
SYSC 5701
Operating System Methods for

Real-Time Applications

Access Control: PCP
Winter 2014

Resource-Sharing
Dependencies

� A job cannot proceed (is blocked) because of
resource-sharing synchronization

� Resource-sharing requires mutually exclusive
access to the resource

� Can cause priority inversions

Feb 11/14 2

Feb 11/14

Resources

� serially reusable “units” of resource
– eg. binary semaphore has one unit

� counting semaphore has count units
� grant mutually exclusive right to access a

unit
� once a unit is granted to a job, must not be

reused by other jobs until released
� Recall management of mutual exclusion

“unit” in monitors!
3 Feb 11/14

Access to Resources

� job requests resource(s)
���� job “ locks” the resource(s)

� lock is managed by o/s (kernel)
� if resource(s) not available job is blocked
� eventually, job is granted the resource(s)

and is unblocked
� when finished with resource(s)

���� job “ unlocks” resource(s) for reuse

4

Feb 11/14

Access (more)

related material from earlier in course:
� semaphores, IPC
� monitors
� critical sections
� mutual exclusion

Result: task can have interdependencies
when accessing resources

constructs to enable
programs to control locking
and unlocking of resources

parts of programs that
require locking

the desired effect

5 Feb 11/14

Access Control Protocol

� resource conflict:
two jobs require same resource type
� jobs must contend for the resource

� access control protocol: set of rules for
1. granting resources
2. scheduling jobs requesting resources

6

Feb 11/14

Priority Inversion
� a higher priority job is prevented from executing

by a lower priority job
– the priority relationship is inverted!

locks resource x

requests resource x � direct blocking

unlock resource x

priority inversionhigh priority
job

low
priority
job

7 Feb 11/14

Unbounded Priority Inversion
� duration of priority inversion is not a function

of the time for low priority job to execute the
relevant critical section

lock x unlock x

priority inversion
high priority

low
priority

medium
priority

8

indirect blocking

Feb 11/14

Worst Case Job Response Time

� preemption time: delay due to higher priority job
� execution time: time to do job’s work
� blocking time: time spent blocked

– hopefully, blocking time is a simple function of
delays while lower-priority jobs execute critical
sections
� if not, then difficult to compute (unbounded)

9 Feb 11/14

Avoiding Unbounded
Priority Inversion

1. disable preemption
2. priority inheritance protocol
3. priority ceiling protocol

10

Feb 11/14

Disable All Preemption
� disable preemption during critical sections
� effectively elevate job in critical section to

highest priority (cannot be preempted)
� priority elevation only needed when higher-

priority jobs are requesting the relevant critical
section – in other cases, the lower priority job
should be preemptable by higher-priority jobs

� OK if critical sections are very short relative to
shortest deadlines

11 Feb 11/14

Disable Preemption for
Unbounded PI Example

lock x unlock x

priority inversion
τ0

τ2

τ1

elevate τ2 to
highest priority

request x

return τ2 to
original
priority

no preemption here

12

Feb 11/14

Variation on Disable Preemption:
Priority Ceiling Emulation

Priority Ceiling :

� the priority ceiling of resource R i is the highest
priority of all jobs that require access to R i at
any time during their operation

� denote ΠΠΠΠ (Ri)
� Q: do any jobs with priority higher than ΠΠΠΠ (Ri)

access R i ?

13 Feb 11/14

Priority Ceiling Emulation
� in critical section, job runs at priority = priorit y

ceiling for the resource
– i.e. no job that might request access to the

resource is able to run!
� job in critical section disables all jobs that

might access critical section
� at end of critical section, job returns to original

priority
� jobs at priority higher than the ceiling are still

eligible to run

14

Feb 11/14

Priority Ceiling Emulation
for Unbounded PI Example

lock x unlock x

priority inversionτ0

τ2

τ1

elevate τ2 to

priority of τ0

request x

return τ2 to
original priority

no preemption

15

Priority Ceiling Emulation vs.
Disable Preemption Example 1

Feb 11/14

τ0

τ2

τ1

τ0

τ2

τ1

priority ceiling emulation

disable preemption

differences?

16

Feb 11/14

Priority Ceiling Emulation vs.
Disable Preemption Example 2

τ1

τ3

τ2

τ0

τ1

τ3

τ2

τ0

disable preemption

differences?priority ceiling emulation

17

New job

Feb 11/14

Basic Priority Inheritance
Protocol

� while a job low is holding any resource: raise its
priority to the highest priority of any job
requesting any resource held by job low

� dynamic ���� raise at time higher priority job
requests the resource

� when unlock a resource: assign job low the higher
of (1) its original priority, or (2) the highest
priority of a job requesting a resource held by
job low

18

Lowering Priority Scenario
� Suppose job low holds resource 1 and it is then

requested by job with priority ττττ2

���� raise job low to priority ττττ2

� Now job low acquires resource 2 and it is then
requested by job with priority ττττ1

���� raise job low to priority ττττ1

� Now job low releases resource 1
���� what should be priority of job low now?

– How does this fit with the rule on previous
slide?

Feb 11/14 19 Feb 11/14

Basic Priority Inheritance
for Unbounded PI Example

lock x unlock x

τ0

τ2

τ1

elevate τ2 to

priority of τ0

request x

return τ2 to
original priority

Same as disable preemption result?
No! ☺

τ1 blocked
indirectly

20

Feb 11/14

What about All Three?

τ1

τ3

τ2

τ0

τ1

τ3

τ2

τ0

τ1

τ3

τ2

τ0

how many context switches?

response times? blocking?

21

Feb 11/14

Is Blocking a Function of Time
to Execute Critical Sections?

� suppose m critical sections accessed by task ττττ
� job of ττττ can be blocked directly, at most, m

times
– not counting indirect blocking!

� if n tasks at lower priority than ττττ
– job of ττττ can be blocked, at most, at one critical

section in each of the n tasks
– blocking time is bounded, ☺☺☺☺ but ... may suffer

from “chain blocking” – blocks each time attempt to
access a critical section

22

Feb 11/14

Chain Blocking Example

L(S1) U(S1)L(S2) U(S2)

τ1 blocked each time
it tries to access a
critical section

L(S1) U(S1)L(S2) U(S2)

τ1

τ2

τ3

23

ττττ1 : L(S2) U(S2) L(S1) U(S1)

ττττ2 : L(S2) U(S2)

ττττ3 : L(S1) U(S1)

Feb 11/14

Chain Blocking for Disable
Preemption & Priority

Inheritance?
� still a problem!
� previous example:

τ1

τ2

τ3

S2

S1

Same behaviour for both? WHY?

24

Feb 11/14

Chain Blocking for Priority
Ceiling Emulation?

� never blocks on request!
� resource always available (GOOD!) … WHY?
� for previous example:

ΠΠΠΠ (S1) = ππππ(ττττ1) ΠΠΠΠ(S2) = ππππ(ττττ1)

τ1

τ2

τ3

never blocks while
gaining access to a

critical region!

S1 S2

25 Feb 11/14

Potential Deadlock
� loop of tasks blocked waiting for each other
ττττ1 : L(S2) L(S1) U(S1) U(S2)
ττττ2 : L(S1) L(S2) U(S2) U(S1)

L(S1) L(S2)

L(S2) L(S1)

DEADLOCK!

problem for
disable
preemption &
priority inheritance

τ1

τ2

26

Feb 11/14

Deadlock for Priority Ceiling
Emulation?

� no!
� resource always available WHY?

No DEADLOCK!

τ1

τ2

27 Feb 11/14

Performance vs. Penalty
� priority ceiling emulation looks “best” in

terms of performance
– penalty? ���� may delay higher priority

jobs even though no conflict would occur
���� unnecessary priority inversion!

� disable preemption & priority inheritance
– only elevate priority when a conflict

occurs ���� avoids unnecessary priority
inversion

28

Feb 11/14

Basic Priority Ceiling
Protocol

� combine priority ceiling emulation with
priority inheritance protocol
� priority ceiling
� inheritance only when conflict

• current priority ceiling: ΠΠΠΠ(t)
highest priority ceiling of all resources

currently in use

^

meaning of
“conflict” is key!

29 Feb 11/14

Basic Priority Ceiling Protocol
Rules

Scheduling Rule:
� job released at assigned priority
� preemptive and priority driven at job’s

current priority

Allocation Rule: when J requests R at time t
� if R already locked – request denied and

J blocked

30

Feb 11/14

Allocation Rule (con’t)
if R is free:

i. if priority of J at t > ΠΠΠΠ(t), allocate R to J
� J does not access any of the held resources!

ii. else: if J is the job holding the resource(s)
whose priority ceiling = ΠΠΠΠ(t), allocate R to J

� Not possible for different jobs to hold
resources with same priority ceiling! (see i.
and iii.)

iii. otherwise: request denied and J is blocked

^

^

31 Feb 11/14

Allocation Rule
(paraphrasing)

� a job cannot acquire a resource unless its
priority is higher than the ceilings of all other
resources currently acquired by other jobs

� if priority higher than ceilings, then job will not
request access to any of the other active
resources (by the definition of a ceiling!)

� when request denied and job is blocked, higher
priority jobs might still be able to acquire
resource! (deny access ≠≠≠≠ FIFO blocking)

32

Feb 11/14

Priority-Inheritance Rule
� while a job low is holding any resource: raise its priority to

the highest priority of any job requesting any resou rce held
by job low

� dynamic: at time t when a job J becomes blocked, the job
J low which blocks J inherits the current priority of J

� J low executes at inherited priority until t ′′′′ when it releases
every resource whose priority ceiling is greater or equal to
the inherited priority

� at t ′′′′: priority of J low falls to the higher of (1) its original
priority, or (2) the priority of the highest job re questing one
of the resources still held by J low

33

Lowering Priority Scenario
� Suppose job low holds resource 1 with priority ceiling π3

which is then requested by job with priority π4 (rules?)
���� raise job low to priority π4

� Now job low acquires resource 2 with priority ceiling π1
which is then requested by job with priority π2 (rules?)

���� raise job low to priority π2

� Now job low releases resource 1
���� what should be priority of job low now? (rules?)

� Now job low releases resource 2
���� what should be priority of job low now? (rules?)

� What if resources released in other order? (rules?)

Feb 11/14 34

Feb 11/14

Recall Previous Deadlock Example
ττττ1 : L(S2) L(S1) U(S1) U(S2)
ττττ2 : L(S1) L(S2) U(S2) U(S1)

ΠΠΠΠ(S1) = ππππ(ττττ1) ΠΠΠΠ(S2) = ππππ(ττττ1)

L(S1) L(S2)

L(S2) L(S1)try ... but cannot lock!
priority not greater
than active ceiling!

U(S2) U(S1)

U(S1)U(S2)

NO DEADLOCK !

π(τ2)
π(τ1)Π(t)^

why can τ2 lock S2? 35 Feb 11/14

Another Example
ττττ0 : L(S0) U(S0) L(S1) U(S1)
ττττ1 : L(S2) U(S2)
ττττ2 : L(S2) L(S1) U(S1) U(S2)
ΠΠΠΠ(S0) = ππππ(ττττ0) ΠΠΠΠ(S1) = ππππ(ττττ0) ΠΠΠΠ(S2) = ππππ(ττττ1)

t0 t1 t2 t3 t4 t5

L(S2) L(S1)

try
L(S2)

try
L(S0)

U(S1)

L(S2) U(S2)

U(S2)

L(S0) L(S1) U(S1)
U(S0)

τ2

τ1

τ0

t6

Π(t)^ Π(S0)
Π(S1)Π(S2)

36

Feb 11/14

Priority Inheritance in
Example

t0 t1 t2 t3 t4 t5

L(S2) L(S1)

try
L(S2)

try
L(S0)

U(S1)

L(S2) U(S2)

U(S2)

L(S0) L(S1) U(S1)
U(S0)

τ2

τ1

τ0

t6

Π(t)^ Π(S0)
Π(S1)
Π(S2)

t0 t1 t2 t3 t4 t5
τ2

t6

ππππ(ττττ2) τ1

τ0

37 Feb 11/14

Behaviour
� t0 : ππππ(ττττ2) = ττττ2

� t1 : ΠΠΠΠ(S2) = ππππ(ττττ1) ∴∴∴∴ block, bump ττττ2 to ππππ(ττττ1)
� t2 : ΠΠΠΠ(S1) = ππππ(ττττ0) ∴∴∴∴ block, bump ττττ2 to ππππ(ττττ0)
� t3 : ππππ(ττττ2) returns to ππππ(ττττ1), ττττ0 resumes
� t4 : S1 free, only other active resource is S 2

ΠΠΠΠ(S2) = ππππ(ττττ1) ���� ΠΠΠΠ(t4) and ππππ(ττττ0) > ΠΠΠΠ(t4)
∴∴∴∴ allocate S 1 to ττττ0

� t5 ττττ2 resumes
� t6 : ππππ(ττττ2) returns to ππππ(ττττ2), ττττ1 resumes

^ ^

38

Feb 11/14

Points Seen in Example
� a job is blocked by a (possibly nested) critical

section of at most one lower priority job
� ceiling blocking occurs – a job is prevented

from entering a critical section by ceiling of
an active resource ���� not because the
requested resource was busy !
– e.g. t 2: ττττ0 is blocked even though S 0 is free

39 Feb 11/14

Properties of Basic Priority
Ceiling Protocol

� no deadlock !
� job blocks in at most one critical section

– blocking is bounded
– no chain blocking ���� shorter blocking

bound than Priority Inheritance Protocol
� once acquire first resource, all resources

needed will be available when requested

40

Feb 11/14

Implementation of Basic
Priority Ceiling Protocol

� don’t need “lock” queues (e.g. semaphore queue)
� maintain queue of tasks that are ready-to-run or

blocked – maintain in priority order
� task at head is current task
� need list of active resources – ordered by ceiling

priority (includes task that locked the resource,
and highest priority of any task blocked waiting
for the resource)

� lock and unlock manipulate queue and list
� need analysis of critical section use – establish

priority ceilings prior to run-time

Why is a single
queue sufficient?

41 Feb 11/14

Example Using Client / Server
(similar to Liu text)

τ5

τ2

τ1

τ3

τ4

S1

S2

only during
τ4 call

server inherits
priority of caller

42

Feb 11/14

Ceilings in Example

� Ceiling(S 1) = max { ττττ2 , ττττ4 , ττττ5 }
(ττττ4 indirect)

= Priority(ττττ2)
� Ceiling(S 2) = max { ττττ1 , ττττ4 }

= Priority(ττττ1)
� ττττ3 does not access servers

43 Feb 11/14

4
4

1
1

S2

4
2
2

5

Basic Priority Ceiling
Protocol Behaviour

τ1

τ2

τ3

τ4

τ5

S1

S2

server called by

4 25execution priority

C1

C1

C2

C1

C2

C1

44

C2 C2 C1

C1 C1 C1

C2

Feb 11/14

1
1

2
2

S2

1

Basic Priority Inheritance
Same Example

τ1

τ2

τ3

τ4

τ5

S1

S2

5

4

2 1

4 1 1

5

C1

C1 C1C1 C1

C1

C2 C2 C1 C2

C2

1

C1

C2

45 Feb 11/14

Response Comparison
τ1

τ2

τ3

τ4

τ5 C1 C1 C1 C1

C1

C2 C2 C2 C2

C2

τ1

τ2

τ3

τ4

C1 C1C1 C1

C1

C2 C2 C1 C2

C2

τ5

46

