq 1$$

does not account for blocking by lower priority jobs!

schedulability test for integrated interrupts:

For all $i: 1 \le i \le n$, exists $T_s \in S_i(T_i)$

$$\sum_{i=1}^{n} \frac{C_i + C_{preempt} + C_{exit}}{T_s} \left[\frac{T_s}{T_i} \right] \le 1$$



NonIntegrated Interrupts: → more typical!

- h/w interrupt priorities are independent of s/w job priorities
 - interrupt always preempts current job
 - may introduce preemption blocking!
- assumes all jobs triggered by interrupts

 when a nonintegrated interrupt occurs – if ISR job should preempt → same as before:

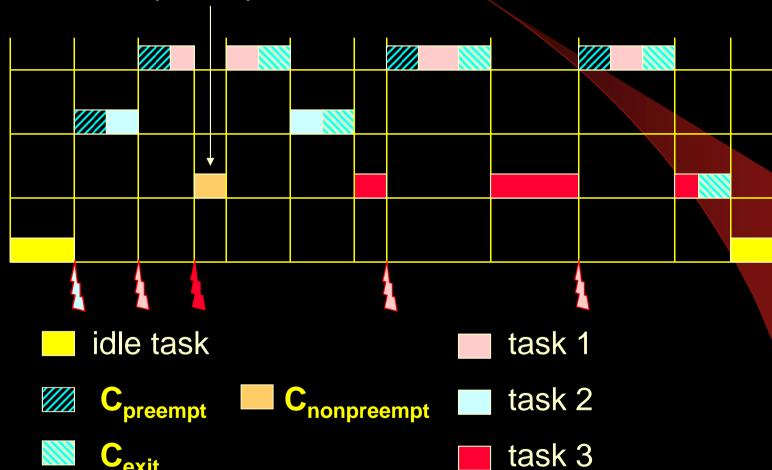
$$C_{preempt} = C_{int} + C_{sched} + C_{store} + C_{load}$$
 $C_{exit} = C_{trap} + C_{load}$

• if ISR job should not preempt:

$$C_{nonpreempt} = C_{int} + C_{sched} + C_{resume}$$

interrupt handling scheduling back to job

task 3 preempts task 1!



 schedulability test for nonintegrated interrupts → must include blocking due to lower priority job interrupt preemption!

$$\sum_{i=1}^{n} \frac{C_i + C_{preempt} + C_{exit}}{T_s} \begin{bmatrix} T_s \\ T_i \end{bmatrix} \le 1$$

$$+ \frac{(n-i) C_{nonpreempt}}{T_s}$$

number of lower priority jobs

- results from two case studies: overhead and blocking due to event-driven kernel led to degradation of schedulable utilization by 13% and 18%
- conclude tradeoff exists:
 more blocking → reduce overhead
 decrease blocking → increase overhead

EDF (Very Briefly)

- dynamic priority scheme, optimal
- job with nearest absolute deadline is highest priority
- priority at time t depends on jobs ready at t
- PRO: schedulable utilization = 1.0
- CON: cannot predict which jobs will miss deadlines & domino effect

EDF Problem

- cannot predict (a priori) which job might miss deadline
 - priority depends on dynamic load
- when job misses deadline, can cause other jobs to miss → domino effect
- need overrun strategy
- rate monotonic does not have this problem
 - lowest priority jobs miss deadlines

EDF Utilization (6.2 in text)

Sufficient (but pessimistic when D_k < p_k):

$$\mathbf{U} = \sum_{k=1}^{n} \frac{\mathbf{e}_k}{\min(D_k, p_k)} \leq \mathbf{1}$$

• If $D_k \ge p_k$ for all k: then $U \le 1$ is necessary and sufficient

EDF Deferrable Server

- Liu text: Theorem 7.3
- deferrable server:

period =
$$p_s$$
 budget = e_s utilization = u_s

 in system of n tasks and the deferrable server, task with period T_i schedulable when:

$$\sum_{k=1}^{n} \frac{e_k}{\min(D_k, p_k)} + u_s \left(1 + \frac{p_s - e_s}{D_i}\right) \leq 1$$

EDF Blocking

 Liu concludes that priority ceiling protocol better suited to fixed priority scheme than dynamic priority scheme ...
 no comparable protocol for EDF

