SYSC 5701
Operating System Methods for
Real-Time Applications

Access Control: PCP
Winter 2014

Resource-Sharing
Dependencies

e A job cannot proceed (is blocked) because of
resource-sharing synchronization

e Resource-sharing requires mutually exclusive
access to the resource

e Can cause priority inversions

Feb 11/14

Resources

e serially reusable “units” of resource
— eg. binary semaphore has one unit
e counting semaphore has count units
e grant mutually exclusive right to access a
unit
e once a unit is granted to a job, must not be
reused by other jobs until released

e Recall management of mutual exclusion
“unit” in monitors!

Feb 11/14 3

Access to Resources

® job requests resource(s)
-> job “ locks” the resource(s)
e |lock is managed by o/s (kernel)
e if resource(s) not available job is blocked

e eventually, job is granted the resource(s)
and is unblocked

e when finished with resource(s)
- job “ unlocks” resource(s) for reuse

Feb 11/14

Access (more)

related material from earlier in course:

e semaphores, IPC constructs to enable
. programs to control locking
e monitors and unlocking of resources

e critical sections \parts of programs that
e mutual exclusion ,\require locking
the desired effect

Result: task can have interdependencies
when accessing resources

Feb 11/14 5

Access Control Protocol

e resource conflict:
two jobs require same resource type
e jobs must contend for the resource
e access control protocol: set of rules for
1. granting resources
2. scheduling jobs requesting resources

Feb 11/14

Priority Inversion
e a higher priority job is prevented from executing
by a lower priority job
— the priority relationship is inverted!

requests resource x - direct blocking

high priority l priority, inversion
job [o —

tod t !

low | ||
jporlljorlty locks resource x unlock resource x
Feb 11/14 7

Unbounded Priority Inversion

e duration of priority inversion is not a function
of the time for low priority job to execute the
relevant critical section

high priorit l prioritxkinversion
igh priority

| | l | l

lindirect blocking|

medium [‘ ‘
priority | | I
ow [[T [[]
priority lock x unlock x

Feb 11/14 8

Worst Case Job Response Time

e preemption time: delay due to higher priority job
e execution time: time to do job’s work
e blocking time: time spent blocked

— hopefully, blocking time is a simple function of
delays while lower-priority jobs execute critical
sections

« if not, then difficult to compute (unbounded)

Feb 11/14 9

Avoiding Unbounded
Priority Inversion

1. disable preemption
2. priority inheritance protocol
3. priority ceiling protocol

Feb 11/14 10

Disable All Preemption

e disable preemption during critical sections

e effectively elevate job in critical section to
highest priority (cannot be preempted)

e priority elevation only needed when higher-
priority jobs are requesting the relevant critical
section — in other cases, the lower priority job
should be preemptable by higher-priority jobs

e OK if critical sections are very short relative to
shortest deadlines

Feb 11/14 n

Disable Preemption for
Unbounded Pl Example

request x
priority inversion

TO
T ! l .
| | | " no preemption here h
T2
lock x ‘ unlock X return T, to
elevate T, to original
highest priority priority
Feb 11/14 12

Variation on Disable Preemption:
Priority Ceiling Emulation

Priority Ceiling
e the priority ceiling of resource R ; is the highest

priority of all jobs that require accessto R ; at
any time during their operation

e denote I (R))
e Q: do any jobs with priority higher than n Ry
accessR; ?

Feb 11/14 13

Priority Ceiling Emulation
e in critical section, job runs at priority = priorit y
ceiling for the resource

—i.e. no job that might request access to the
resource is able to run!

e job in critical section disables all jobs that
might access critical section

e at end of critical section, job returns to original
priority

e jobs at priority higher than the ceiling are still
eligible to run

Feb 11/14 14

Priority Ceiling Emulation
for Unbounded Pl Example

request x
priority inversion

T, J,_H |

——

nO_lpreemptlon \l ’—‘
1

!

r, | []
lock x \ unlockvx\

elevate T, to
priority of T,

return T, to
original priority

Feb 11/14 15

Priority Ceiling Emulation vs.
Disable Preemption Example 1

disable preemption

To [1
v
| B —

E — | ;
S | m
2 .

prio_r[ity ceiling emulation differences?
0 | l |
T |
' '
T, L | []
Feb 11/14 16

Priority Ceiling Emulation vs. __
Disable Preemption Example 2

disable preemption - New job

T |]
T, []
. Ll E—

2 [v

I 1 []
1. -
priority ceiling emulation differences? f

TO
T, '
T |

i Ml .
1, | \

Feb 11/14 17

Basic Priority Inheritance
Protocol

e while a job ,,,, is holding any resource: raise its
priority to the highest priority of any job
requesting any resource held by job |,

e dynamic -> raise at time higher priority job
requests the resource

e when unlock a resource: assign job ., the higher
of (1) its original priority, or (2) the highest
priority of a job requesting a resource held by
jOb low

Feb 11/14 18

Lowering Priority Scenario
e Suppose job ,,,, holds resource 1 and it is then

requested by job with priority T,

- raise job ,,,, to priority T,
e Now job ,,, acquires resource 2 and it is then
requested by job with priority T,

- raise job ., to priority T,
e Now job ,,, releases resource 1
-> what should be priority of job |, now?
— How does this fit with the rule on previous
slide?

Feb 11/14

19

Basic Priority Inheritance
for Unbounded Pl Example

request x L1 Plocked
| indirectly
K B |)
!
T | —
' | | l
TS | =
2 return T, to
lock ‘ unlock X _original priority
elevate T,to| Same as disable preemption result?
priority of T No! ©

Feb 11/14 20

What about All Three?

T, & e
TO'\0‘~¢9 o 1 1

RN 1 i —

27 ¢ I
T, S
Feb 11/14 ‘ how many context switches? |

21

‘ response times? |

Is Blocking a Function of Time
to Execute Critical Sections?

e suppose m critical sections accessed by task
e job of T can be blocked directly, at most, m

times
— not counting indirect blocking!
e if n tasks at lower priority than 1
— job of T can be blocked, at most, at one critical
section in each of the n tasks

— blocking time is bounded, © but... may suffer
from “chain blocking” — blocks each time attempt to

access a critical section

1

Feb 11/14

Chain Blocking Example

T, :|L(S,) UGS, | LSy Uy |
T, 1 L(S,) U(S)
T, . L(S;) U(S;)

L(S2) U(Sy) L(Sy) U@y

. —H =t

v

T [T1 [‘
2 3 v

T3

1, blocked each time
it tries to access a
critical section

R e —

LSy LS U(Sy) U(sy)

Feb 11/14 23

Chain Blocking for Disable
Preemption & Priority
Inheritance?

e still a problem!
® previous example:

T !_1 |‘ T | Sl
T, | S

v l
r, (T — =]

Same behaviour for both? WHY?

Feb 11/14 24

Chain Blocking for Priority
Ceiling Emulation?

e never blocks on request!
e resource always available (GOOD!) ... WHY?
e for previous example:

M (Sy) = 1(1y) n(s,) =m,)
T I i :

T [never blocks while
E I gaining access to a
15 critical region!

Feb 11/14

25

Potential Deadlock

e loop of tasks blocked waiting for each other
T, - LSy LSy UGS, Uy

T, 1 L(S) LSy U(S,) USy problem for
disable
LSy LSy preemption &
¢ ! priority inheritance
T
I
v [[]]
LSy L(S)

Feb 11/14 26

Deadlock for Priority Ceiling
Emulation?

® Nno!
e resource always available WHY?

T, |

T |
o[] [T 0

Feb 11/14

27

Performance vs. Penalty

e priority ceiling emulation looks “best” in
terms of performance
— penalty? -> may delay higher priority
jobs even though no conflict would occur
-> unnecessary priority inversion!
e disable preemption & priority inheritance
- only elevate priority when a conflict

occurs - avoids unnecessary priority
inversion

Feb 11/14 28

Basic Priority Ceiling
Protocol
e combine priority ceiling emulation with
priority inheritance protocol
v/ priority ceiling
v inheritance only when c/c\mflict
® current priority ceiling: ()
highest priority ceiling of all resources
currently in use

Feb 11/14

meaning of
. “conflict” is key!

29

Basic Priority Ceiling Protocol
Rules

Scheduling Rule:

e job released at assigned priority

e preemptive and priority driven at job’s
current priority

Allocation Rule: when J requests R at time t

e if R already locked — request denied and
J blocked

Feb 11/14 30

Allocation Rule (con't)

if R is free: A
i. ifpriorityofJatt > T(t), allocate Rto J
¢ J does not access any of the held resources!

ii. else:if Jis the job holding the resource(s)
whose priority ceiling = T1(t), allocate Rto J

¢ Not possible for different jobs to hold
resources with sarfie priority ceiling! (see i.
and iii.)
ii. otherwise: request denied and J is blocked

Feb 11/14 31

Allocation Rule
(paraphrasing)

e a job cannot acquire a resource unless its
priority is higher than the ceilings of all other
resources currently acquired by other jobs

e if priority higher than ceilings, then job will not
request access to any of the other active
resources (by the definition of a ceiling!)

e when request denied and job is blocked, higher
priority jobs might still be able to acquire
resource! (deny access # FIFO blocking)

Feb 11/14 32

Priority-Inheritance Rule

while a job ., is holding any resource: raise its priority to
the highest priority of any job requesting any resou rce held
by job

dynamic: at time t when a job J becomes blocked, the job
Jiow Which blocks J inherits the current priority of J

Jiow €Xecutes at inherited priority untilt ' when it releases
every resource whose priority ceiling is greater or equal to
the inherited priority

at t': priority of J ,,, falls to the higher of (1) its original

priority, or (2) the priority of the highest job re questing one
of the resources still held by 3,

Feb 11/14 33

Lowering Priority Scenario

e Suppose job |, holds resource 1 with priority ceiling 5
which is then requested by job with priority m, (rules?)

- raise job ,, to priority 1T,

e Now job ,,, acquires resource 2 with priority ceiling m
which is then requested by job with priority m, (rules?)

- raise job ,,, to priority 1T,

e Now job ,, releases resource 1
-> what should be priority of job |, now? (rules?)

e Now job ,,, releases resource 2
-> what should be priority of job |, now? (rules?)

e \What if resources released in other order? (rules?)

Feb 11/14 34

Recall Previous Deadlock Example
T, 0 L(S,) LSy US) US,)
T, : (S, LS, U(S,) US)
nes, = mry) NS, =mnry)

i R
than active ceiling! ’—} ‘
||
LSy LS2) u(sy VG
Ao)] —

Feb11/14 ‘ why can 1, lock S,? | 35

Another Example
T, 1 LSy U(Sy) L(S) U(S))
T, : LS, US,)
T, 1 L(S,) L(S,) UES,) U(S,)
NSy = 1) N(Sy) = M) N(S,) = ry)

U(So)

try ‘L’(VSD L(So) (s) Sy
T L ﬁ LS U(s)
0 |
T, LS [usy ugs,

A Egi S— EmE E—

2.
Feb 11/14 36

Priority Inheritance in
Example

U(So)

t
ey U Sy UE)
- LS d LS) UGSy

1, e[ys) usy

aain B | 1
) s to t t, t ot te\u(sz)
A ;5{@?::-:
T(T,) E 1

T] |

Feb 11/14

37

Behaviour
ot): TMT,)=T,
ot : MN(S,) =mn(tr;) O block, bump T1,to m(t,)
o t,: MN(S,) =m(t,) O block, bump T, to m(1,)
e t.: T(T,) returnsto m(t,), T,resumes
e t,: S, free, only other active resourceis S,
n(s,) = nw,) >N, and n(t) > M)
O allocate S ; to 1,
® t. T, resumes
e t. . 1(1,) returnsto T(t,), T, resumes

Feb 11/14 38

Points Seen in Example

e a job is blocked by a (possibly nested) critical
section of at most one lower priority job

e ceiling blocking occurs — a job is prevented
from entering a critical section by ceiling of
an active resource - not because the
requested resource was busy !

—e.g. t,: 1, is blocked even though S is free

Feb 11/14

39

Properties of Basic Priority
Ceiling Protocol

e no deadlock !
e job blocks in at most one critical section
— blocking is bounded

- no chain blocking - shorter blocking
bound than Priority Inheritance Protocol

e once acquire first resource, all resources
needed will be available when requested

Feb 11/14 40

Implementation of Basic
Priority Ceiling Protocol

e don’t need “lock”
e maintain queue of tasks that are ready-to-run or

gqueues (e.g. semaphore queue)

blocked — maintain in priority order
e task at head is current task

Why is a single
queue sufficient?

e need list of active resources — ordered by ceiling
priority (includes task that locked the resource,
and highest priority of any task blocked waiting
for the resource)

e lock and unlock manipulate queue and list

e need analysis of critical section use — establish
priority ceilings prior to run-time

Feb 11/14

41

Example Using Client / Server
(similar to Liu text)

E only during
T, call
/ server inherits
priority of caller

Feb 11/14 42

Ceilings in Example

Basic Priority Ceiling
Protocol Behaviour

e Ceiling(S,) = max{1,, 1,, T} - Tl
o ¢
(T, indirect) 5, e . A
= Priority(T,) . - o
° Celling(S,) = maxin. 1, } g T | EERE]
= Priority(1,) . e T e l
e T, does not access servers \|5 I 5
execution riorityP5 4 2 2]
e I L] [0 1
s, \ | [OIS
Feb 11/14 43 Feb 11/14 44
Basic Priority Inheritance
Same Example Response Comparison
C,
T d | [e]] E ey -
. 1 G - i i o Y
T : - \I(\ " 06/]~
T | O T 0 N\ Nelee %o
- LI<] & [lelG O] t [CIe] 6] | [€] [er N
T _|C_1' T1 GG] |: T [C »
. E : T i e\,
5 : 2 110 T . - . §»/~
S A e A . S S - ’?é%
2 1 2
4 1 1‘ 1 5 [CIe, el e Ter T _! £
s m O [e
Feb 11/14 45 Feb 11/14 46

